返回上级菜单
3.7 周一
- Casimir力补充(介绍一维和三维计算的一些细节),见casimir力,龚明老师Note
- 路径积分微扰论求解\(\phi^4\)理论(理论上最终结论和量子场论方法等价),参考:
- 《An introduction to quantum field theory》, peskin chap9
- 《Quantum Field Theory and Condensed Matter_An introduction》,shankar chap14
待求:\(Z=\int D\phi e^{iS},S=\int Ld\vec{x}dt,dx=d\vec{x}dt\)
\(L=\frac{1}{2}(\frac{\partial\phi}{\partial t})^2-\frac{m^2}{2}(\frac{\partial\phi}{\partial x})^2-\frac{\lambda}{4!}\phi^4\)
\(\frac{\lambda}{4!}\phi^4\)人为规定分母因子\(4!\)是方便费曼图计算时直接为\(-i\lambda\delta^4(k)\),而不是\(-i4!\lambda\delta^4(k)\),省下一堆不必要的麻烦
第一个问题:傅氏变换\(\frac{\lambda}{4!}\phi^4\rightarrow\frac{\lambda}{4!}\phi_{k_1}\phi_{k_2}\phi_{k_3}\phi_{k_4}2\pi\delta^4(\sum_ik_i)\)
使用公式:
\(\int dxe^{-bx^2}=\sqrt{\frac{\pi}{b}}\)
\(\int dzd\bar{z}e^{-b\bar{z}z}\bar{z}z=\frac{-2i}{b}\)
\(\frac{\int dzd\bar{z}e^{-b\bar{z}z}\bar{z}z}{\int dzd\bar{z}e^{-b\bar{z}z}}=\frac{1}{b}\)
变换到傅里叶空间计算:
\(\int D\phi=\int\prod_{j=1}^NAd\phi(x_j)\rightarrow J*const*\int\prod_{j=1}^Nd\phi(k_j)\)
\(\phi(x)=\frac{1}{V}\sum_k\phi_ke^{ik\cdot x},k\cdot x=\vec{k}\cdot\vec{x}-\omega t,k=(\vec{k},\omega),x=(\vec{x},t)\)
\(\phi(x)=J\phi(k)\),J与\(\phi\)无关,与\(m、\lambda\)无关,可约掉
\(S=\int dxL_0,L_0=\frac{1}{2}(\frac{\partial\phi}{\partial t})^2-\frac{m^2}{2}(\frac{\partial\phi}{\partial x})^2-\frac{\mu}{2}\phi^2\)
积分计算:Parseval定理:
\(\int n(x)dx=\int n(k)dk\)
Parseval定理对数值计算一大好处:若量子波包弥散在很广的实空间中,可以傅里叶变换到弥散很广的动量空间,方便数值计算
\(\int f^2(x)dx=\sum_kf_kf_{-k}\)
\(\int(\frac{\partial\phi}{\partial t})^2dx=\frac{1}{2V^2}\sum_{kk'}\phi(k)\phi(k')(ik_0)(ik'_0)\int e^{i(k+k')\cdot x}dx=\frac{1}{2V^2}\sum_k\phi(k)\frac{V}{(2\pi)^d}(2\pi)^d\int dk'\phi(k')(ik_0)(ik'_0)\delta(k+k')=\frac{1}{2V}\sum_k\phi(k)\phi(-k)k_0^2\)
对于积分4D空间\((k^0,\vec{k})\),我们只需要取\(k_0>0\)一半积分即可,结论如下:
\(\int\frac{1}{2}(\frac{\partial\phi}{\partial t})^2dx=\frac{1}{V}\sum_{k^0>0}\phi^*(k)\phi(k)k_0^2\)
对应关系\(L_0=\frac{1}{2}(\partial_{\mu}\phi)^2-\frac{m^2}{2}\phi^2=\frac{1}{2}[(\partial_t\phi)^2-(\triangledown\phi)^2]-\frac{m^2}{2}\phi^2\)
