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HOMOTOPY GROUPS

The idea of homology groups in the previous chapter was to assign a group
structure to cycles that are not boundaries. In homotopy groups, however, we
are interested in continuous deformation of maps one to another. Let X and Y
be topological spaces and let � be the set of continuous maps, from X to Y . We
introduce an equivalence relation, called ‘homotopic to’, in � by which two maps
f, g ∈ � are identified if the image f (X) is continuously deformed to g(X) in
Y . We choose X to be some standard topological spaces whose structures are
well known. For example, we may take the n-sphere Sn as the standard space and
study all the maps from Sn to Y to see how these maps are classified according to
homotopic equivalence. This is the basic idea of homotopy groups.

We will restrict ourselves to an elementary study of homotopy groups, which
is sufficient for the later discussion. Nash and Sen (1983) and Croom (1978)
complement this chapter.

4.1 Fundamental groups

4.1.1 Basic ideas

Let us look at figure 4.1. One disc has a hole in it, the other does not. What
characterizes the difference between these two discs? We note that any loop in
figure 4.1(b) can be continuously shrunk to a point. In contrast, the loop α in
figure 4.1(a) cannot be shrunk to a point due to the existence of a hole in it. Some
loops in figure 4.1(a) may be shrunk to a point while others cannot. We say a loop
α is homotopic to β if α can be obtained from β by a continuous deformation. For
example, any loop in Y is homotopic to a point. It turns out that ‘homotopic to’
is an equivalence relation, the equivalence class of which is called the homotopy
class. In figure 4.1, there is only one homotopy class associated with Y . In X ,
each homotopy class is characterized by n ∈ �, n being the number of times the
loop encircles the hole; n < 0 if it winds clockwise, n > 0 if counterclockwise,
n = 0 if the loop does not wind round the hole. Moreover,� is an additive group
and the group operation (addition) has a geometrical meaning; n+m corresponds
to going round the hole first n times and then m times. The set of homotopy
classes is endowed with a group structure called the fundamental group.
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122 HOMOTOPY GROUPS

Figure 4.1. A disc with a hole (a) and without a hole (b). The hole in (a) prevents the loop
α from shrinking to a point.

4.1.2 Paths and loops

Definition 4.1. Let X be a topological space and let I = [0, 1]. A continuous
map α : I → X is called a path with an initial point x0 and an end point x1 if
α(0) = x0 and α(1) = x1. If α(0) = α(1) = x0, the path is called a loop with
base point x0 (or a loop at x0).

For x ∈ X , a constant path cx : I → X is defined by cx (s) = x , s ∈ I . A
constant path is also a constant loop since cx(0) = cx(1) = x . The set of paths
or loops in a topological space X may be endowed with an algebraic structure as
follows.

Definition 4.2. Let α, β : I → X be paths such that α(1) = β(0). The product of
α and β, denoted by α ∗ β, is a path in X defined by

α ∗ β(s) =
{
α(2s) 0 ≤ s ≤ 1

2

β(2s − 1) 1
2 ≤ s ≤ 1

(4.1)

see figure 4.2. Since α(1) = β(0), α ∗ β is a continuous map from I to X .
[Geometrically, α ∗ β corresponds to traversing the image α(I ), in the first half,
then followed by β(I ) in the remaining half. Note that the velocity is doubled.]

Definition 4.3. Let α : I → X be a path from x0 to x1. The inverse path α−1 of α
is defined by

α−1(s) ≡ α(1 − s) s ∈ I. (4.2)

[The inverse path α−1 corresponds to traversing the image of α in the opposite
direction from x1 to x0.]

Since a loop is a special path for which the initial point and end point agree,
the product of loops and the inverse of a loop are defined in exactly the same way.
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Figure 4.2. The product α ∗ β of paths α and β with a common end point.

It seems that a constant map cx is the unit element. However, it is not: α ∗ α−1

is not equal to cx ! We need a concept of homotopy to define a group operation in
the space of loops.

4.1.3 Homotopy

The algebraic structure of loops introduced earlier is not so useful as it is. For
example, the constant path is not exactly the unit element. We want to classify the
paths and loops according to a neat equivalence relation so that the equivalence
classes admit a group structure. It turns out that if we identify paths or loops that
can be deformed continuously one into another, the equivalence classes form a
group. Since we are primarily interested in loops, most definitions and theorems
are given for loops. However, it should be kept in mind that many statements are
also applied to paths with proper modifications.

Definition 4.4. Let α, β : I → X be loops at x0. They are said to be homotopic,
written as α ∼ β, if there exists a continuous map F : I × I → X such that

F(s, 0) = α(s), F(s, 1) = β(s) ∀s ∈ I

F(0, t) = F(1, t) = x0 ∀t ∈ I.
(4.3)

The connecting map F is called a homotopy between α and β.

It is helpful to represent a homotopy as figure 4.3(a). The vertical edges of
the square I × I are mapped to x0. The lower edge is α(s) while the upper edge
is β(s). In the space X , the image is continuously deformed as in figure 4.3(b).

Proposition 4.1. The relation α ∼ β is an equivalence relation.
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Figure 4.3. (a) The square represents a homotopy F interpolating the loops α and β. (b)
The image of α is continuously deformed to the image of β in real space X .

Figure 4.4. A homotopy H between α and γ via β.

Proof. Reflectivity: α ∼ α. The homotopy may be given by F(s, t) = α(s) for
any t ∈ I .

Symmetry: Let α ∼ β with the homotopy F(s, t) such that F(s, 0) = α(s),
F(s, 1) = β(s). Then β ∼ α, where the homotopy is given by F(s, 1 − t).

Transitivity: Let α ∼ β and β ∼ γ . Then α ∼ γ . If F(s, t) is a homotopy
between α and β and G(s, t) is a homotopy between β and γ , a homotopy
between α and γ may be (figure 4.4)

H (s, t) =
{

F(s, 2t) 0 ≤ t ≤ 1
2

G(s, 2t − 1) 1
2 ≤ t ≤ 1.

�
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4.1.4 Fundamental groups

The equivalence class of loops is denoted by [α] and is called the homotopy
class of α. The product between loops naturally defines the product in the set of
homotopy classes of loops.

Definition 4.5. Let X be a topological space. The set of homotopy classes of loops
at x0 ∈ X is denoted by π1(X, x0) and is called the fundamental group (or the
first homotopy group) of X at x0. The product of homotopy classes [α] and [β]
is defined by

[α] ∗ [β] = [α ∗ β]. (4.4)

Lemma 4.1. The product of homotopy classes is independent of the representa-
tive, that is, if α ∼ α′ and β ∼ β ′, then α ∗ β ∼ α′ ∗ β ′.

Proof. Let F(s, t) be a homotopy between α and α′ and G(s, t) be a homotopy
between β and β ′. Then

H (s, t) =
{

F(2s, t) 0 ≤ s ≤ 1
2

G(2s − 1, t) 1
2 ≤ s ≤ 1

is a homotopy between α ∗ β and α′ ∗ β ′, hence α ∗ β ∼ α′ ∗ β ′ and [α] ∗ [β] is
well defined. �

Theorem 4.1. The fundamental group is a group. Namely, if α, β, . . . are loops at
x ∈ X , the following group properties are satisfied:

(1) ([α] ∗ [β]) ∗ [γ ] = [α] ∗ ([β] ∗ [γ ])
(2) [α] ∗ [cx ] = [α] and [cx ] ∗ [α] = [α] (unit element)
(3) [α] ∗ [α−1] = [cx ], hence [α]−1 = [α−1] (inverse).

