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HOMOLOGY GROUPS

Among the topological invariants the Euler characteristic is a quantity readily
computable by the ‘polyhedronization’ of space. The homology groups are
refinements, so to speak, of the Euler characteristic. Moreover, we can easily read
off the Euler characteristic from the homology groups. Let us look at figure 3.1.
In figure 3.1(a), the interior is included but not in figure 3.1(b). How do we
characterize this difference? An obvious observation is that the three edges of
figure 3.1(a) form a boundary of the interior while the edges of figure 3.1(b) do
not (the interior is not a part of figure 3.1(b)). Clearly the edges in both cases
form a closed path (loop), having no boundary. In other words, the existence of
a loop that is not a boundary of some area implies the existence of a hole within
the loop. This is our guiding principle in classifying spaces here: find a region
without boundaries, which is not itself a boundary of some region. This principle
is mathematically elaborated into the theory of homology groups.

Our exposition follows Armstrong (1983), Croom (1978) and Nash and Sen
(1983). An introduction to group theory is found in Fraleigh (1976).

3.1 Abelian groups

The mathematical structures underlying homology groups are finitely generated
Abelian groups. Throughout this chapter, the group operation is denoted by +
since all the groups considered here are Abelian (commutative). The unit element
is denoted by 0.

3.1.1 Elementary group theory

Let G1 and G2 be Abelian groups. A map f : G1 → G2 is said to be a
homomorphism if

f (x + y) = f (x)+ f (y) (3.1)

for any x, y ∈ G1. 1f f is also a bijection, f is called an isomorphism. If there
exists an isomorphism f : G1 → G2, G1 is said to be isomorphic to G2, denoted
by G1 ∼= G2. For example, a map f : �→ �2 = {0, 1} defined by

f (2n) = 0 f (2n + 1) = 1
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Figure 3.1. (a) is a solid triangle while (b) is the edges of a triangle without an interior.

is a homomorphism. Indeed

f (2m + 2n) = f (2(m + n)) = 0 = 0+ 0 = f (2m)+ f (2n)

f (2m + 1+ 2n + 1) = f (2(m + n + 1)) = 0 = 1+ 1

= f (2m + 1)+ f (2n + 1)

f (2m + 1+ 2n) = f (2(m + n)+ 1) = 1 = 1+ 0

= f (2m + 1)+ f (2n).

A subset H ⊂ G is a subgroup if it is a group with respect to the group
operation of G. For example,

k�≡ {kn|n ∈ �} k ∈ �
is a subgroup of �, while �2 = {0, 1} is not.

Let H be a subgroup of G. We say x, y ∈ G are equivalent if

x − y ∈ H (3.2)

and write x ∼ y. Clearly ∼ is an equivalence relation. The equivalence class to
which x belongs is denoted by [x]. Let G/H be the quotient space. The group
operation+ in G naturally induces the group operation+ in G/H by

[x] + [y] = [x + y]. (3.3)

Note that + on the LHS is an operation in G/H while + on the RHS is that in G.
The operation in G/H should be independent of the choice of representatives. In
fact, if [x ′] = [x], [y ′] = [y], then x − x ′ = h, y − y ′ = g for some h, g ∈ H
and we find that

x ′ + y ′ = x + y − (h + g) ∈ [x + y]
Furthermore, G/H becomes a group with this operation, since H is always a
normal subgroup of G; see example 2.6. The unit element of G/H is [0] = [h],
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h ∈ H . If H = G, 0− x ∈ G for any x ∈ G and G/G has just one element [0].
If H = {0}, G/H is G itself since x − y = 0 if and only if x = y.

Example 3.1. Let us work out the quotient group �/2�. For even numbers
we have 2n − 2m = 2(n − m) ∈ 2� and [2m] = [2n]. For odd numbers
(2n+1)−(2m+1) = 2(n−m) ∈ 2�and [2m+1] = [2n+1]. Even numbers and
odd numbers never belong to the same equivalence class since 2n−(2m+1) /∈ 2�.
Thus, it follows that

�/2�= {[0], [1]}. (3.4)

If we define an isomorphism ϕ : �/2�→ �2 by ϕ([0]) = 0 and ϕ([1]) = 1, we
find �/2�∼= �2. For general k ∈ �, we have

�/k�∼= �k. (3.5)

Lemma 3.1. Let f : G1 → G2 be a homomorphism. Then
(a) ker f = {x |x ∈ G1, f (x) = 0} is a subgroup of G1,
(b) im f = {x |x ∈ f (G1) ⊂ G2} is a subgroup of G2.

Proof. (a) Let x, y ∈ ker f . Then x+ y ∈ ker f since f (x+ y) = f (x)+ f (y) =
0+0 = 0. Note that 0 ∈ ker f for f (0) = f (0)+ f (0). We also have−x ∈ ker f
since f (0) = f (x − x) = f (x)+ f (−x) = 0.

(b) Let y1 = f (x1), y2 = f (x2) ∈ im f where x1, x2 ∈ G1. Since f is a
homomorphism we have y1+ y2 = f (x1)+ f (x2) = f (x1+ x2) ∈ im f . Clearly
0 ∈ im f since f (0) = 0. If y = f (x), −y ∈ im f since 0 = f (x − x) =
f (x)+ f (−x) implies f (−x) = −y. �

Theorem 3.1. (Fundamental theorem of homomorphism) Let f : G1 → G2
be a homomorphism. Then

G1/ker f ∼= im f. (3.6)

Proof. Both sides are groups according to lemma 3.1. Define a map ϕ :
G1/ ker f → im f by ϕ([x]) = f (x). This map is well defined since for
x ′ ∈ [x], there exists h ∈ ker f such that x ′ = x + h and f (x ′) = f (x + h) =
f (x) + f (h) = f (x). Now we show that ϕ is an isomorphism. First, ϕ is a
homomorphism,

ϕ([x] + [y]) = ϕ([x + y]) = f (x + y)

= f (x)+ f (y) = ϕ([x])+ ϕ([y]).
Second, ϕ is one to one: if ϕ([x]) = ϕ([y]), then f (x) = f (y) or f (x)− f (y) =
f (x − y) = 0. This shows that x − y ∈ ker f and [x] = [y]. Finally, ϕ is onto:
if y ∈ im f , there exists x ∈ G1 such that f (x) = y = ϕ([x]). �

Example 3.2. Let f : �→ �2 be defined by f (2n) = 0 and f (2n+1) = 1. Then
ker f = 2� and im f = �2 are groups. Theorem 3.1 states that �/2�∼= �2, in
agreement with example 3.1.
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3.1.2 Finitely generated Abelian groups and free Abelian groups

Let x be an element of a group G. For n ∈ �, nx denotes

x + · · · + x︸ ︷︷ ︸
n

(if n > 0)

and
(−x)+ · · · + (−x)︸ ︷︷ ︸

|n|
(if n < 0).