\(S_0=\int dxL_0=\frac{1}{V}\sum_k(k_0^2-\vec{k}^2-m^2)^2\phi_k^*\phi_k\)
\(\int D\phi e^{iS_0}=\int_{k_0\geq 0}D\phi_k^*D\phi_ke^{\frac{i}{V}\sum_k(k_0^2-\vec{k}^2-m^2)\phi_k^*\phi_k}\)
\(\langle\phi(x)\phi(y)\rangle=\frac{1}{V^2}\sum_{qq'}\langle\phi(q)\phi(q')\rangle e^{i(q\cdot x+q'\cdot y)}=\frac{1}{V^2}\sum_{qq'}e^{i(q\cdot x+q'\cdot y)}\frac{\int_{k^0\geq0}D\phi_k^*D\phi_ke^{\frac{i}{V}\sum_k(k_0^2-\vec{k}^2-m^2)\phi_k^*\phi_k}\phi_q\phi_{q'}}{\int_{k^0\geq0}D\phi_k^*D\phi_ke^{\frac{i}{V}\sum_k(k_0^2-\vec{k}^2-m^2)\phi_k^*\phi_k}}\)
特点:表达式很长,且只有对角复Gauss积分有贡献,非对角项无贡献
e.g.\(\int dxdye^{-A(x^2+y^2)}xy=0\rightarrow\langle xy\rangle=0\)
学生笔记
学生笔记2
学生笔记3
3.10 周四
- 开头复习了上一节课内容。这次我的网页直接接着前面的结论继续往下写
\(\langle \phi(x)\phi(y)\rangle=\frac{1}{V^2}\sum_qe^{iq\cdot(x-y)}\frac{\int_{k^0\geq0}D\phi_q^*D\phi_qe^{iS_0}\phi_q^*\phi_q}{\int_{k^0\geq0}D\phi_q^*D\phi_qe^{iS_0}}=\frac{1}{V^2}\sum_qe^{iq\cdot(x-y)}\frac{\int Dz^*Dze^{\frac{i}{V}(q_0^2-\vec{q}^2-m^2)\bar{z}z}\bar{z}z}{\int Dz^*Dze^{\frac{i}{V}(q_0^2-\vec{q}^2-m^2)\bar{z}z}}\)
\(\langle \phi(x)\phi(y)\rangle=\sum_qe^{iq\cdot(x-y)}\frac{i}{q_0^2-\vec{q}^2-m^2}\)
一般定义propagator:\(D(x-y)orG(x-y)=\langle\phi(x)\phi(y)\rangle=\frac{1}{V}\sum_qe^{iq\cdot(x-y)}\frac{i}{q_0^2-\vec{q}^2-m^2},D(k)orG(k)=\frac{i}{q_0^2-\vec{q}^2-m^2}\)
回顾数理方程:\(LG(x-y)=\delta(x-y)\),其中L为线性算子,傅里叶变换到动量空间得
\(LG(x-y)=\frac{1}{V}\sum_kG(k)Le^{ik\cdot x}=\frac{1}{V}\sum_ke^{ik\cdot x}\)
\(\rightarrow L(k)G(k)=1\rightarrow D(x-y)=\frac{1}{V}\sum_q\frac{e^{iq\cdot(x-y)}}{L(q)}\)
考虑了\(\phi^4\)理论后积分形式:\(L=L_0-\frac{\lambda}{4!}\phi_I^4\),其中\(\phi\)为小量
\(\langle\phi(x)\phi(y)\rangle=\frac{\int D\phi e^{i(S_0+S_I)}\phi(x)\phi(y)}{\int D\phi e^{i(S_0+S_I)}}\),简化为要用累积量展开求解
额外附注:推广到Peskin量子场论情形(本课程不需要掌握),Peskin量子场论中拉格朗日量形式为:\(L=\int d^4x\bar{\psi}(i\gamma^{\mu}\partial_{\mu}-m)\psi\)
傅里叶变换关联函数\(f(x-y)\propto\int\frac{d^4p}{(2\pi)^4}e^{-ip\cdot(x-y)}\),其中\(p\cdot x=p^0x^0-\vec{p}\cdot\vec{x}\)
变换到动量空间方程为\(L=\int\frac{d^4p}{(2\pi)^4}\bar{\psi}(\gamma^{\mu}p_{\mu}-m)\psi=\int\frac{d^4p}{(2\pi)^4}\bar{\psi}(\gamma\cdot p-m)\psi\)