Proof. (1) Let F(s, t) be a homotopy between (α ∗ β) ∗ γ and α ∗ (β ∗ γ ). It may
be given by (figure 4.5(a))

F(s, t) =



α

(
4s

1+ t

)
0 ≤ s ≤ 1+ t

4

β(4s − t − 1)
1+ t

4
≤ s ≤ 2+ t

4

γ

(
4s − t − 2

2− t

)
2+ t

4
≤ s ≤ 1.

Thus, we may simply write [α ∗ β ∗ γ ] to denote [(α ∗ β) ∗ γ ] or [α ∗ (β ∗ γ )].
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Figure 4.5. (a) A homotopy between (α ∗β)∗γ and α ∗ (β ∗γ ). (b) A homotopy between
α ∗ cx and α.

(2) Define a homotopy F(s, t) by (figure 4.5(b))

F(s, t) =


α

(
2s

1+ t

)
0 ≤ s ≤ t + 1

2

x
t + 1

2
≤ s ≤ 1.

Clearly this is a homotopy between α ∗ cx and α. Similarly, a homotopy between
cx ∗ α and α is given by

F(s, t) =


x 0 ≤ s ≤ 1− t

2

α

(
2s − 1+ t

1+ t

)
1− t

2
≤ s ≤ 1.

This shows that [α] ∗ [cx ] = [α] = [cx ] ∗ [α].
(3) Define a map F : I × I → X by

F(s, t) =
{
α(2s(1− t)) 0 ≤ s ≤ 1

2

α(2(1− s)(1 − t)) 1
2 ≤ s ≤ 1.

Clearly F(s, 0) = α ∗ α−1 and F(s, 1) = cx , hence

[α ∗ α−1] = [α] ∗ [α−1] = [cx ].
This shows that [α−1] = [α]−1. �

In summary, π1(X, x) is a group whose unit element is the homotopy class
of the constant loop cx . The product [α] ∗ [β] is well defined and satisfies the
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Figure 4.6. From a loop α at x0, a loop η−1 ∗ α ∗ η at x1 is constructed.

group axioms. The inverse of [α] is [α]−1 = [α−1]. In the next section we
study the general properties of fundamental groups, which simplify the actual
computations.

4.2 General properties of fundamental groups

4.2.1 Arcwise connectedness and fundamental groups

In section 2.3 we defined a topological space X to be arcwise connected if, for
any x0, x1 ∈ X , there exists a path α such that α(0) = x0 and α(1) = x1.

Theorem 4.2. Let X be an arcwise connected topological space and let x0, x1 ∈
X . Then π1(X, x0) is isomorphic to π1(X, x1).

Proof. Let η : I → X be a path such that η(0) = x0 and η(1) = x1.
If α is a loop at x0, then η−1 ∗ α ∗ η is a loop at x1 (figure 4.6). Given an
element [α] ∈ π1(X, x0), this correspondence induces a unique element [α′] =
[η−1 ∗ α ∗ η] ∈ π1(X, x1). We denote this map by Pη : π1(X, x0)→ π1(X, x1)

so that [α′] = Pη([α]).
We show that Pη is an isomorphism. First, Pη is a homomorphism, since for

[α], [β] ∈ π1(X, x0), we have

Pη([α] ∗ [β]) = [η−1] ∗ [α] ∗ [β] ∗ [η]
= [η−1] ∗ [α] ∗ [η] ∗ [η−1] ∗ [β] ∗ [η]
= Pη([α]) ∗ Pη([β]).

To show that Pη is bijective, we introduce the inverse of Pη. Define a map
P−1
η : π1(X, x1)→ π1(X, x0) whose action on [α′] is P−1

η ([α′]) = [η∗α ∗η−1].
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Clearly P−1 is the inverse of Pη since

P−1
η ◦ Pη([α]) = P−1

η ([η−1 ∗ α ∗ η]) = [η ∗ η−1 ∗ α ∗ η ∗ η−1] = [α].

Thus, P−1
η ◦ Pη = idπ1(X,x0). From the symmetry, we have Pη ◦ P−1

η = idπ1(X,x1).
We find from exercise 2.3 that Pη is one to one and onto. �

Accordingly, if X is arcwise connected, we do not need to specify the base
point since π1(X, x0) ∼= π1(X, x1) for any x0, x1 ∈ X , and we may simply write
π1(X).

Exercise 4.1. (1) Let η and ζ be paths from x0 to x1, such that η ∼ ζ . Show that
Pη = Pζ .

(2) Let η and ζ be paths such that η(1) = ζ(0). Show that Pη∗ζ = Pζ ◦ Pη.

4.2.2 Homotopic invariance of fundamental groups

The homotopic equivalence of paths and loops is easily generalized to arbitrary
maps. Let f, g : X → Y be continuous maps. If there exists a continuous map
F : X × I → Y such that F(x, 0) = f (x) and F(x, 1) = g(x), f is said to be
homotopic to g, denoted by f ∼ g. The map F is called a homotopy between f
and g.

Definition 4.6. Let X and Y be topological spaces. X and Y are of the same
homotopy type, written as X 	 Y , if there exist continuous maps f : X → Y
and g : Y → X such that f ◦ g ∼ idY and g ◦ f ∼ idX . The map f is
called the homotopy equivalence and g, its homotopy inverse. [Remark: If X is
homeomorphic to Y , X and Y are of the same homotopy type but the converse is
not necessarily true. For example, a point {p} and the real line � are of the same
homotopy type but {p} is not homeomorphic to �.]

Proposition 4.2. ‘Of the same homotopy type’ is an equivalence relation in the
set of topological spaces.

Proof. Reflectivity: X 	 X where idX is a homotopy equivalence. Symmetry:
Let X 	 Y with the homotopy equivalence f : X → Y . Then Y 	 X , the
homotopy equivalence being the homotopy inverse of f . Transitivity: Let X 	 Y
and Y 	 Z . Suppose f : X → Y , g : Y → Z are homotopy equivalences and
f ′ : Y → X , g′ : Z → Y , their homotopy inverses. Then

(g ◦ f )( f ′ ◦ g′) = g( f ◦ f ′)g′ ∼ g ◦ idY ◦ g′ = g ◦ g′ ∼ idZ

( f ′ ◦ g′)(g ◦ f ) = f ′(g′ ◦ g) f ∼ f ′ ◦ idY ◦ f = f ′ ◦ f ∼ idX

from which it follows X 	 Z . �



4.2 GENERAL PROPERTIES OF FUNDAMENTAL GROUPS 129

Figure 4.7. The circle R is a retract of the annulus X . The arrows depict the action of the
retraction.

One of the most remarkable properties of the fundamental groups is that two
topological spaces of the same homotopy type have the same fundamental group.

Theorem 4.3. Let X and Y be topological spaces of the same homotopy type. If
f : X → Y is a homotopy equivalence, π1(X, x0) is isomorphic to π1(Y, f (x0)).

The following corollary follows directly from theorem 4.3.

Corollary 4.1. A fundamental group is invariant under homeomorphisms, and
hence is a topological invariant.