If n = 0, we put 0x = 0. Take r elements x1, . . . , xr of G. The elements of G of
the form

n1x1 + · · · + nr xr (ni ∈ �, 1≤ i ≤ r) (3.7)

form a subgroup of G, which we denote H . H is called a subgroup of G
generated by the generators x1, . . . , xr . If G itself is generated by finite
elements x1, . . . , xr , G is said to be finitely generated. If n1x1 + · · · + nr xr = 0
is satisfied only when n1 = · · · = nr = 0, x1, . . . , xr are said to be linearly
independent.

Definition 3.1. If G is finitely generated by r linearly independent elements, G is
called a free Abelian group of rank r .

Example 3.3. � is a free Abelian group of rank 1 finitely generated by 1 (or −1).
Let �⊕� be the set of pairs {(i, j)|i, j ∈ �}. It is a free Abelian group of rank 2
finitely generated by generators (1, 0) and (0, 1). More generally

�⊕�⊕ · · · ⊕�︸ ︷︷ ︸
r

is a free Abelian group of rank r . The group �2 = {0, 1} is finitely generated by
1 but is not free since 1 is not linearly independent (note 1+ 1 = 0).

3.1.3 Cyclic groups

If G is generated by one element x,G = {0,±x,±2x, . . .}, G is called a cyclic
group. If nx �= 0 for any n ∈ �− {0}, it is an infinite cyclic group while if
nx = 0 for some n ∈ �− {0}, a finite cyclic group. Let G be a cyclic group
generated by x and let f : �→ G be a homomorphism defined by f (n) = nx .
f maps � onto G but not necessarily one to one. From theorem 3.1, we have
G = im f ∼= �/ ker f . Let N be the smallest positive integer such that Nx = 0.
Clearly

ker f = {0,±N,±2N, . . .} = N� (3.8)

and we have
G ∼= �/N�∼= �N. (3.9)
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If G is an infinite cyclic group, then ker f = {0} and G ∼= �. Any infinite cyclic
group is isomorphic to �while a finite cyclic group is isomorphic to some �N.

We will need the following lemma and theorem in due course. We first state
the lemma without proof.

Lemma 3.2. Let G be a free Abelian group of rank r and let H ( �=∅) be a subgroup
of G. We may always choose p generators x1, . . . , x p , out of r generators of G
so that k1x1, . . . , k px p generate H . Thus, H ∼= k1�⊕ . . . ⊕ k p� and H is of
rank p.

Theorem 3.2. (Fundamental theorem of finitely generated Abelian groups)
Let G be a finitely generated Abelian group (not necessarily free) with m
generators. Then G is isomorphic to the direct sum of cyclic groups,

G ∼= �⊕ · · · ⊕�︸ ︷︷ ︸
r

⊕�k1 ⊕ · · · ⊕�kp (3.10)

where m = r + p. The number r is called the rank of G.

Proof. Let G be generated by m elements x1, . . . , xm and let

f : �⊕ · · · ⊕�︸ ︷︷ ︸
m

→ G

be a surjective homomorphism,

f (n1, . . . , nm) = n1x1 + · · · + nm xm.

Theorem 3.1 states that

�⊕ · · · ⊕�︸ ︷︷ ︸
m

/ ker f ∼= G.

Since ker f is a subgroup of
�⊕ · · · ⊕�︸ ︷︷ ︸

m

lemma 3.2 claims that if we choose the generators properly, we have

ker f ∼= k1�⊕ · · · ⊕ k p�.

We finally obtain

G ∼= �⊕ · · · ⊕�︸ ︷︷ ︸
m

/ ker f ∼= �⊕ · · · ⊕�︸ ︷︷ ︸
m

/(k1�⊕ · · · ⊕ k p�)

∼= �⊕ · · · ⊕�︸ ︷︷ ︸
m−p

⊕�k1 ⊕ · · · ⊕�kp. �
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Figure 3.2. 0-, 1-, 2- and 3-simplexes.

3.2 Simplexes and simplicial complexes

Let us recall how the Euler characteristic of a surface is calculated. We first
construct a polyhedron homeomorphic to the given surface, then count the
numbers of vertices, edges and faces. The Euler characteristic of the polyhedron,
and hence of the surface, is then given by equation (2.31). We abstract this
procedure so that we may represent each part of a figure by some standard object.
We take triangles and their analogues in other dimensions, called simplexes, as
the standard objects. By this standardization, it becomes possible to assign to
each figure Abelian group structures.

3.2.1 Simplexes

Simplexes are building blocks of a polyhedron. A 0-simplex 〈p0〉 is a point, or
a vertex, and a 1-simplex 〈p0 p1〉 is a line, or an edge. A 2-simplex 〈p0 p1 p2〉 is
defined to be a triangle with its interior included and a 3-simplex 〈p0 p1 p2 p3〉 is
a solid tetrahedron (figure 3.2). It is common to denote a 0-simplex without the
bracket; 〈p0〉 may be also written as p0. It is easy to continue this construction
to any r -simplex 〈p0 p1 . . . pr 〉. Note that for an r -simplex to represent an r -
dimensional object, the vertices pi must be geometrically independent, that is, no
(r − 1)-dimensional hyperplane contains all the r + 1 points. Let p0, . . . , pr

be points geometrically independent in �
m where m ≥ r . The r -simplex

σr = 〈p0, . . . , pr 〉 is expressed as

σ r =
{

x ∈ �m
∣∣∣∣x = r∑

i=0

ci pi , ci ≥ 0,
r∑

i=0

ci = 1

}
. (3.11)

(c0, . . . , cr ) is called the barycentric coordinate of x . Since σr is a bounded and
closed subset of �m , it is compact.

Let q be an integer such that 0 ≤ q ≤ r . If we choose q + 1 points
pi0 , . . . , piq out of p0, . . . , pr , these q + 1 points define a q-simplex σq =
〈pi0 , . . . , piq 〉, which is called a q-face of σr . We write σq ≤ σr if σq is a face of
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Figure 3.3. A 0-face p0 and a 2-face 〈p1 p2 p3〉 of a 3-simplex 〈p0 p1 p2 p3〉.

σr . If σq �= σr , we say σq is a proper face of σr , denoted as σq < σr . Figure 3.3
shows a 0-face p0 and a 2-face 〈p1 p2 p3〉 of a 3-simplex 〈p0 p1 p2 p3〉. There are
one 3-face, four 2-faces, six 1-faces and four 0-faces. The reader should verify

that the number of q-faces in an r -simplex is

(
r + 1
q + 1

)
. A 0-simplex is defined

to have no proper faces.

