• 返回上级菜单
  • 4.25 周一

    1. 本课程参考:
      1. Introduction to Bosonization,Miranda
      2. Shankar第17,18章
      3. 玻色化tokura Note
      4. 建议阅读Miranda Note的第3-16页,Tokura Note的1-6页,就能把这次课和上次课和上上次课都弄懂
      5. jordan-wigner and bosonization
    2. 今日目的为更系统的证明\(\psi=\frac{F}{\sqrt{2\pi a}}e^{i\Phi}\)为什么正确
      前面几节课证明了:
      I.满足费米子反对易关系
      II.Hilbert空间完备\(e^{i\Phi}|N\rangle_0\in H_N\)
      III.\(Z_F=Z_B\)
      今日证明:关联函数一致性,可参考玻色化C.L.Kane Note
      \(\langle\psi^{\dagger}(x)\psi(y)\rangle=\frac{1}{2\pi a}\langle e^{-i\Phi(x)}e^{i\Phi(y)}\rangle\)
    3. 计算费米子关联函数\(\langle\psi^{\dagger}(x)\psi(y)\rangle\)
      \(\langle\psi^{\dagger}(x)\psi(y)\rangle=\frac{1}{L}\sum_{q\leq0}e^{-iq(x-y)}\langle 0|c_q^{\dagger}c_q|0\rangle=\frac{1}{L}\lim_{a\rightarrow0}\sum_{q\leq0}e^{-iq(x-y)+aq}=\frac{1}{2\pi}\int_{-\infty}^{0}e^{[-i(x-y)+a]q}dq=\frac{i}{2\pi}\frac{1}{x-y+ia}\)
    4. 求解\([\Phi(x),\Phi(y)]\)
      上一节课我的课程主页,以及miranda note中论述了\(\Phi=i\sum_{q>0}\sqrt{\frac{2\pi}{Lq}}(e^{-iqx}b_q^{\dagger}-e^{iqx}b_q)\)
      \([\Phi(x),\Phi(y)]=-\frac{2\pi}{L}\sum_{q>0}(\frac{1}{q}e^{-iq(x-y)-aq}-\frac{1}{q}e^{iq(x-y)-aq})=-\sum_{n\geq1}\frac{1}{n}(e^{(-i(x-y)-a)\frac{2\pi}{L}n}-e^{(i(x-y)-a)\frac{2\pi}{L}n})\)
      利用结论\(-\frac{2\pi}{L}\sum_{q>0}(\frac{1}{q}e^{-iq(x-y)-aq}=-\frac{1}{a+i(x-y)},+\frac{2\pi}{L}\sum_{q>0}\frac{1}{q}e^{iq(x-y)-aq})=\frac{1}{a-i(x-y)}\),通过微积分求偏导公式可得\([\Phi(x),\Phi(y)]=ln\frac{x-y-ia}{y-x-ia}\)
      \(a\rightarrow0^+\)得\([\Phi(x),\Phi(y)]=i\pi sgn(x-y)\)
    5. 求解\([\Phi_+(x),\Phi_-(y)]\)
      \([\Phi_+(x),\Phi_-(y)]=\sum_{q>0}\frac{2\pi}{Lq}[e^{-iqx}b_q^{\dagger},e^{iqy}b_q]=-\sum_{q>0}\frac{2\pi}{Lq}e^{-iq(x-y)-aq}=ln(x-y-ia)\)
    6. 计算\(\frac{1}{2\pi a}\langle e^{-i\Phi(x)}e^{i\Phi(y)}\rangle\)
      \(\frac{1}{2\pi a}\langle e^{-i\Phi(x)}e^{i\Phi(y)}\rangle=\frac{1}{2\pi a}\langle 0|e^{-i\Phi(x)+i\Phi(y)+[\Phi(x),\Phi(y)]/2}|0\rangle=\frac{1}{2\pi a}e^{[\Phi(x),\Phi(y)]/2}\langle 0|e^{-i\Phi(x)+i\Phi(y)}|0\rangle\)
      根据\(A=A_++A_-\)可拆解\(e^A=e^{A_+}e^{A_-}e^{-[A_+,A_-]/2}\)
      故\(\frac{1}{2\pi a}\langle e^{-i\Phi(x)}e^{i\Phi(y)}\rangle=\frac{1}{2\pi a}e^{[\Phi(x),\Phi(y)]/2}e^{-\frac{1}{2}[-i\Phi_+(x)+i\Phi_+(y),-i\Phi_-(x)+i\Phi_-(y)]}=\frac{1}{2\pi a}e^K\),可求得\(K=ln\frac{ia}{x-y+ia}\)
      故\(\frac{1}{2\pi a}\langle e^{-i\Phi(x)}e^{i\Phi(y)}\rangle=\frac{1}{2\pi}\frac{i}{x-y+ia}\)
    7. 故\(\langle\psi^{\dagger}(x)\psi(y)\rangle=\frac{1}{2\pi a}\langle e^{-i\Phi(x)}e^{i\Phi(y)}\rangle\)得证,下面继续论证关联函数等价