In this sense, we must admit that fundamental groups classify topological
spaces in a less strict manner than homeomorphisms. What we claim at most is
that if topological spaces X and Y have different fundamental groups, X cannot
be homeomorphic to Y . Note, however, that the homotopy groups including the
fundamental groups have many applications to physics as we shall see in due
course. We should stress that the main usage of the homotopy groups in physics
is not to classify spaces but to classify maps or field configurations.

It is rather difficult to appreciate what is meant by ‘of the same homotopy
type’ for an arbitrary pair of X and Y . In practice, however, it often happens that
Y is a subspace of X . We then claim that X 	 Y if Y is obtained by a continuous
deformation of X .

Definition 4.7. Let R ( �=∅) be a subspace of X . If there exists a continuous map
f : X → R such that f |R = idR , R is called a retract of X and f a retraction.

Note that the whole of X is mapped onto R keeping points in R fixed.
Figure 4.7 is an example of a retract and retraction.
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Figure 4.8. The circle R is not a deformation retract of X .

Definition 4.8. Let R be a subspace of X . If there exists a continuous map
H : X × I → X such that

H (x, 0) = x H (x, 1) ∈ R for any x ∈ X (4.5)

H (x, t) = x for any x ∈ R and any t ∈ I . (4.6)

The space R is said to be a deformation retract of X . Note that H is a homotopy
between idX and a retraction f : X → R, which leaves all the points in R fixed
during deformation.

A retract is not necessarily a deformation retract. In figure 4.8, the circle R
is a retract of X but not a deformation retract, since the hole in X is an obstruction
to continuous deformation of idX to the retraction. Since X and R are of the same
homotopy type, we have

π1(X, a) ∼= π1(R, a) a ∈ R. (4.7)

Example 4.1. Let X be the unit circle and Y be the annulus,

X = {eiθ |0 ≤ θ < 2π} (4.8)

Y = {reiθ |0 ≤ θ < 2π, 1
2 ≤ r ≤ 2

3 } (4.9)

see figure 4.7. Define f : X ↪→ Y by f (eiθ ) = eiθ and g : Y → X by
g(reiθ ) = eiθ . Then f ◦ g : reiθ 
→ eiθ and g ◦ f : eiθ 
→ eiθ . Observe that
f ◦ g ∼ idY and g ◦ f = idX . There exists a homotopy

H (reiθ, t) = {1+ (r − 1)(1− t)}eiθ

which interpolates between idX and f ◦ g, keeping the points on X fixed.
Hence, X is a deformation retract of Y . As for the fundamental groups we have
π1(X, a) ∼= π1(Y, a) where a ∈ X .
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Definition 4.9. If a point a ∈ X is a deformation retract of X , X is said to be
contractible.

Let ca : X → {a} be a constant map. If X is contractible, there exists a
homotopy H : X × I → X such that H (x, 0) = ca(x) = a and H (x, 1) =
idX (x) = x for any x ∈ X and, moreover, H (a, t) = a for any t ∈ I . The
homotopy H is called the contraction.

Example 4.2. X = �
n is contractible to the origin 0. In fact, if we define

H : �n × I → � by H (x, t) = tx , we have (i) H (x, 0) = 0 and H (x, 1) = x
for any x ∈ X and (ii) H (0, 1) = 0 for any t ∈ I . Now it is clear that any convex
subset of �n is contractible.

Exercise 4.2. Let D2 = {(x, y) ∈ �
2 |x2 + y2 ≤ 1}. Show that the unit circle

S1 is a deformation retract of D2 − {0}. Show also that the unit sphere Sn is a
deformation retract of Dn+1 − {0}, where Dn+1 = {x ∈ �n+1 ||x | ≤ 1}.
Theorem 4.4. The fundamental group of a contractible space X is trivial,
π1(X, x0) ∼= {e}. In particular, the fundamental group of �

n is trivial,
π1(�

n , x0) ∼= {e}.
Proof. A contractible space has the same fundamental group as a point {p} and a
point has a trivial fundamental group. �

If an arcwise connected space X has a trivial fundamental group, X is said
to be simply connected, see section 2.3.

4.3 Examples of fundamental groups

There does not exist a routine procedure to compute the fundamental groups,
in general. However, in certain cases, they are obtained by relatively simple
considerations. Here we look at the fundamental groups of the circle S1 and
related spaces.

Let us express S1 as {z ∈ � ||z| = 1}. Define a map p : � → S1 by
p : x 
→ exp(ix). Under p, the point 0 ∈ � is mapped to 1 ∈ S1, which is
taken to be the base point. We imagine that � wraps around S1 under p, see
figure 4.9. If x, y ∈ � satisfies x − y = 2πm(m ∈ �), they are mapped to the
same point in S1. Then we write x ∼ y. This is an equivalence relation and the
equivalence class [x] = {y|x − y = 2πm for some m ∈ �} is identified with
a point exp(ix) ∈ S1. It then follows that S1 ∼= �/2π�. Let f̃ : � → � be
a continuous map such that f̃ (0) = 0 and f̃ (x + 2π) ∼ f̃ (x). It is obvious
that f̃ (x + 2π) = f̃ (x) + 2nπ for any x ∈ �, where n is a fixed integer. If
x ∼ y (x − y = 2πm), we have

f̃ (x)− f̃ (y) = f̃ (y + 2πm)− f̃ (y)

= f̃ (y)+ 2πmn − f̃ (y) = 2πmn
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Figure 4.9. The map p : � → S1 defined by x 
→ exp(ix) projects x + 2mπ to the same
point on S1, while f̃ : � → �, such that f̃ (0) = 0 and f̃ (x + 2π) = f̃ (x) + 2nπ for
fixed n, defines a map f : S1 → S1. The integer n specifies the homotopy class to which
f belongs.

hence f̃ (x) ∼ f̃ (y). Accordingly, f̃ : � → � uniquely defines a continuous
map f : �/2π� → �/2π� by f ([x]) = p ◦ f̃ (x), see figure 4.9. Note that f
keeps the base point 1 ∈ S1 fixed. Conversely, given a map f : S1 → S1, which
leaves 1 ∈ S1 fixed, we may define a map f̃ : � → � such that f̃ (0) = 0 and
f̃ (x + 2π) = f̃ (x)+ 2πn.

ln summary, there is a one-to-one correspondence between the set of maps
from S1 to S1 with f (1) = 1 and the set of maps from � to � such that f̃ (0) = 0
and f̃ (x + 2π) = f̃ (x) + 2πn. The integer n is called the degree of f and is
denoted by deg( f ). While x encircles S1 once, f (x) encircles S1 n times.

Lemma 4.2. (1) Let f, g : S1 → S1 such that f (1) = g(1) = 1. Then
deg( f ) = deg(g) if and only if f is homotopic to g.

(2) For any n ∈ �, there exists a map f : S1 → S1 such that deg( f ) = n.



4.3 EXAMPLES OF FUNDAMENTAL GROUPS 133

Proof. (1) Let deg( f ) = deg(g) and f̃ , g̃ : � → � be the corresponding maps.
Then F̃(x, t) ≡ t f̃ (x) + (1 − t)g̃(x) is a homotopy between f̃ (x) and g̃(x). It
is easy to verify that F ≡ p ◦ F̃ is a homotopy between f and g. Conversely,
if f ∼ g : S1 → S1, there exists a homotopy F : S1 × I → S1 such that
F(1, t) = 1 for any t ∈ I . The corresponding homotopy F̃ : � × I → �

between f̃ and g̃ satisfies F̃(x + 2π, t) = F̃(x, t)+ 2nπ for some n ∈ �. Thus,
deg( f ) = deg(g).