3.2.2 Simplicial complexes and polyhedra

Let K be a set of finite number of simplexes in �m . If these simplexes are nicely
fitted together, K is called a simplicial complex. By ‘nicely’ we mean:

(i) an arbitrary face of a simplex of K belongs to K , that is, if σ ∈ K and
σ ′ ≤ σ then σ ′ ∈ K ; and

(ii) if σ and σ ′ are two simplexes of K , the intersection σ ∩ σ ′ is either empty
or a common face of σ and σ ′, that is, if σ, σ ′ ∈ K then either σ ∩ σ ′ = ∅
or σ ∩ σ ′ ≤ σ and σ ∩ σ ′ ≤ σ ′.

For example, figure 3.4(a) is a simplicial complex but figure 3.4(b) is not.
The dimension of a simplicial complex K is defined to be the largest dimension
of simplexes in K .

Example 3.4. Let σr be an r -simplex and K = {σ ′|σ ′ ≤ σr } be the set of
faces of σr . K is an r -dimensional simplicial complex. For example, take
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Figure 3.4. (a) is a simplicial complex but (b) is not.

σ3 = 〈p0 p1 p2 p3〉 (figure 3.3). Then

K = {p0, p1, p2, p3, 〈p0 p1〉, 〈p0 p2〉, 〈p0 p3〉,
〈p1 p2〉, 〈p1 p3〉, 〈p2 p3〉, 〈p0 p1 p2〉, 〈p0 p1 p3〉,
〈p0 p2 p3〉, 〈p1 p2 p3〉, 〈p0 p1 p2 p3〉}. (3.12)

A simplicial complex K is a set whose elements are simplexes. If each
simplex is regarded as a subset of �m (m ≥ dim K ), the union of all the simplexes
becomes a subset of �m . This subset is called the polyhedron |K | of a simplicial
complex K . The dimension of |K | as a subset of �m is the same as that of K ;
dim |K | = dim K .

Let X be a topological space. If there exists a simplicial complex K and a
homeomorphism f : |K | → X , X is said to be triangulable and the pair (K , f )
is called a triangulation of X . Given a topological space X , its triangulation is
far from unique. We will be concerned with triangulable spaces only.

Example 3.5. Figure 3.5(a) is a triangulation of a cylinder S1×[0, 1]. The reader
might think that somewhat simpler choices exist, figure 3.5(b), for example. This
is, however, not a triangulation since, for σ2 = 〈p0 p1 p2〉 and σ ′2 = 〈p2 p3 p0〉, we
find σ2 ∩ σ ′2 = 〈p0〉 ∪ 〈p2〉, which is neither empty nor a simplex.

3.3 Homology groups of simplicial complexes

3.3.1 Oriented simplexes

We may assign orientations to an r -simplex for r ≥ 1. Instead of 〈. . .〉 for an
unoriented simplex, we will use (. . .) to denote an oriented simplex. The symbol
σr is used to denote both types of simplex. An oriented 1-simplex σ1 = (p0 p1) is
a directed line segment traversed in the direction p0 → p1 (figure 3.6(a)). Now
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Figure 3.5. (a) is a triangulation of a cylinder while (b) is not.

Figure 3.6. An oriented 1-simplex (a) and an oriented 2-simplex (b).

(p0 p1) should be distinguished from (p1 p0). We require that

(p0 p1) = −(p1 p0). (3.13)

Here ‘−’ in front of (p1 p0) should be understood in the sense of a finitely
generated Abelian group. In fact, (p1 p0) is regarded as the inverse of (p0 p1).
Going from p0 to p1 followed by going from p1 to p0 means going nowhere,
(p0 p1)+ (p1 p0) = 0, hence−(p1 p0) = (p0 p1).

Similarly, an oriented 2-simplex σ2 = (p0 p1 p2) is a triangular region
p0 p1 p2 with a prescribed orientation along the edges (figure 3.6(b)). Observe that
the orientation given by p0 p1 p2 is the same as that given by p2 p0 p1 or p1 p2 p0
but opposite to p0 p2 p1, p2 p1 p0 or p1 p0 p2. We require that

(p0 p1 p2) = (p2 p0 p1) = (p1 p2 p0)

= − (p0 p2 p1) = −(p2 p1 p0) = −(p1 p0 p2).

Let P be a permutation of 0, 1, 2

P =
(

0 1 2
i j k

)
.

These relations are summarized as

(pi p j pk) = sgn(P)(p0 p1 p2)
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where sgn(P) = +1 (−1) if P is an even (odd) permutation.
An oriented 3-simplex σ3 = (p0 p1 p2 p3) is an ordered sequence of four

vertices of a tetrahedron. Let

P =
(

0 1 2 3
i j k l

)
be a permutation. We define

(pi p j pk pl) = sgn(P)(p0 p1 p2 p3).

It is now easy to construct an oriented r -simplex for any r ≥ 1. The
formal definition goes as follows. Take r + 1 geometrically independent points
p0, p1, . . . , pr in �m . Let {pi0 , pi1 , . . . , pir } be a sequence of points obtained by
a permutation of the points p0, . . . , pr . We define {p0, . . . , pr } and {pi0, . . . , pir }
to be equivalent if

P =
(

0 1 . . . r
i0 i1 . . . ir

)
is an even permutation. Clearly this is an equivalence relation, the equivalence
class of which is called an oriented r-simplex. There are two equivalence
classes, one consists of even permutations of p0, . . . , pr , the other of odd
permutations. The equivalence class (oriented r -simplex) which contains
{p0, . . . , pr } is denoted by σr = (p0 p1 . . . pr ), while the other is denoted by
−σr = −(p0 p1 . . . pr ). In other words,

(pi0 pi1 . . . pir ) = sgn(P)(p0 p1 . . . pr ). (3.14)

For r = 0, we formally define an oriented 0-simplex to be just a point
σ0 = p0.

3.3.2 Chain group, cycle group and boundary group

Let K = {σα} be an n-dimensional simplicial complex. We regard the simplexes
σα in K as oriented simplexes and denote them by the same symbols σα as
remarked before.

Definition 3.2. The r-chain group Cr (K ) of a simplicial complex K is a free
Abelian group generated by the oriented r -simplexes of K . If r > dim K , Cr (K )
is defined to be 0. An element of Cr (K ) is called an r-chain.

Let there be Ir r -simplexes in K . We denote each of them by σr,i (1 ≤ i ≤
Ir ). Then c ∈ Cr (K ) is expressed as

c =
Ir∑

i=1

ciσr,i ci ∈ �. (3.15)
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Figure 3.7. (a) An oriented 1-simplex with a fictitious boundary p1. (b) A simplicial
complex without a boundary.