      同理,\(\langle\psi(y)\psi^{\dagger}(x)\rangle=\frac{i}{2\pi}\frac{1}{y-x+ia}\),\(\langle\{\psi(y),\psi^{\dagger}(x)\}\rangle=\frac{i}{2\pi}(\frac{1}{y-x+ia}+\frac{1}{x-y+ia})=\delta(x-y)\)
    8. 故玻色化\(\psi=\frac{F}{\sqrt{2\pi a}}e^{i\Phi}\)方案在对易关系和关联函数方面等价
    9. 对XXZ model做分析,参考Introduction to Bosonization,Miranda第3-19页,第23-26页
      本质上XXZ model和1D Hubbard model都可以用Beth-Ansartz方法求严格解,我们这里所叙述的玻色化方法本质上是微扰论,将紧束缚项看作主体有费米面填充,相互作用只在费米面附近做微扰。对XXZ model做玻色化是经典玻色化模型
      XXZ model:\(H=-J\sum_i(\sigma_i^x\sigma_{i+1}^x+\sigma_i^y\sigma_{i+1}^y)+\triangle\sum_i\sigma_i^z\sigma_{i+1}^z\)
      进行Jordan-Wigner变换后哈密顿量为\(H=-\frac{J}{2}(c_j^{\dagger}c_{j+1}+c_{j+1}^{\dagger}c_j)+\triangle\sum_j(n_j-\frac{1}{2})(n_{j+1}-\frac{1}{2})\),参考我四月二号课程主页
      \(H_0\)项对应紧束缚近似,在其上填充费米能级。\(\sum_j(n_j-\frac{1}{2})(n_{j+1}-\frac{1}{2})\)项做微扰。我们讨论的电子总数固定时,我们只需要考虑\(\sum_j\triangle n_jn_{j+1}\)做微扰激发费米面附近电子即可
      \(\sum_jc_j^{\dagger}c_jc_{j+1}^{\dagger}c_{j+1}=a\int dx\psi^{\dagger}(x)\psi(x)\psi^{\dagger}(x+a)\psi(x+a)\)
      \(\psi=e^{ik_Fx}\psi_R+e^{-ik_Fx}\psi_L\),\(\psi^{\dagger}(x)\psi(x)=\psi_R^{\dagger}\psi_R+\psi_L^{\dagger}\psi_L+e^{-2ik_Fx}\psi_R^{\dagger}\psi_L+e^{2ik_Fx}\psi_L^{\dagger}\psi_R\)
      进一步,Introduction to Bosonization,Miranda第3-19页,第23-26页给出了XXZ model玻色化的细节和严格解
    10. 其他:下节课预告
      \(\psi_L^{\dagger}\psi_R+h.c.=\frac{F_L^{\dagger}F_R}{2\pi a}e^{-i\Phi_L+i\Phi_R}+h.c.=\frac{F_LF_R}{2\pi a}+\frac{F_RF_L}{2\pi a}e^{i\Phi_L-i\Phi_R}=\frac{F_LF_R}{2\pi a}(e^{-i\Phi_L+i\Phi_R}-e^{i\Phi_L-i\Phi_R})=\frac{iF_LF_R}{\pi a}sin(\Phi_R-\Phi_L)\)
      学生笔记
      学生笔记2
      学生笔记3
  • 4.28 周四

    1. 本课程参考:
      1. Introduction to Bosonization,Miranda
      2. Shankar第17,18章
      3. 玻色化tokura Note
    2. 今日目的:如何直接写出来玻色化后的场\(L[\psi]\rightarrow L[\Phi]\),具体的表见Shankar第17.5节

    3. \(e^{A+B}=e^Ae^Be^{-[A,B]/2}=e^Be^Ae^{[A,B]/2}\)
      不断利用引理1得\(e^{A+B}=e^{A^++B^+}e^{A^-+B^-}e^{[A^-,B^+]}e^{-[B^+,B^-]/2}e^{[A^-,B^-]/2}e^{-[A^+,A^-]/2}e^{[A^+,B^+]/2}\)
      于是可得\(\langle0|e^Ae^B|0\rangle=e^{\langle0|AB+\frac{A^2+B^2}{2}|0\rangle}\)
    4. 证明粒子算符玻色化后的表达式,参考Miranda note3-16页和前几次课程内容
      \(\psi(x)=\frac{F}{\sqrt{2\pi\alpha}}e^{i\phi(x)}\),其中:
      \(\phi(x)=\frac{-i}{\sqrt{2\pi L}}\sum_{q>0}\frac{1}{\sqrt{q}}e^{-\alpha q/2}[e^{iqx}b_q-e^{-iqx}b_q^{\dagger}]\)
      \(\psi(x)=\frac{1}{\sqrt{L}}\sum_ke^{ikx}c_k,\rho(q)=\sum_kc_{k+q}^{\dagger}c_k\)
      由以上式子可得\(\rho(x)=\lim_{a\rightarrow0}\psi^{\dagger}(x+a)\psi(x)=\frac{1}{2\pi}\partial_x\phi\)
    5. 今后需要玻色化:可以查字典,如我上面挂出来的图片所示,其中\(\bar{\psi}=\psi^{\dagger}\gamma^0\),\(\bar{\psi}\psi=-i\psi_R^{\dagger}(x)\psi_L(x)+i\psi_L^{\dagger}(x)\psi_R(x)\)。具体该表各符号表示的意义要查Shankar第17.5节