(2) f̃ : x 
→ nx induces a map f : S1 → S1 with deg( f ) = n. �

Lemma 4.2 tells us that by assigning an integer deg( f ) to a map f : S1 → S1

such that f (1) = 1, there is a bijection between π1(S1, 1) and �. Moreover, this
is an isomorphism. In fact, for f, g : S1 → S1, f ∗ g, defined as a product of
loops, satisfies deg( f ∗ g) = deg( f ) + deg(g). [Let f̃ (x + 2π) = f̃ (x)+ 2πn
and g̃(x + 2π) = g̃(x)+ 2πm. Then f ∗ g(x + 2π) = f ∗ g(x)+ 2π(m + n).
Note that ∗ is not a composite of maps but a product of paths.] We have finally
proved the following theorem.

Theorem 4.5. The fundamental group of S1 is isomorphic to �,

π1(S
1) ∼= �. (4.10)

[Since S1 is arcwise connected, we may drop the base point.]

Although the proof of the theorem is not too obvious, the statement itself is
easily understood even by children. Suppose we encircle a cylinder with an elastic
band. If it encircles the cylinder n times, the configuration cannot be continuously
deformed into that with m ( �=n) encirclements. If an elastic band encircles a
cylinder first n times and then m times, it encircles the cylinder n + m times in
total.

4.3.1 Fundamental group of torus

Theorem 4.6. Let X and Y be arcwise connected topological spaces. Then
π1(X × Y, (x0, y0)) is isomorphic to π1(X, x0)⊕ π1(Y, y0).

Proof. Define projections p1 : X × Y → X and p2 : X × Y → Y . If α is a
loop in X × Y at (x0, y0), α1 ≡ p1(α) is a loop in X at x0, and α2 ≡ p2(α)

is a loop in Y at y0. Conversely, any pair of loops α1 of X at x0 and α2 of Y
at y0 determines a unique loop α = (α1, α2) of X × Y at (x0, y0). Define a
homomorphism ϕ : π1(X × Y, (x0, y0))→ π1(X, x0)⊕ π1(Y, y0) by

ϕ([α]) = ([α1], [α2]).
By construction ϕ has an inverse, hence it is the required isomorphism and
π1(X × Y, (x0, y0)) ∼= π1(X, x0)⊕ π1(Y, y0). �
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Example 4.3. (1) Let T 2 = S1 × S1 be a torus. Then

π1(T
2) ∼= π1(S

1)⊕ π1(S
1) ∼= �⊕�. (4.11)

Similarly, for the n-dimensional torus

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n

we have
π1(T

n) ∼= �⊕�⊕ · · · ⊕�︸ ︷︷ ︸
n

. (4.12)

(2) Let X = S1 × � be a cylinder. Since π1(�) ∼= {e}, we have

π1(X) ∼= �⊕ {e} ∼= �. (4.13)

4.4 Fundamental groups of polyhedra

The computation of fundamental groups in the previous section was, in a sense, ad
hoc and we certainly need a more systematic way of computing the fundamental
groups. Fortunately if a space X is triangulable, we can compute the fundamental
group of the polyhedron K , and hence that of X by a routine procedure. Let us
start with some aspects of group theories.

4.4.1 Free groups and relations

The free groups that we define here are not necessarily Abelian and we employ
multiplicative notation for the group operation. A subset X = {x j } of a group G
is called a free set of generators of G if any element g ∈ G − {e} is uniquely
written as

g = xi1
1 xi2

2 · · · xin
n (4.14)

where n is finite and ik ∈ �. We assume no adjacent x j are equal; x j �= x j+1.
If i j = 1, x j

1 is simply written as x j . If i j = 0, the term x j
0 should be dropped

from g. For example, g = a3b−2cb3 is acceptable but h = a3a−2cb0 is not. If
each element is to be written uniquely, h must be reduced to h = ac. If G has a
free set of generators, it is called a free group.

Conversely, given a set X , we can construct a free group G whose free set of
generators is X . Let us call each element of X a letter. The product

w = xi1
1 xi2

2 · · · xin
n (4.15)

is called a word, where x j ∈ X and i j ∈ �. If i j �= 0 and x j �= x j+1 the word is
called a reduced word. It is always possible to reduce a word by finite steps. For
example,

a−2b−3b3a4b3c−2c4 = a−2b0a4b3c2 = a2b3c2.
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A word with no letters is called an empty word and denoted by 1. For example,
it is obtained by reducing w = a0.

A product of words is defined by simply juxtaposing two words. Note that a
juxtaposition of reduced words is not necessarily reduced but it is always possible
to reduce it. For example, if v = a2c−3b2 and w = b−2c2b3, the product vw is
reduced as

vw = a2c−3b2b−2c2b3 = a2c−3c2b3 = a2c−1b3.

Thus, the set of all reduced words form a well-defined free group called the free
group generated by X , denoted by F[X]. The multiplication is the juxtaposition
of two words followed by reduction, the unit element is the empty word and the
inverse of

w = xi1
1 xi2

2 · · · xin
n

is
w−1 = x−in

n · · · x−i2
2 x−i1

1 .

Exercise 4.3. Let X = {a}. Show that the free group generated by X is
isomorphic to �.

In general, an arbitrary group G is specified by the generators and certain
constraints that these must satisfy. If {xk} is the set of generators, the constraints
are most commonly written as

r = xi1
k1

xi2
k2
· · · xin

kn
= 1 (4.16)

and are called relations. For example, the cyclic group of order n generated by x
(in multiplicative notation) satisfies a relation xn = 1.

More formally, let G be a group which is generated by X = {xk}. Any
element g ∈ G is written as g = xi1

1 xi2
2 · · · xin

n , where we do not require that
the expression be unique (G is not necessarily free). For example, we have
xi = xn+1 in �. Let F[X] be the free group generated by X . Then there is a
natural homomorphism ϕ from F[X] onto G defined by

xi1
1 xi2

2 · · · xin
n

ϕ−→ xi1
1 xi2

2 · · · xin
n ∈ G. (4.17)

Note that this is not an isomorphism since the LHS is not unique. ϕ is onto since X
generates both F[X] and G. Although F[X] is not isomorphic to G, F[X]/ kerϕ
is (see theorem 3.1),

F[X]/ kerϕ ∼= G. (4.18)

In this sense, the set of generators X and kerϕ completely determine the group
G. [kerϕ is a normal subgroup. Lemma 3.1 claims that kerϕ is a subgroup
of F[X]. Let r ∈ kerϕ, that is, r ∈ F[X] and ϕ(r) = 1. For any element
x ∈ F[X], we have ϕ(x−1r x) = ϕ(x−1)ϕ(r)ϕ(x) = ϕ(x)−1ϕ(r)ϕ(x) = 1,
hence x−1r x ∈ kerϕ.]
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In this way, a group G generated by X is specified by the relations. The
juxtaposition of generators and relations

(x1, . . . , x p; r1, . . . , rq) (4.19)

is called the presentation of G. For example,�n = (x; xn) and �= (x; ∅).
Example 4.4. Let �⊕ � = {xn ym |n,m ∈ �} be a free Abelian group generated
by X = {x, y}. Then we have xy = yx . Since xyx−1y−1 = 1, we have a relation
r = xyx−1y−1. The presentation of �⊕� is (x, y : xyx−1y−1).