The integers ci are called the coefficients of c. The group structure is given as
follows. The addition of two r -chains, c =∑

i ciσr,i and c′ =∑
i c′iσr,i , is

c + c′ =
∑

i

(ci + c′i )σr,i . (3.16)

The unit element is 0 = ∑
i 0 · σr,i , while the inverse element of c is −c =∑

i (−ci )σr,i . [Remark: An oppositely oriented r -simplex −σr is identified with
(−1)σr ∈ Cr (K ).] Thus, Cr (K ) is a free Abelian group of rank Ir ,

Cr (K ) ∼= �⊕�⊕ · · · ⊕�︸ ︷︷ ︸
Ir

. (3.17)

Before we define the cycle group and the boundary group, we need to
introduce the boundary operator. Let us denote the boundary of an r -simplex
σr by ∂rσr . ∂r should be understood as an operator acting on σr to produce its
boundary. This point of view will be elaborated later. Let us look at the boundaries
of lower-dimensional simplexes. Since a 0-simplex has no boundary, we define

∂0 p0 = 0. (3.18)

For a 1-simplex (p0 p1), we define

∂1(p0 p1) = p1 − p0. (3.19)

The reader might wonder about the appearance of a minus sign in front of p0.
This is again related to the orientation. The following examples will clarify this
point. In figure 3.7(a), an oriented 1-simplex (p0 p2) is divided into two, (p0 p1)

and (p1 p2). We agree that the boundary of (p0 p2) is {p0} ∪ {p2} and so should
be that of (p0 p1) + (p1 p2). If ∂1(p0 p2) were defined to be p0 + p2, we would
have ∂1(p0 p1)+ ∂1(p1 p2) = p0 + p1 + p1 + p2. This is not desirable since p1
is a fictitious boundary. If, instead, we take ∂1(p0 p2) = p2 − p0, we will have
∂1(p0 p1) + ∂1(p1 p2) = p1 − p0 + p2 − p1 = p2 − p0 as expected. The next
example is the triangle of figure 3.7(b). It is the sum of three oriented 1-simplexes,
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(p0 p1) + (p1 p2) + (p2 p0). We agree that it has no boundary. If we insisted on
the rule ∂1(p0 p1) = p0 + p1, we would have

∂1(p0 p1)+ ∂1(p1 p2)+ ∂1(p2 p0) = p0 + p1 + p1 + p2 + p2 + p0

which contradicts our intuition. If, on the other hand, we take ∂1(p0 p1) =
p1 − p0, we have

∂1(p0 p1)+ ∂1(p1 p2)+ ∂1(p2 p0) = p1 − p0 + p2 − p1 + p0 − p2 = 0

as expected. Hence, we put a plus sign if the first vertex is omitted and a minus
sign if the second is omitted. We employ this fact to define the boundary of a
general r -simplex.

Let σr (p0 . . . pr ) (r > 0) be an oriented r -simplex. The boundary ∂rσr of
σr is an (r − 1)-chain defined by

∂rσr ≡
r∑

i=0

(−1)i (p0 p1 . . . p̂i . . . pr ) (3.20)

where the point pi under ˆ is omitted. For example,

∂2(p0 p1 p2) = (p1 p2)− (p0 p2)+ (p0 p1)

∂3(p0 p1 p2 p3) = (p1 p2 p3)− (p0 p2 p3)+ (p0 p1 p3)− (p0 p1 p2).

We formally define ∂0σ0 = 0 for r = 0.
The operator ∂r acts linearly on an element c =∑

i ciσr,i of Cr (K ),

∂r c =
∑

i

ci∂rσr,i . (3.21)

The RHS of (3.21) is an element of Cr−1(K ). Accordingly, ∂r defines a map

∂r : Cr (K )→ Cr−1(K ). (3.22)

∂r is called the boundary operator. It is easy to see that the boundary operator
is a homomorphism.

Let K be an n-dimensional simplicial complex. There exists a sequence of
free Abelian groups and homomorphisms,

0
i−→ Cn(K )

∂n−→ Cn−1(K )
∂n−1−→ · · · ∂2−→ C1(K )

∂1−→ C0(K )
∂0−→ 0 (3.23)

where i : 0 ↪→ Cn(K ) is an inclusion map (0 is regarded as the unit element
of Cn(K )). This sequence is called the chain complex associated with K and
is denoted by C(K ). It is interesting to study the image and kernel of the
homomorphisms ∂r .
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Definition 3.3. If c ∈ Cr (K ) satisfies

∂r c = 0 (3.24)

c is called an r-cycle. The set of r -cycles Zr (K ) is a subgroup of Cr (K ) and is
called the r-cycle group. Note that Zr (K ) = ker ∂r . [Remark: If r = 0, ∂0c
vanishes identically and Z0(K ) = C0(K ), see (3.23).]

Definition 3.4. Let K be an n-dimensional simplicial complex and let c ∈ Cr (K ).
If there exists an element d ∈ Cr+1(K ) such that

c = ∂r+1d (3.25)

then c is called an r-boundary. The set of r -boundaries Br (K ) is a subgroup
of Cr (K ) and is called the r-boundary group. Note that Br (K ) = im ∂r+1.
[Remark: Bn(K ) is defined to be 0.]

From lemma 3.1, it follows that Zr (K ) and Br (K ) are subgroups of Cr (K ).
We now prove an important relation between Zr (K ) and Br (K ), which is crucial
in the definition of homology groups.

Lemma 3.3. The composite map ∂r ◦ ∂r+1 : Cr+1(K )→ Cr−1(K ) is a zero map;
that is, ∂r (∂r+1c) = 0 for any c ∈ Cr+1(K ).

Proof. Since ∂r is a linear operator on Cr (K ), it is sufficient to prove the identity
∂r ◦ ∂r+1 = 0 for the generators of Cr+1(K ). If r = 0, ∂0 ◦ ∂1 = 0 since ∂0 is a
zero operator. Let us assume r > 0. Take σ = (p0 . . . pr pr+1) ∈ Cr+1(K ). We
find

∂r (∂r+1σ) = ∂r

r+1∑
i=0

(−1)i (p0 . . . p̂i . . . pr+1)

=
r+1∑
i=0

(−1)i∂r (p0 . . . p̂i . . . pr+1)

=
r+1∑
i=0

(−1)i
( i−1∑

j=0

(−1) j (p0 . . . p̂ j . . . p̂i . . . pr+1)

+
r+1∑

j=i+1

(−1) j−1(p0 . . . p̂i . . . p̂ j . . . pr+1)

)
=

∑
j<i

(−1)i+ j (p0 . . . p̂ j . . . p̂i . . . pr+1)

−
∑
j>i

(−1)i+ j (p0 . . . p̂i . . . p̂ j . . . pr+1) = 0 (3.26)
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which proves the lemma. �

Theorem 3.3. Let Zr (K ) and Br (K ) be the r -cycle group and the r -boundary
group of Cr (K ), then

Br (K ) ⊂ Zr (K ) (⊂Cr (K )). (3.27)

Proof. This is obvious from lemma 3.3. Any element c of Br (K ) is written as
c = ∂r+1d for some d ∈ Cr+1(K ). Then we find ∂r c = ∂r (∂r+1d) = 0, that is,
c ∈ Zr (K ). This implies Zr (K ) ⊃ Br (K ). �

What are the geometrical pictures of r -cycles and r -boundaries? With our
definitions, ∂r picks up the boundary of an r -chain. If c is an r -cycle, ∂r c = 0 tells
us that c has no boundary. If c = ∂r+1d is an r -boundary, c is the boundary of d
whose dimension is higher than c by one. Our intuition tells us that a boundary
has no boundary, hence Zr (K ) ⊃ Br (K ). Those elements of Zr (K ) that are not
boundaries play the central role in this chapter.

