12.06主要内容
本节课主要参考Nakahara书上:
chapter3_Homology_groups,
chapter4_Homotogy_groups,
chapter6_De_Rham_cohomology_groups.
引子
- 面临的物理问题
AB effect: \(\oint \vec{A} \cdot d\vec{l}\)
Monopole: \(\oint \vec{B} \cdot d\vec{S}\); charge: \(\oint \vec{E} \cdot d\vec{S}\)
......抽象成Topo term
- Stokes Theorem(龚昇, \(dxdy \rightarrow dx \wedge dy\))
\( \int_{c} \mathrm{d} \omega=\int_{\partial c} \omega,\ \text{Or}\ \langle c, \mathrm{d} \omega\rangle=\langle\partial c, \omega\rangle \)
(1) \(\partial \Sigma_1 = \partial \Sigma_2\)时不影响结果, 可以相差一个边界\(\Sigma_1 - \Sigma_2 = \partial \sigma\),
     等价类\([\Sigma] = \{\Sigma + \partial \sigma | \sigma\}\)
\(\Rightarrow\) \(\partial \Sigma \rightarrow \partial \Sigma + \partial^2 \sigma =\partial \Sigma \)不变
(2) 等价类\([\omega] = \{\omega + d \eta | \eta\}\)
\(\Rightarrow\) \(d \omega \rightarrow d \omega + d^2 \eta = d \omega \)不变
同伦群(Homotopy group)
- 定义: \(f: M\rightarrow N\)之间的mapping等价类形成群\(\pi(X,Y)\), 更常用地\(\pi(S^n,Y)=\pi_n(Y)\)
- 性质:
(1)\(\pi_n(X \times Y) = \pi_n(X) \times \pi_n(Y) = \pi_n(X) \oplus \pi_n(Y)\);
(2)\(\pi_n(S^n)=\mathbb{Z}\);
(3)Table(待补充)
(上)同调群(Cohomology & Homolopy group)
- 同调群
(1) 三角剖分; (2) 单形 & 复形; (3) 边界算子\(\partial\): \(\partial^2 = 0\)(建立同调论的基础)
- 上同调群
- de Rham同调 & Stokes定理
- 性质: (1)\(H^r(X \times Y) = \sum_{p+q=r} H^p(X) \times H^q(Y)\)(Kunneth formula);
(2)Hurewicz同构定理, 特别地\(H_k(S^n)=\pi_k(S^n)\) if \(k\leq n\);
(3)de Rham上同调: \(H_r(M) \simeq H^{n-r}(M)\)
具体应用
- Winding number
- Chern number
- 映射度 & pull back: \({\rm deg}(f)\cdot \int_N \omega = \int_M f^{*} \omega\)
总结
USTC|
BBS