4.4.2 Calculating fundamental groups of polyhedra

We shall be sketchy here to avoid getting into the technical details. We
shall follow Armstrong (1983); the interested reader should consult this book
or any textbook on algebraic topology. As noted in the previous chapter, a
polyhedron |K | is a nice approximation of a given topological space X within
a homeomorphism. Since fundamental groups are topological invariants, we have
π1(X) = π1(|K |). We assume X is an arcwise connected space and drop the base
point. Accordingly, if we have a systematic way of computing π1(|K |), we can
also find π1(X).

We first define the edge group of a simplicial complex, which corresponds to
the fundamental group of a topological space, then introduce a convenient way of
computing it. Let f : |K | → X be a triangulation of a topological space X . If we
note that an element of the fundamental group of X can be represented by loops
in X , we expect that similar loops must exist in |K | as well. Since any loop in |K |
is made up of 1-simplexes, we look at the set of all 1-simplexes in |K |, which can
be endowed with a group structure called the edge group of K .

An edge path in a simplicial complex K is a sequence v0v1 . . . vk of vertices
of |K |, in which the consecutive pair vivi+1 is a 0- or 1-simplex of |K |. [For
technical reasons, we allow the possibility vi = vi+1, in which case the relevant
simplex is a 0-simplex vi = vi+1.] If v0 = vk (=v), the edge path is called
an edge loop at v. We classify these loops into equivalence classes according to
some equivalence relation. We define two edge loops α and β to be equivalent
if one is obtained from the other by repeating the following operations a finite
number of times.

(1) If the vertices u, v and w span a 2-simplex in K , the edge path uvw may
be replaced by uw and vice versa; see figure 4.10(a).

(2) As a special case, if u = w in (1), the edge path uvw corresponds to
traversing along uv first then reversing backwards from v to w = u. This edge
path uvu may be replaced by a 0-simplex u and vice versa, see figure 4.10(b).

Let us denote the equivalence class of edge loops at v, to which vv1 . . . vk−1v

belongs, by {vv1 . . . vk−1v}. The set of equivalence classes forms a group under
the product operation defined by

{vu1 . . . uk−1v} ∗ {vv1 . . . vi−1v} = {vu1 . . . uk−1vv1 . . . vi−1v}. (4.20)
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Figure 4.10. Possible deformations of the edge loops. In (a), uvw is replaced by uw. In
(b), uvu is replaced by u.

The unit element is an equivalence class {v} while the inverse of {vv1 . . . vk−1v}
is {vvk−1 . . . v1v}. This group is called the edge group of K at v and denoted by
E(K ; v).
Theorem 4.7. E(K ; v) is isomorphic to π1(|K |; v).

The proof is found in Armstrong (1983), for example. This isomorphism
ϕ : E(K ; v)→ π1(|K |; v) is given by identifying an edge loop in K with a loop
in |K |. To find E(K ; v), we need to read off the generators and relations. Let L
be a simplicial subcomplex of K , such that

(a) L contains all the vertices (0-simplexes) of K ;
(b) the polyhedron |L| is arcwise connected and simply connected.

Given an arcwise-connected simplicial complex K , there always exists a
subcomplex L that satisfies these conditions. A one-dimensional simplicial
complex that is arcwise connected and simply connected is called a tree. A tree
TM is called the maximal tree of K if it is not a proper subset of other trees.

Lemma 4.3. A maximal tree TM contains all the vertices of K and hence satisfies
conditions (a) and (b) above.

Proof. Suppose TM does not contain some vertex w. Since K is arcwise
connected, there is a 1-simplex vw in K such that v ∈ TM and w �∈ TM. TM ∪
{vw} ∪ {w} is a one-dimensional subcomplex of K which is arcwise connected,
simply connected and contains TM, which contradicts the assumption. �

Suppose we have somehow obtained the subcomplex L. Since |L| is simply
connected, the edge loops in |L| do not contribute to E(K ; v). Thus, we can
effectively ignore the simplexes in L in our calculations. Let v0 (=v), v1, . . . , vn

be the vertices of K . Assign an ‘object’ gi j for each ordered pair of vertices vi , v j

if 〈viv j 〉 is a 1-simplex of K . Let G(K ; L) be a group that is generated by all gi j .
What about the relations? We have the following.
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(1) Since we ignore those simplexes in L, we assign gi j = 1 if 〈viv j 〉 ∈ L.
(2) If 〈viv jvk〉 is a 2-simplex of K , there are no non-trivial loops around viv jvk

and we have the relation gi j g jkgki = 1.

The generators {gi j } and the set of relations completely determine the group
G(K ; L).

Theorem 4.8. G(K ; L) is isomorphic to E(K ; v) 	 π1(|K |; v).
In fact, we can be more efficient than is apparent. For example, gii should

be set equal to 1 since gii corresponds to the vertex vi which is an element of
L. Moreover, from gi j g j i = gii = 1, we have gi j = g−1

j i . Therefore, we only
need to introduce those generators gi j for each pair of vertices vi , v j such that
〈viv j 〉 ∈ K − L and i < j . Since there are no generators gi j such that 〈viv j 〉 ∈ L,
we can ignore the first type of relation. If 〈viv jvk〉 is a 2-simplex of K − L such
that i < j < k, the corresponding relation is uniquely given by gi j g jk = gik

since we are only concerned with simplexes 〈viv j 〉 such that i < j .
To summarize, the rules of the game are as follows.

(1) First, find a triangulation f : |K | → X .
(2) Find the subcomplex L that is arcwise connected, simply connected and

contains all the vertices of K .
(3) Assign a generator gi j to each 1-simplex 〈viv j 〉 of K − L, for which i < j .
(4) Impose a relation gi j g jk = gik if there is a 2-simplex 〈viv jvk〉 such that

i < j < k. If two of the vertices vi , v j and vk form a 1-simplex of L, the
corresponding generator should be set equal to 1.

(5) Now π1(X) is isomorphic to G(K ; L) which is a group generated by {gi j }
with the relations obtained in (4).

Let us work out several examples.

Example 4.5. From our construction, it should be clear that E(K ; v) and G(K ; L)
involve only the 0-, 1- and 2-simplexes of K . Accordingly, if K (2) denotes a 2-
skeleton of K , which is defined to be the set of all 0-, 1- and 2-simplexes in K ,
we should have

π1(|K |) ∼= π1(|K (2)|). (4.21)

This is quite useful in actual computations. For example, a 3-simplex and its
boundary have the same 2-skeleton. A 3-simplex is a polyhedron |K | of the solid
ball D3, while its boundary |L| is a polyhedron of the sphere S2. Since D3 is
contractible, π1(|K |) ∼= {e}. From (4.21) we find π1(S2) ∼= π1(|K |) ∼= {e}. In
general, for n ≥ 2, the (n + 1)-simplex σn+1 and the boundary of σn+1 have the
same 2-skeleton. If we note that σn+1 is contractible and the boundary of σn+1 is
a polyhedron of Sn , we find the formula

π1(S
n) ∼= {e} n ≥ 2. (4.22)
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Figure 4.11. A triangulation of a 3-bouquet. The bold lines denote the maximal tree L .