3.3.3 Homology groups

So far we have defined three groups Cr (K ), Zr (K ) and Br (K ) associated with
a simplicial complex K . How are they related to topological properties of K or
to the topological space whose triangulation is K ? Is it possible for Cr (K ) to
express any property which is conserved under homeomorphism? We all know
that the edges of a triangle and those of a square are homeomorphic to each other.
What about their chain groups? For example, the 1-chain group associated with a
triangle is

C1(K1) = {i(p0 p1)+ j (p1 p2)+ k(p2 p0)|i, j, k ∈ �}
∼= �⊕�⊕�

while that associated with a square is

C1(K2) ∼= �⊕�⊕�⊕�.
Clearly C1(K1) is not isomorphic to C1(K2), hence Cr (K ) cannot be a candidate
of a topological invariant. The same is true for Zr (K ) and Br (K ). It turns out
that the homology groups defined in the following provide the desired topological
invariants.

Definition 3.5. Let K be an n-dimensional simplicial complex. The rth
homology group Hr(K ), 0 ≤ r ≤ n, associated with K is defined by

Hr(K ) ≡ Zr (K )/Br (K ). (3.28)

[Remarks: If necessary, we define Hr(K ) = 0 for r > n or r < 0. If we
want to stress that the group structure is defined with integer coefficients, we
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write Hr(K ;�). We may also define the homology groups with �-coefficients,
Hr(K ;�) or those with �2-coefficients, Hr (K ;�2).]

Since Br (K ) is a subgroup of Zr (K ), Hr(K ) is well defined. The group
Hr(K ) is the set of equivalence classes of r -cycles,

Hr(K ) ≡ {[z]|z ∈ Zr (K )} (3.29)

where each equivalence class [z] is called a homology class. Two r -cycles z and
z′ are in the same equivalence class if and only if z− z′ ∈ Br (K ), in which case z
is said to be homologous to z′ and denoted by z ∼ z′ or [z] = [z′]. Geometrically
z − z′ is a boundary of some space. By definition, any boundary b ∈ Br (K ) is
homologous to 0 since b− 0 ∈ Br (K ). We accept the following theorem without
proof.

Theorem 3.4. Homology groups are topological invariants. Let X be
homeomorphic to Y and let (K , f ) and (L, g) be triangulations of X and Y
respectively. Then we have

Hr (K ) ∼= Hr(L) r = 0, 1, 2, . . . . (3.30)

In particular, if (K , f ) and (L, g) are two triangulations of X , then

Hr (K ) ∼= Hr(L) r = 0, 1, 2, . . . . (3.31)

Accordingly, it makes sense to talk of homology groups of a topological
space X which is not necessarily a polyhedron but which is triangulable. For an
arbitrary triangulation (K , f ), Hr(X) is defined to be

Hr(X) ≡ Hr(K ) r = 0, 1, 2, . . . . (3.32)

Theorem 3.4 tells us that this is independent of the choice of the triangulation
(K , f ).

Example 3.6. Let K = {p0}. The 0-chain is C0(K ) = {i p0|i ∈ �} ∼= �. Clearly
Z0(K ) = C0(K ) and B0(K ) = {0} (∂0 p0 = 0 and p0 cannot be a boundary of
anything). Thus

H0(K ) ≡ Z0(K )/B0(K ) = C0(K ) ∼= �. (3.33)

Exercise 3.1. Let K = {p0, p1} be a simplicial complex consisting of two 0-
simplexes. Show that

Hr(K ) =
{
�⊕� (r = 0)

{0} (r �= 0).
(3.34)
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Example 3.7. Let K = {p0, p1, (p0 p1)}. We have

C0(K ) = {i p0 + j p1|i, j ∈ �}
C1(K ) = {k(p0 p1)|k ∈ �}.

Since (p0 p1) is not a boundary of any simplex in K , B1(K ) = {0} and

H1(K ) = Z1(K )/B1(K ) = Z1(K ).

If z = m(p0 p1) ∈ Z1(K ), it satisfies

∂1z = m∂1(p0 p1) = m{p1 − p0} = mp1 − mp0 = 0.

Thus, m has to vanish and Z1(K ) = 0, hence

H1(K ) = 0. (3.35)

As for H0(K ), we have Z0(K ) = C0(K ) = {i p0 + j p1} and

B0(K ) = im ∂1 = {∂1i(p0 p1)|i ∈ �} = {i(p0 − p1)|i ∈ �}.
Define a surjective (onto) homomorphism f : Z0(K )→ � by

f (i p0 + j p1) = i + j.

Then we find
ker f = f −1(0) = B0(K ).

Theorem 3.1 states that Z0(K )/ ker f ∼= im f = �, or

H0(K ) = Z0(K )/B0(K ) ∼= �. (3.36)

Example 3.8. Let K = {p0, p1, p2, (p0 p1), (p1 p2), (p2 p0)}, see figure 3.7(b).
This is a triangulation of S1. Since there are no 2-simplexes in K , we have
B1(K ) = 0 and H1(K ) = Z1(K )/B1(K ) = Z1(K ). Let z = i(p0 p1) +
j (p1 p2)+ k(p2 p0) ∈ Z1(K ) where i, j, k ∈ �. We require that

∂1z = i(p1 − p0)+ j (p2 − p1)+ k(p0 − p2)

= (k − i)p0 + (i − j)p1 + ( j − k)p2 = 0.

This is satisfied only when i = j = k. Thus, we find that

Z1(K ) = {i{(p0 p1)+ (p1 p2)+ (p2 p0)}|i ∈ �}.
This shows that Z1(K ) is isomorphic to � and

H1(K ) = Z1(K ) ∼= �. (3.37)
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Let us compute H0(K ). We have Z0(K ) = C0(K ) and

B0(K ) = {∂1[l(p0 p1)+ m(p1 p2)+ n(p2 p0)]|l,m, n ∈ �}
= {(n − l)p0 + (l − m)p1 + (m − n)p2 | l,m, n ∈ �}.

Define a surjective homomorphism f : Z0(K )→ � by

f (i p0 + j p1 + kp2) = i + j + k.

We verify that
ker f = f −1(0) = B0(K ).

From theorem 3.1 we find Z0(K )/ ker f ∼= im f = �, or

H0(K ) = Z0(K )/B0(K ) ∼= �. (3.38)

K is a triangulation of a circle S1, and (3.37) and (3.38) are the homology
groups of S1.

Exercise 3.2. Let K = {p0, p1, p2, p3, (p0 p1), (p1 p2), (p2 p3), (p3 p0)} be a
simplicial complex whose polyhedron is a square. Verify that the homology
groups are the same as those of example 3.8 above.