    6. 下列讨论有相互作用形式为\(Vcos(2k_Fx)\psi^{\dagger}(x)\psi(x)\)的玻色化,在第六周主页四月二日部分已经叙述过,对Luttinger液体加此相互作用过后可打开能隙
      会出现\(\psi_L^{\dagger}\psi_R+\psi_R^{\dagger}\psi_L\)项,玻色化后形式为\frac{iF_LF_R}{\pi a}sin(\Phi_L-\Phi_R)
      对于其他类型相互作用有\(\psi_R^{\dagger}\psi_L^{\dagger}+h.c.=\frac{iF_RF_L}{\pi a}sin(\Phi_R+\Phi_L)\)
    7. 考虑多体相互作用影响
      \(\rho=:\psi^{\dagger}\psi:=\psi_R^{\dagger}\psi_R+\psi_L^{\dagger}\psi_L+e^{2ik_Fx}\psi_L^{\dagger}\psi_R+e^{-2ik_Fx}\psi_R^{\dagger}\psi_L=\partial_x\phi_R+\partial_x\phi_L+e^{-2ik_Fx}\psi_L^{\dagger}\psi_R+e^{2ik_Fx}\psi_R^{\dagger}\psi_L\)
      我们接下来考虑多体相互作用形式:\(n_in_{i+1}\)(这是XXZ model),\(n_{i\uparrow}n_{i\downarrow}\)
      \(\psi_L,\psi_R\)是慢变场,\(e^{ik_Fx}\)是快变场,根据\((slow+fast)^2=slow*slow+fast*fast\),因为\(slow*fast\)就像第六周三月三十一日课程主页那张图那样,整体急剧振荡而不稳定,积分结果为0
      对于相互作用\(n_{i\uparrow}n_{i\downarrow}\)可玻色化为\((\partial_x\phi_R^{\uparrow}+\partial_x\phi_L^{\uparrow})(\partial_x\phi_R^{\downarrow}+\partial_x\phi_L^{\downarrow})+(e^{-2ik_Fx}\psi_{L\uparrow}^{\dagger}\psi_{R\uparrow}+e^{2ik_Fx}\psi_{R\uparrow}^{\dagger}\psi_{L\uparrow})(e^{-2ik_Fx}\psi_{L\downarrow}^{\dagger}\psi_{R\downarrow}+e^{2ik_Fx}\psi_{R\downarrow}^{\dagger}\psi_{L\downarrow})=firstterm+secondterm\)
      其中\(secondterm=\psi_{R\uparrow}^{\dagger}\psi_{L\uparrow}\psi_{L\downarrow}^{\dagger}\psi_{R\downarrow}+\psi_{L\uparrow}^{\dagger}\psi_{R\uparrow}\psi_{R\downarrow}^{\dagger}\psi_{L\downarrow}\),这还是类似的道理,快变场*慢变场=0
      其中\(F_{R\uparrow}F_{L\uparrow}F_{L\downarrow}F_{R\downarrow}=F_{L\uparrow}F_{R\uparrow}F_{R\downarrow}F_{L\downarrow}\),故\(secondterm=\frac{F_{R\uparrow}F_{L\uparrow}F_{L\downarrow}F_{R\downarrow}}{(2\pi a)^2}(e^{-i\Phi_{R\uparrow}+i\Phi_{L\uparrow}-i\Phi_{L\downarrow}+i\Phi_{R\downarrow}}+h.c.)\)
      考虑\(\sum_in_in_{i+1}\)形式多体相互作用,做变量替换\(c_i=\sqrt{a}\psi(x=ia)\),该多体相互作用被替换为\(a\int\psi^{\dagger}(x)\psi(x)\psi^{\dagger}(x+a)\psi(x+a)=a\int\rho(x)\rho(x+a)\)
      玻色化后形式\(\rho(x)=\partial\phi_R(x)+\partial\phi_L(x)+(e^{2ik_Fx}\psi_R^{\dagger}(x)\psi_L(x)+h.c.)\)
      \(\int dx\rho(x)\rho(x+a)=\int dx[(\partial\phi_R(x)+\partial\phi_L(x))(\partial\phi_R(x+a)+\partial\phi_L(x+a))+e^{-2ik_Fa}\psi_R^{\dagger}(x)\psi_L(x)\psi_L^{\dagger}(x+a)\psi_R(x+a)+h.c.]\)
      之后进一步做玻色化\(\psi_{L/R\sigma}=\frac{F_{L/R\sigma}}{\sqrt{2\pi a}}e^{i\Phi_{L/R\sigma}},\psi_{L/R\sigma}^{\dagger}=\frac{F_{L/R\sigma}}{\sqrt{2\pi a}}e^{-i\Phi_{L/R\sigma}}\)可得最终结果

    8. 学生笔记
      学生笔记2
      学生笔记3