Example 4.6. Let K ≡ {v1, v2, v3, 〈v1v2〉, 〈v1v3〉, 〈v2v3〉} be a simplicial
complex of a circle S1. We take v1 as the base point. A maximal tree may be
L = {v1, v2, v3, 〈v1v2〉, 〈v1v3〉}. There is only one generator g23. Since there are
no 2-simplexes in K , the relation is empty. Hence,

π1(S
1) ∼= G(K ; L) = (g23; ∅) ∼= � (4.23)

in agreement with theorem 4.5.

Example 4.7. An n-bouquet is defined by the one-point union of n circles. For
example, figure 4.11 is a triangulation of a 3-bouquet. Take the common point
v as the base point. The bold lines in figure 4.11 form a maximal tree L. The
generators of G(K ; L) are g12, g34 and g56. There are no relations and we find

π1(3-bouquet) = G(K ; L) = (x, y, z; ∅). (4.24)

Note that this is a free group but not free Abelian. The non-commutativity can
be shown as follows. Consider loops α and β at v encircling different holes.
Obviously the product α∗β ∗α−1 cannot be continuously deformed into β, hence
[α] ∗ [β] ∗ [α]−1 �= [β], or

[α] ∗ [β] �= [β] ∗ [α]. (4.25)

In general, an n-bouquet has n generators g12, . . . , g2n−1 2n and the
fundamental group is isomorphic to the free group with n generators with no
relations.
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Figure 4.12. A triangulation of the torus.

Example 4.8. Let D2 be a two-dimensional disc. A triangulation K of D2 is given
by a triangle with its interior included. Clearly K itself may be L and K − L is
empty. Thus, we find π1(K ) ∼= {e}.

Example 4.9. Figure 4.12 is a triangulation of the torus T 2. The shaded area is
chosen to be the subcomplex L. [Verify that it contains all the vertices and is both
arcwise and simply connected.] There are 11 generators with ten relations. Let us
take x = g02 and y = g04 and write down the relations

(a) g02 g27 = g07 → g07 = x
x 1

(b) g03 g37 = g07 → g37 = x
1 x

(c) g37 g78 = g38 → g38 = x
x 1

(d) g34 g48 = g38 → g48 = x
1 x

(e) g24 g48 = g28 → g24x = g28
x

(f) g02 g24 = g04 → xg24 = y
x y
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(g) g04 g46 = g06 → g06 = y
y 1

(h) g01 g16 = g06 → g16 = y
1 y

(i) g16 g68 = g18 → g18 = y
y 1

(j) g12 g28 = g18 → g28 = y
1 y

.

It follows from (e) and (f) that x−1yx = g28. We finally have

g02 = g07 = g37 = g38 = g48 = x

g04 = g06 = g16 = g18 = g28 = y

g24 = x−1y

with a relation x−1 yx = y or

xyx−1y−1 = 1. (4.26)

This shows that G(K ; L) is generated by two commutative generators (note
xy = yx), hence (cf example 4.4)

G(K ; L) = (x, y; xyx−1y−1) ∼= �⊕� (4.27)

in agreement with (4.11).
We have the following intuitive picture. Consider loops α = 0 → 1 →

2 → 0 and β = 0 → 3 → 4 → 0. The loop α is identified with x = g02 since
g12 = g01 = 1 and β with y = g04. They generate π1(T 2) since α and β are
independent non-trivial loops. In terms of these, the relation is written as

α ∗ β ∗ α−1 ∗ β−1 ∼ cv (4.28)

where cv is a constant loop at v, see figure 4.13.
More generally, let �g be the torus with genus g. As we have shown in

problem 2.1, �g is expressed as a subset of �2 with proper identifications at
the boundary. The fundamental group of �g is generated by 2g loops αi , βi

(1 ≤ i ≤ g). Similarly, to (4.28), we verify that

g∏
i=1

(αi ∗ βi ∗ α−1
i ∗ β−1

i ) ∼ cv (4.29)

If we denote the generators corresponding to αi by xi and βi by yi , there is only
one relation among them,

g∏
i=1

(xi yi x
−1
i y−1

i ) = 1. (4.30)
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Figure 4.13. The loops α and β satisfy the relation α ∗ β ∗ α−1 ∗ β−1 ∼ cv .

Figure 4.14. A triangulation of the Klein bottle.

Exercise 4.4. Figure 4.14 is a triangulation of the Klein bottle. The shaded area is
the subcomplex L. There are 11 generators and ten relations. Take x = g02 and
y = g04 and write down the relations for 2-simplexes to show that

π1(Klein bottle) ∼= (x, y; xyxy−1). (4.31)

Example 4.10. Figure 4.15 is a triangulation of the projective plane �P2 . The
shaded area is the subcomplex L. There are seven generators and six relations.
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Figure 4.15. A triangulation of the projective plane.

Let us take x = g23 and write down the relations

(a) g23 g34 = g24 → g24 = x
x 1

(b) g24 g46 = g26 → g26 = x
x 1

(c) g12 g26 = g16 → g16 = x
1 x

(d) g13 g36 = g16 → g36 = x
1 x

(e) g35 g56 = g36 → g35 = x
1 x

(f) g23 g35 = g25 → x2 = 1.
x x 1

Hence, we find that
π1(�P2 ) ∼= (x; x2) ∼= �2. (4.32)

Intuitively, the appearance of a cyclic group is understood as follows.
Figure 4.16(a) is a schematic picture of �P2 . Take loops α and β. It is easy
to see that α is continuously deformed to a point, and hence is a trivial element of
π1(�P2 ). Since diametrically opposite points are identified in �P2 , β is actually
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Figure 4.16. (a) α is a trivial loop while the loop β cannot be shrunk to a point. (b) β ∗ β
is continuously shrunk to a point.

a closed loop. Since it cannot be shrunk to a point, it is a non-trivial element of
π1(�P2 ). What about the product? β ∗β is a loop which traverses from P to Q∼
P twice. It can be read off from figure 4.16(b) that β ∗ β is continuously shrunk
to a point, and thus belongs to the trivial class. This shows that the generator x ,
corresponding to the homotopy class of the loop β, satisfies the relation x2 = 1,
which verifies our result.

The same pictures can be used to show that

π1(�P3 ) ∼= �2 (4.33)

where �P3 is identified as S3 with diametrically opposite points identified,
�P3 = S3/(x ∼ −x). If we take the hemisphere of S3 as the representative,
�P3 can be expressed as a solid ball D3 with diametrically opposite points on the
surface identified. If the discs D2 in figure 4.16 are interpreted as solid balls D3,
the same pictures verify (4.33).

Exercise 4.5. A triangulation of the Möbius strip is given by figure 3.8. Find the
maximal tree and show that

π1(Möbius strip) ∼= �. (4.34)

[Note: Of course the Möbius strip is of the same homotopy type as S1, hence
(4.34) is trivial. The reader is asked to obtain this result through routine
procedures.]

4.4.3 Relations between H1(K ) and π1(|K |)
The reader might have noticed that there is a certain similarity between the first
homology group H1(K ) and the fundamental group π1(|K |). For example, the
fundamental groups of many spaces (circle, disc, n-spheres, torus and many more)
are identical to the corresponding first homology group. In some cases, however,
they are different: H1(2-bouquet) ∼= �⊕ � and π1(2-bouquet) = (x, y : ∅), for
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example. Note that H1(2-bouquet) is a free Abelian group while π1(2-bouquet)
is a free group. The following theorem relates π1(|K |) to H1(K ).