Example 3.9. Let K = {p0, p1, p2, (p0 p1), (p1 p2), (p2 p0), (p0 p1 p2)}; see
figure 3.6(b). Since the structure of 0-simplexes and 1-simplexes is the same
as that of example 3.8, we have

H0(K ) ∼= �. (3.39)

Let us compute H1(K ) = Z1(K )/B1(K ). From the previous example, we
have

Z1(K ) = {i{(p0 p1)+ (p1 p2)+ (p2 p0)}|i ∈ �}.
Let c = m(p0 p1 p2) ∈ C2(K ). If b = ∂2c ∈ B1(K ), we have

b = m{(p1 p2)− (p0 p2)+ (p0 p1)}
= m{(p0 p1)+ (p1 p2)+ (p2 p0)} m ∈ �.

This shows that Z1(K ) ∼= B1(K ), hence

H1(K ) = Z1(K )/B1(K ) ∼= {0}. (3.40)

Since there are no 3-simplexes in K , we have B2(K ) = {0}. Then
H2(K ) = Z2(K )/B2(K ) = Z2(K ). Let z = m(p0 p1 p2) ∈ Z2(K ). Since
∂2z = m{(p1 p2)− (p0 p2)+ (p0 p1)} = 0, m must vanish. Hence, Z1(K ) = {0}
and we have

H2(K ) ∼= {0}. (3.41)
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Exercise 3.3. Let

K = {p0, p1, p2, p3, (p0 p1), (p0 p2), (p0 p3), (p1 p2), (p1 p3), (p2 p3),

(p0 p1 p2), (p0 p1 p3), (p0 p2 p3), (p1 p2 p3)}
be a simplicial complex whose polyhedron is the surface of a tetrahedron. Verify
that

H0(K ) ∼= � H1(K ) ∼= {0} H2(K ) ∼= �. (3.42)

K is a triangulation of the sphere S2 and (3.42) gives the homology groups of S2.

3.3.4 Computation of H0(K )

Examples 3.6–3.9 and exercises 3.2, 3.3 share the same zeroth homology group,
H0(K ) ∼= �. What is common to these simplicial complexes? We have the
following answer.

Theorem 3.5. Let K be a connected simplicial complex. Then

H0(K ) ∼= �. (3.43)

Proof. Since K is connected, for any pair of 0-simplexes pi and p j , there exists
a sequence of 1-simplexes (pi pk), (pk pl), . . . , (pm p j ) such that ∂1((pi pk) +
(pk pl) + · · · + (pm p j )) = p j − pi . Then it follows that pi is homologous
to p j , namely [pi ] = [p j ]. Thus, any 0-simplex in K is homologous to p1 say.
Suppose

z =
I0∑

i=1

ni pi ∈ Z0(K )

where I0 is the number of 0-simplexes in K . Then the homology class [z] is
generated by a single point,

[z] =
[∑

i

ni pi

]
=

∑
i

ni [pi ] =
∑

i

ni [p1].

It is clear that [z] = 0, namely z ∈ B0(K ), if
∑

ni = 0.
Let σ j = (p j,1 p j,2) (1 ≤ j ≤ I1) be 1-simplexes in K , I1 being the number

of 1-simplexes in K , then

B0(K ) = im ∂1

= {∂1(n1σ1 + · · · + nI1σI1 )|n1, . . . , nI1 ∈ �}
= {n1(p1,2 − p1,1)+ · · · + nI1(pI1,2 − pI1,1)|n1, . . . , nI1 ∈ �}.

Note that n j (1 ≤ j ≤ I1) always appears as a pair +n j and −n j in an element
of B0(K ). Thus, if

z =
∑

j

n j p j ∈ B0(K ) then
∑

j

n j = 0.
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Figure 3.8. A triangulation of the Möbius strip.

Now we have proved for a connected complex K that z = ∑
ni pi ∈ B0(K ) if

and only if
∑

ni = 0.
Define a surjective homomorphism f : Z0(K )→ � by

f (n1 p1 + · · · + nI0 pI0) =
I0∑

i=1

ni .

We then have ker f = f −1(0) = B0(K ). It follows from theorem 3.1 that
H0(K ) = Z0(K )/B0(K ) = Z0(K )/ ker f ∼= im f = �. �

3.3.5 More homology computations

Example 3.10. This and the next example deal with homology groups of non-
orientable spaces. Figure 3.8 is a triangulation of the Möbius strip. Clearly
B2(K ) = 0. Let us take a cycle z ∈ Z2(K ),

z = i(p0 p1 p2)+ j (p2 p1 p4)+ k(p2 p4 p3)

+ l(p3 p4 p5)+ m(p3 p5 p1)+ n(p1 p5 p0).

z satisfies

∂2z = i{(p1 p2)− (p0 p2)+ (p0 p1)}
+ j{(p1 p4)− (p2 p4)+ (p2 p1)}
+ k{(p4 p3)− (p2 p3)+ (p2 p4)}
+ l{(p4 p5)− (p3 p5)+ (p3 p4)}
+ m{(p5 p1)− (p3 p1)+ (p3 p5)}
+ n{(p5 p0)− (p1 p0)+ (p1 p5)} = 0.

Since each of (p0 p2), (p1 p4), (p2 p3), (p4 p5), (p3 p1) and (p5 p0) appears once
and only once in ∂2z, all the coefficients must vanish, i = j = k = l = m = n =
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0. Thus, Z2(K ) = {0} and

H2(K ) = Z2(K )/B2(K ) ∼= {0}. (3.44)

To find H1(K ), we use our intuition rather than doing tedious computations.
Let us find the loops which make complete circuits. One such loop is

z = (p0 p1)+ (p1 p4)+ (p4 p5)+ (p5 p0).

Then all the other complete circuits are homologous to multiples of z. For
example, let us take

z′ = (p1 p2)+ (p2 p3)+ (p3 p5)+ (p5 p1).

We find that z ∼ z′ since

z − z′ = ∂2{(p2 p1 p4)+ (p2 p4 p3)+ (p3 p4 p5)+ (p1 p5 p0)}.
If, however, we take

z′′ = (p1 p4)+ (p4 p5)+ (p5 p0)+ (p0 p2)+ (p2 p3)+ (p3 p1)

we find that z′′ ∼ 2z since

2z − z′′ = 2(p0 p1)+ (p1 p4)+ (p4 p5)+ (p5 p0)− (p0 p2)

− (p2 p3)− (p3 p1)

= ∂2{(p0 p1 p2)+ (p1 p4 p2)+ (p2 p4 p3)+ (p3 p4 p5)

+ (p3 p5 p1)+ (p0 p1 p5)}.
We easily verify that all the closed circuits are homologous to nz, n ∈ �. H1(K )
is generated by just one element [z],

H1(K ) = {i [z]|i ∈ �} ∼= �. (3.45)

Since K is connected, it follows from theorem 3.5 that H0(K ) = {i [pa]|i ∈
�} ∼= �, pa being any 0-simplex of K .