用以上公式可得传播子\(\frac{i}{\gamma\cdot p-m}\)
- 这节课给出累积量展开的形式,之后几节课再求解\(\phi^4\)理论路径积分最终形式
热统中我们只对自由能F感兴趣,\(Z=Tr(e^{-\beta H})=e^{-\beta F}\),当H中包括相互作用项时,F长什么形式呢?因此我们首先介绍概率论中的累积量展开,参考文献:
- kardar书粒子统计物理38-40页(累积量展开形式)
- kardar书统计场论第73、74页(只有连通图有贡献的证明)
- 只有连通图有贡献的严格证明
概率论:\(\langle e^{tx}\rangle=\sum_{n=0}^{+\infty}\frac{t^n}{n!}\langle x^n\rangle=e^{\Omega},\Omega=\sum_{r=0}^{+\infty}\kappa_r\frac{t^r}{r!}\)
定义\(m_n=\langle x^n\rangle\),展开到高阶项得
一阶项:\(\kappa_1=m_1\),二阶项:\(\kappa_2=m_2-m_1^2\),三阶项:\(\kappa_3=m_3-3m_2m_1+2m_1^3\)
kardar书粒子统计物理38-40页用图像说明了\(\langle x^n\rangle\)与\(\langle x^i\rangle_C\)关系,之后我们论证这里的\(\kappa_n\)其实就是连通图\(\langle x^n\rangle_C\)
简便理解方法:\(\langle x^n\rangle-\)所有关联项=\(\langle x^n\rangle_C\)
一个抽象的证明:参考kardar书粒子统计物理38-40页
\(\langle x^n\rangle=\langle x^1\rangle_C^{n_1}\langle x^2\rangle_C^{n_2}\cdot\cdot\cdot C_n^{n_1}C_{n-n_1}^{2n_2}C_{n-n_1-2n_2}^{3n_3}\cdot\cdot\cdot\frac{(2n_2)!}{(2!)^{n_2}n_2!}\frac{(3n_3)!}{(3!)^{n_3}n_3!}\cdot\cdot\cdot\)
其中\(\frac{(2n_2)!}{(2!)^{n_2}n_2!}=C_{2n_2}^2C_{2n_2-2}^2C_{2n_2-4}^2\cdot\cdot\cdot\)
\(\rightarrow\langle e^{tx}\rangle=\sum_{n=0}^{+\infty}\frac{t^{n_1+2n_2+3n_3+\cdot\cdot\cdot}}{n!}\langle x^1\rangle_C^{n_1}\langle x^2\rangle_C^{n_2}\cdot\cdot\cdot\frac{n!}{1!n_1!(2!)^{n_2}n_2!(3!)^{n_3}n_3!\cdot\cdot\cdot}\)
上式\(=\prod_{n=1}^{+\infty}exp[\frac{\langle x^n\rangle_Ct^n}{n!}]=exp[\sum_{n=1}^{+\infty}\frac{\langle x^n\rangle _Ct^n}{n!}]=e^{\Omega}\)
故\(\langle e^{tX}\rangle=exp[\sum_{n=1}^{\infty}\frac{\langle x^n\rangle_Ct^n}{n!}]\)得证,根据kardar书粒子统计物理38-40页描述,\(\langle x^n\rangle_C\)为连通图,是扣除了所有不连通的关联的图像,这也是Feynman图连通定理本质的来源
- 下面我们来看有相互作用作用下路径积分求解,将连通定理引入来求解
\(\langle O\rangle=\frac{\int D\phi Oe^{-H_0-U}}{\int D\phi e^{-H_0-U}}\)可以类比\(\langle\phi(x)\phi(y)\rangle=\frac{\int D\phi \phi(x)\phi(y)e^{i(S_0+S_I)}}{\int D\phi e^{i(S_0+S_I)}}\)
只有连通图有贡献的严格证明,此中严格证明了以下式子:
\(\langle O\rangle_H=\frac{\langle Oe^{-U}\rangle_{H_0}}{\langle e^{-U}\rangle_{H_0}}\)
学生笔记
学生笔记2
学生笔记3