Theorem 4.9. Let K be a connected simplicial complex. Then H1(K ) is
isomorphic to π1(|K |)/F , where F is the commutator subgroup (see later) of
π1(|K |).

Let G be a group whose presentation is (xi ; rm). The commutator
subgroup F of G is a group generated by the elements of the form xi x j x

−1
i x−1

j .
Thus, G/F is a group generated by {xi } with the set of relations {rm} and
{xi x j x

−1
i x−1

j }. The theorem states that if π1(|K |) = (xi : rm), then H1(K ) ∼=
(xi : rm , xi x j x−1

i x−1
j ). For example, from π1(2-bouquet) = (x, y : ∅), we find

π1(2-bouquet)/F ∼= (x, y; xyx−1y−1) ∼= �⊕�
which is isomorphic to H1(2-bouquet).

The proof of theorem 4.9 is found in Greenberg and Harper (1981) and also
outlined in Croom (1978).

Example 4.11. From π1(Klein bottle) ∼= (x, y; xyxy−1), we have

π1(Klein bottle)/F ∼= (x, y; xyxy−1, xyx−1y−1).

Two relations are replaced by x2 = 1 and xyx−1y−1 = 1 to yield

π1(Klein bottle)/F ∼= (x, y; xyx−1y−1, x2) ∼= �⊕�2

∼= H1(Klein bottle)

where the factor � is generated by y and �2 by x .

Corollary 4.2. Let X be a connected topological space. Then π1(X) is isomorphic
to H1(X) if and only if π1(X) is commutative. In particular, if π1(X) is generated
by one generator, π1(X) is always isomorphic to H1(X). [Use theorem 4.9.]

Corollary 4.3. If X and Y are of the same homotopy type, their first homology
groups are identical: H1(X) = H1(Y ). [Use theorems 4.9 and 4.3.]

4.5 Higher homotopy groups

The fundamental group classifies the homotopy classes of loops in a topological
space X . There are many ways to assign other groups to X . For example, we may
classify homotopy classes of the spheres in X or homotopy classes of the tori in
X . It turns out that the homotopy classes of the sphere Sn (n ≥ 2) form a group
similar to the fundamental group.
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4.5.1 Definitions

Let I n (n ≥ 1) denote the unit n-cube I × · · · × I ,

I n = {(s1, . . . , sn)|0 ≤ si ≤ 1 (1 ≤ i ≤ n)}. (4.35)

The boundary ∂ I n is the geometrical boundary of I n ,

∂ I n = {(s1, . . . , sn) ∈ I n | some si = 0 or 1}. (4.36)

We recall that in the fundamental group, the boundary ∂ I of I = [0, 1] is mapped
to the base point x0. Similarly, we assume here that we shall be concerned with
continuous maps α : I n → X , which map the boundary ∂ I n to a point x0 ∈ X .
Since the boundary is mapped to a single point x0, we have effectively obtained
Sn from I n ; cf figure 2.8. If I n/∂ I n denotes the cube I n whose boundary ∂ I n is
shrunk to a point, we have I n/∂ I n ∼= Sn . The map α is called an n-loop at x0. A
straightforward generalization of definition 4.4 is as follows.

Definition 4.10. Let X be a topological space and α, β : I n → X be n-loops at
x0 ∈ X . The map α is homotopic to β, denoted by α ∼ β, if there exists a
continuous map F : I n × I → X such that

F(s1, . . . , sn, 0) = α(s1, . . . , sn) (4.37a)

F(s1, . . . , sn, 1) = β(s1, . . . , sn) (4.37b)

F(s1, . . . , sn, t) = x0 for (s1, . . . , sn) ∈ ∂ I n, t ∈ I. (4.37c)

F is called a homotopy between α and β.

Exercise 4.6. Show that α ∼ β is an equivalence relation. The equivalence class
to which α belongs is called the homotopy class of α and is denoted by [α].

Let us define the group operations. The product α ∗ β of n-loops α and β is
defined by

α ∗ β(s1, . . . , sn) =
{
α(2s1, . . . , sn) 0 ≤ s1 ≤ 1

2

β(2s1 − 1, . . . , sn)
1
2 ≤ s1 ≤ 1.

(4.38)

The product α ∗ β looks like figure 4.17(a) in X . It is helpful to express it as
figure 4.17(b). If we define α−1 by

α−1(s1, . . . , sn) ≡ α(1 − s1, . . . , sn) (4.39)

it satisfies

α−1 ∗ α(s1, . . . , sn) ∼ α ∗ α−1(s1, . . . , sn) ∼ cx0(s1, . . . , sn) (4.40)

where cx0 is a constant n-loop at x0 ∈ X , cx0 : (s1, . . . , sn) 
→ x0. Verify that
both α ∗ β and α−1 are n-loops at x0.
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Figure 4.17. A product α ∗ β of n-loops α and β.

Definition 4.11. Let X be a topological space. The set of homotopy classes of
n-loops (n ≥ 1) at x0 ∈ X is denoted by πn(X, x0) and called the nth homotopy
group at x0. πn(x, x0) is called the higher homotopy group if n ≥ 2.

The product α ∗ β just defined naturally induces a product of homotopy
classes defined by

[α] ∗ [β] ≡ [α ∗ β] (4.41)

where α and β are n-loops at x0. The following exercises verify that this product
is well defined and satisfies the group axioms.

Exercise 4.7. Show that the product of n-loops defined by (4.41) is independent
of the representatives: cf lemma 4.1.

Exercise 4.8. Show that the nth homotopy group is a group. To prove this, the
following facts may be verified; cf theorem 4.1.

(1) ([α] ∗ [β]) ∗ [γ ] = [α] ∗ ([β] ∗ [γ ]).
(2) [α] ∗ [cx ] = [cx ] ∗ [α] = [α].
(3) [α] ∗ [α−1] = [cx ], which defines the inverse [α]−1 = [α−1].
We have excluded π0(X, x0) so far. Let us classify maps from I 0 to X . We

note I 0 = {0} and ∂ I 0 = ∅. Let α, β : {0} → X be such that α(0) = x and
β(0) = y. We define α ∼ β if there exists a continuous map F : {0} × I → X
such that F(0, 0) = x and F(0, 1) = y. This shows that α ∼ β if and only if
x and y are connected by a curve in X , namely they are in the same (arcwise)
connected component. Clearly this equivalence relation is independent of x0 and
we simply denote the zeroth homology group by π0(X). Note, however, that
π0(X) is not a group and denotes the number of (arcwise) connected components
of X .
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Figure 4.18. Higher homotopy groups are always commutative, α ∗ β ∼ β ∗ α.

4.6 General properties of higher homotopy groups

4.6.1 Abelian nature of higher homotopy groups

Higher homotopy groups are always Abelian; for any n-loops α and β at x0 ∈ X ,
[α] and [β] satisfy

[α] ∗ [β] = [β] ∗ [α]. (4.42)

To verify this assertion let us observe figure 4.18. Clearly the deformation is
homotopic at each step of the sequence. This shows that α ∗ β ∼ β ∗ α, namely
[α] ∗ [β] = [β] ∗ [α].