Example 3.11. The projective plane �P2 has been defined in example 2.5(c) as
the sphere S2 whose antipodal points are identified. As a coset space, we may
take the hemisphere (or the disc D2) whose opposite points on the boundary S1

are identified, see figure 2.5(b). Figure 3.9 is a triangulation of the projective
plane. Clearly B2(K ) = {0}. Take a cycle z ∈ Z2(K ),

z = m1(p0 p1 p2)+ m2(p0 p4 p1)+ m3(p0 p5 p4)

+ m4(p0 p3 p5)+ m5(p0 p2 p3)+ m6(p2 p4 p3)

+ m7(p2 p5 p4)+ m8(p2 p1 p5)+ m9(p1 p3 p5)+ m10(p1 p4 p3).
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Figure 3.9. A triangulation of the projective plane.

The boundary of z is

∂2z = m1{(p1 p2)− (p0 p2)+ (p0 p1)}
+ m2{(p4 p1)− (p0 p1)+ (p0 p4)}
+ m3{(p5 p4)− (p0 p4)+ (p0 p5)}
+ m4{(p3 p5)− (p0 p5)+ (p0 p3)}
+ m5{(p2 p3)− (p0 p3)+ (p0 p2)}
+ m6{(p4 p3)− (p2 p3)+ (p2 p4)}
+ m7{(p5 p4)− (p2 p4)+ (p2 p5)}
+ m8{(p1 p5)− (p2 p5)+ (p2 p1)}
+ m9{(p3 p5)− (p1 p5)+ (p1 p3)}
+ m10{(p4 p3)− (p1 p3)+ (p1 p4)} = 0.

Let us look at the coefficient of each 1-simplex. For example, we have (m1 −
m2)(p0 p1), hence m1 − m2 = 0. Similarly,

− m1 + m5 = 0,m4 − m5 = 0,m2 − m3 = 0,m1 − m8 = 0,

m9 − m10 = 0,−m2 + m10 = 0,m5 − m6 = 0,m6 − m7 = 0,

m6 + m10 = 0.
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These ten conditions are satisfied if and only if mi = 0, 1 ≤ i ≤ 10. This means
that the cycle group Z2(K ) is trivial and we have

H2(K ) = Z2(K )/B2(K ) ∼= {0}. (3.46)

Before we calculate H1(K ), we examine H2(K ) from a slightly different
viewpoint. Let us add all the 2-simplexes in K with the same coefficient,

z ≡
10∑

i=1

mσ2,i m ∈ �.

Observe that each 1-simplex of K is a common face of exactly two 2-simplexes.
As a consequence, the boundary of z is

∂2z = 2m(p3 p5)+ 2m(p5 p4)+ 2m(p4 p3). (3.47)

Thus, if z ∈ Z2(K ), m must vanish and we find Z2(K ) = {0} as before. This
observation remarkably simplifies the computation of H1(K ). Note that any 1-
cycle is homologous to a multiple of

z = (p3 p5)+ (p5 p4)+ (p4 p3)

cf example 3.10. Furthermore, equation (3.47) shows that an even multiple of z is
a boundary of a 2-chain. Thus, z is a cycle and z + z is homologous to 0. Hence,
we find that

H1(K ) = {[z]|[z] + [z] ∼ [0]} ∼= �2. (3.48)

This example shows that a homology group is not necessarily free Abelian but
may have the full structure of a finitely generated Abelian group. Since K is
connected, we have H0(K ) ∼= �.

It is interesting to compare example 3.11 with the following examples.
In these examples, we shall use the intuition developed in this section on
boundaries and cycles to obtain results rather than giving straightforward but
tedious computations.

Example 3.12. Let us consider the torus T 2. A formal derivation of the homology
groups of T 2 is left as an exercise to the reader: see Fraleigh (1976), for example.
This is an appropriate place to recall the intuitive meaning of the homology
groups. The r th homology group is generated by those boundaryless r -chains
that are not, by themselves, boundaries of some (r + 1)-chains. For example,
the surface of the torus has no boundary but it is not a boundary of some 3-
chain. Thus, H2(T 2) is freely generated by one generator, the surface itself,
H2(T 2) ∼= �. Let us look at H1(T 2) next. Clearly the loops a and b in figure 3.10
have no boundaries but are not boundaries of some 2-chains. Take another loop
a′. a′ is homologous to a since a′ − a bounds the shaded area of figure 3.10.
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Figure 3.10. a′ is homologous to a but b is not. a and b generate H1(T
2).

Figure 3.11. ai and bi (1 ≤ i ≤ g) generate H1(�g).

Hence, H1(T 2) is freely generated by a and b and H1(T 2) ∼= �⊕�. Since T 2 is
connected, we have H0(T 2) ∼= �.

Now it is easy to extend our analysis to the torus�g of genus g. Since�g has
no boundary and there are no 3-simplexes, the surface �g itself freely generates
H2(T 2) ∼= �. The first homology group H1(�g) is generated by those loops
which are not boundaries of some area. Figure 3.11 shows the standard choice for
the generators. We find

H1(�g) = {i1[a1] + j1[b1] + · · · + ig[ag] + jg[bg]}
∼= �⊕�⊕ · · · ⊕�︸ ︷︷ ︸

2g

. (3.49)

Since �g is connected, H0(�g) ∼= �. Observe that ai (bi ) is homologous to the
edge ai (bi ) of figure 2.12. The 2g curves {ai , bi } are called the canonical system
of curves on �g .

Example 3.13. Figure 3.12 is a triangulation of the Klein bottle. Computations of
the homology groups are much the same as those of the projective plane. Since
B2(K ) = 0, we have H2(K ) = Z2(K ). Let z ∈ Z2(K ). If z is a combination
of all the 2-simplexes of K with the same coefficient, z = ∑

mσ2,i , the inner
1-simplexes cancel out to leave only the outer 1-simplexes

∂2z = −2ma
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Figure 3.12. A triangulation of the Klein bottle.

where a = (p0 p1)+ (p1 p2)+ (p2 p0). For ∂2z to be 0, the integer m must vanish
and we have

H2(K ) = Z2(K ) ∼= {0}. (3.50)

To compute H1(K ) we first note, from our experience with the torus, that
every 1-cycle is homologous to ia + jb for some i, j ∈ �. For a 2-chain to have
a boundary consisting of a and b only, all the 2-simplexes in K must be added
with the same coefficient. As a result, for such a 2-chain z = ∑

mσ2,i , we have
∂z = 2ma. This shows that 2ma ∼ 0. Thus, H1(K ) is generated by two cycles a
and b such that a + a = 0, namely

H1(K ) = {i [a] + j [b]|i, j ∈ �} ∼= �2⊕�. (3.51)

We obtain H0(K ) ∼= � since K is connected.
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3.4 General properties of homology groups

3.4.1 Connectedness and homology groups

Let K = {p0} and L = {p0, p1}. From example 3.6 and exercise 3.1, we have
H0(K ) = �and H0(L) = �⊕�. More generally, we have the following theorem.

Theorem 3.6. Let K be a disjoint union of N connected components, K =
K1 ∪ K2 ∪ · · · ∪ KN where Ki ∩ K j = ∅. Then

Hr(K ) = Hr(K1)⊕ Hr (K2)⊕ · · · ⊕ Hr(KN ). (3.52)

Proof. We first note that an r -chain group is consistently separated into a direct
sum of N r -chain subgroups. Let

Cr (K ) =
{ Ir∑

i=1

ciσr,i

∣∣∣∣ci ∈ �
}

where Ir is the number of linearly independent r -simplexes in K . It is always
possible to rearrange σi so that those r -simplexes in K1 come first, those in K2
next and so on. Then Cr (K ) is separated into a direct sum of subgroups,

Cr (K ) = Cr (K1)⊕ Cr (K2)⊕ · · · ⊕ Cr (KN ).

This separation is also carried out for Zr (K ) and Br (K ) as

Zr (K ) = Zr (K1)⊕ Zr (K2)⊕ · · · ⊕ Zr (KN )

Br (K ) = Br (K1)⊕ Br (K2)⊕ · · · ⊕ Br (KN ).

We now define the homology groups of each component Ki by

Hr(Ki ) = Zr (Ki )/Br (Ki ).

This is well defined since Zr (Ki ) ⊃ Br (Ki ). Finally, we have

Hr(K ) = Zr (K )/Br (K )

= Zr (K1)⊕ · · · ⊕ Zr (KN )/Br (K1)⊕ · · · ⊕ Br (KN )

= {Zr (K1)/Br (K1)} ⊕ · · · ⊕ {Zr (KN )/Br (KN )}
= Hr(K1)⊕ · · · ⊕ Hr(KN ). �

Corollary 3.1. (a) Let K be a disjoint union of N connected components,
K1, . . . , KN . Then it follows that

H0(K ) ∼= �⊕ · · · ⊕�︸ ︷︷ ︸
N factors

. (3.53)

(b) If H0(K ) ∼= �, K is connected. [Together with theorem 3.5 we conclude
that H0(K ) ∼= � if and only if K is connected.]
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3.4.2 Structure of homology groups

Zr (K ) and Br (K ) are free Abelian groups since they are subgroups of a free
Abelian group Cr (K ). It does not mean that Hr(K ) = Zr (K )/Br (K ) is also free
Abelian. In fact, according to theorem 3.2, the most general form of Hr(K ) is

Hr(K ) ∼= �⊕ · · · ⊕�︸ ︷︷ ︸
f

⊕�k1 ⊕ · · · ⊕�kp. (3.54)

It is clear from our experience that the number of generators of Hr(K ) counts
the number of (r + 1)-dimensional holes in |K |. The first f factors form a free
Abelian group of rank f and the next p factors are called the torsion subgroup
of Hr (K ). For example, the projective plane has H1(K ) ∼= �2 and the Klein
bottle has H1(K ) ∼= � ⊕ �2. In a sense, the torsion subgroup detects the
‘twisting’ in the polyhedron |K |. We now clarify why the homology groups with
�-coefficients are preferable to those with �2- or �-coefficients. Since �2 has no
non-trivial subgroups, the torsion subgroup can never be recognized. Similarly,
if �-coefficients are employed, we cannot see the torsion subgroup either, since
�/m� ∼= {0} for any m ∈ �− {0}. [For any a, b ∈ �, there exists a number
c ∈ � such that a − b = mc.] If Hr (K ;�) is given by (3.54), Hr(K ;�) is

Hr(K ;�) ∼= � ⊕ � ⊕ · · · ⊕ �︸ ︷︷ ︸
f

. (3.55)

3.4.3 Betti numbers and the Euler–Poincaré theorem

Definition 3.6. Let K be a simplicial complex. The r th Betti number br (K ) is
defined by

br (K ) ≡ dim Hr (K ;�). (3.56)

In other words, br (K ) is the rank of the free Abelian part of Hr(K ;�).
For example, the Betti numbers of the torus T 2 are (see example 3.12)

b0(K ) = 1, b1(K ) = 2, b2(K ) = 1

and those of the sphere S2 are (exercise 3.3)

b0(K ) = 1, b1(K ) = 0, b2(K ) = 1.

The following theorem relates the Euler characteristic to the Betti numbers.

Theorem 3.7. (The Euler–Poincaré theorem) Let K be an n-dimensional
simplicial complex and let Ir be the number of r -simplexes in K . Then

χ(K ) ≡
n∑

r=0

(−1)r Ir =
n∑

r=0

(−1)r br (K ). (3.57)

[Remark: The first equality defines the Euler characteristic of a general
polyhedron |K |. Note that this is the generalization of the Euler characteristic
defined for surfaces in section 2.4.]
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Proof. Consider the boundary homomorphism,

∂r : Cr (K ;�) → Cr−1(K ;�)
where C−1(K ;�) is defined to be {0}. Since both Cr−1(K ;�) and Cr (K ;�) are
vector spaces, theorem 2.1 can be applied to yield

Ir = dim Cr (K ;�) = dim(ker ∂r )+ dim(im ∂r )

= dim Zr (K ;�) + dim Br−1(K ;�)
where B−1(K ) is defined to be trivial. We also have

br (K ) = dim Hr(K ;�) = dim(Zr (K ;�)/Br (K ;�))
= dim Zr (K ;�) − dim Br (K ;�).

From these relations, we obtain

χ(K ) =
n∑

r=0

(−1)r Ir =
n∑

r=0

(−1)r (dim Zr (K ;�) + dim Br−1(K ;�))

=
n∑

r=0

{(−1)r dim Zr (K ;�) − (−1)r dim Br (K ;�)}

=
n∑

r=0

(−1)r br (K ). �

Since the Betti numbers are topological invariants, χ(K ) is also conserved
under a homeomorphism. In particular, if f : |K | → X and g : |K ′| → X are
two triangulations of X , we have χ(K ) = χ(K ′). Thus, it makes sense to define
the Euler characteristic of X by χ(K ) for any triangulation (K , f ) of X .

Figure 3.13. A hole in S2, whose edges are identified as shown. We may consider S2 with
q such holes.
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Problems

3.1 The most general orientable two-dimensional surface is a 2-sphere with h
handles and q holes. Compute the homology groups and the Euler characteristic
of this surface.

3.2 Consider a sphere with a hole and identify the edges of the hole as shown in
figure 3.13. The surface we obtained was simply the projective plane �P2 . More
generally, consider a sphere with q such ‘crosscaps’ and compute the homology
groups and the Euler characteristic of this surface.