4.6.2 Arcwise connectedness and higher homotopy groups

If a topological space X is arcwise connected, πn(X, x0) is isomorphic to
πn(X, x1) for any pair x0, x1 ∈ X . The proof is parallel to that of theorem 4.2.
Accordingly, if X is arcwise connected, the base point need not be specified.

4.6.3 Homotopy invariance of higher homotopy groups

Let X and Y be topological spaces of the same homotopy type; see definition
4.6. If f : X → Y is a homotopy equivalence, the homotopy group πn(X, x0)

is isomorphic to πn(Y, f (x0)); cf theorem 4.3. Topological invariance of higher
homotopy groups is the direct consequence of this fact. In particular, if X is
contractible, the homotopy groups are trivial: πn(X, x0) = {e}, n > 1.

4.6.4 Higher homotopy groups of a product space

Let X and Y be arcwise connected topological spaces. Then

πn(X × Y ) ∼= πn(X)⊕ πn(Y ) (4.43)

cf theorem 4.6.

4.6.5 Universal covering spaces and higher homotopy groups

There are several cases in which the homotopy groups of one space are given by
the known homotopy groups of the other space. There is a remarkable property



4.6 GENERAL PROPERTIES OF HIGHER HOMOTOPY GROUPS 149

between the higher homotopy groups of a topological space and its universal
covering space.

Definition 4.12. Let X and X̃ be connected topological spaces. The pair (X̃ , p),
or simply X̃ , is called the covering space of X if there exists a continuous map
p : X̃ → X such that

(1) p is surjective (onto)
(2) for each x ∈ X , there exists a connected open set U ⊂ X containing
x , such that p−1(U) is a disjoint union of open sets in X̃ , each of which is
mapped homeomorphically onto U by p.

In particular, if X̃ is simply connected, (X̃ , p) is called the universal
covering space of X . [Remarks: Certain groups are known to be topological
spaces. They are called topological groups. For example SO(n) and SU(n) are
topological groups. If X and X̃ in definition 4.12 happen to be topological groups
and p : X̃ → X to be a group homomorphism, the (universal) covering space is
called the (universal) covering group.]

For example, � is the universal covering space of S1, see section 4.3. Since
S1 is identified with U(1), � is a universal covering group of U(1) if � is regarded
as an additive group. The map p : � → U(1) may be p : x → ei2πx . Clearly p
is surjective and if U = {ei2πx |x ∈ (x0 − 0.1, x0 + 0.1)}, then

p−1(U) =
⋃
n∈�
(x0 − 0.1+ n, x0 + 0.1+ n)

which is a disjoint union of open sets of �. It is easy to show that p is also a
homomorphism with respect to addition in � and multiplication in U(1). Hence,
(�, p) is the universal covering group of U(1) = S1.

Theorem 4.10. Let (X̃ , p) be the universal covering space of a connected
topological space X . If x0 ∈ X and x̃0 ∈ X̃ are base points such that p(x̃0) = x0,
the induced homomorphism

p∗ : πn(X̃ , x̃0)→ πn(X, x0) (4.44)

is an isomorphism for n ≥ 2. [Warning: This theorem cannot be applied if n = 1;
π1(�) = {e} while π1(S1) = �.]

The proof is given in Croom (1978). For example, we have πn(�) = {e}
since � is contractible. Then we find

πn(S
1) ∼= πn(U(1)) = {e} n ≥ 2. (4.45)

Example 4.12. Let Sn = {x ∈ �n+1 | |x |2 = 1}. The real projective space �Pn is
obtained from Sn by identifying the pair of antipodal points (x,−x). It is easy to
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see that Sn is a covering space of �Pn for n ≥ 2. Since π1(Sn) = {e} for n ≥ 2,
Sn is the universal covering space of �Pn and we have

πn(�Pm ) ∼= πn(S
m). (4.46)

It is interesting to note that �P3 is identified with SO(3). To see this let
us specify an element of SO(3) by a rotation about an axis n by an angle θ
(0 < θ < π) and assign a ‘vector’ � ≡ θn to this element. � takes its value in
the disc D3 of radius π . Moreover, πn and −πn represent the same rotation and
should be identified. Thus, the space to which� belongs is a disc D3 whose anti-
podal points on the surface S2 are identified. Note also that we may express �P3

as the northern hemisphere D3 of S3, whose anti-podal points on the boundary S2

are identified. This shows that �P3 is identified with SO(3).
It is also interesting to see that S3 is identified with SU(2). First note that

any element g ∈ SU(2) is written as

g =
(

a −b
b a

)
|a|2 + |b|2 = 1. (4.47)

If we write a = u + iv and b = x + iy, this becomes S3,

u2 + v2 + x2 + y2 = 1.

Collecting these results, we find

πn(SO(3)) = πn(�P3 ) = πn(S
3) = πn(SU(2)) n ≥ 2. (4.48)

More generally, the universal covering group Spin(n) of SO(n) is called the spin
group. For small n, they are

Spin(3) = SU(2) (4.49)

Spin(4) = SU(2)× SU(2) (4.50)

Spin(5) = USp(4) (4.51)

Spin(6) = SU(4). (4.52)

Here USp(2N) stands for the compact group of 2N × 2N matrices A satisfying
At J A = J , where

J =
(

0 IN

−IN 0

)
.

4.7 Examples of higher homotopy groups

In general, there are no algorithms to compute higher homotopy groups πn(X).
An ad hoc method is required for each topological space for n ≥ 2. Here, we
study several examples in which higher homotopy groups may be obtained by
intuitive arguments. We also collect useful results in table 4.1.



4.7 EXAMPLES OF HIGHER HOMOTOPY GROUPS 151

Table 4.1. Useful homotopy groups.

π1 π2 π3 π4 π5 π6

SO(3) �2 0 � �2 �2 �12
SO(4) �2 0 �+� �2+�2 �2+�2 �12+�12
SO(5) �2 0 � �2 �2 0
SO(6) �2 0 � 0 � 0
SO(n) n > 6 �2 0 � 0 0 0
U(1) � 0 0 0 0 0
SU(2) 0 0 � �2 �2 �12
SU(3) 0 0 � 0 � �6
SU(n) n > 3 0 0 � 0 � 0
S2 0 � � �2 �2 �12
S3 0 0 � �2 �2 �12
S4 0 0 0 � �2 �2
G2 0 0 � 0 0 �3
F4 0 0 � 0 0 0
E6 0 0 � 0 0 0
E7 0 0 � 0 0 0
E8 0 0 � 0 0 0

Example 4.13. If we note that πn(X, x0) is the set of the homotopy classes of
n-loops Sn in X , we immediately find that

πn(S
n, x0) ∼= � n ≥ 1. (4.53)

If α maps Sn onto a point x0 ∈ Sn , [α] is the unit element 0 ∈ �. Since both
I n/∂ I n and Sn are orientable, we may assign orientations to them. If α maps
I n/∂ I n homeomorphically to Sn in the same sense of orientation, then [α] is
assigned an element 1 ∈ �. If a homeomorphism α maps I n/∂ I n onto Sn in an
orientation of opposite sense, [α] corresponds to an element −1. For example,
let n = 2. Since I 2/∂ I 2 ∼= S2, the point in I 2 can be expressed by the polar
coordinate (θ, φ), see figure 4.19. Similarly, X = S2 can be expressed by the
polar coordinate (θ ′, φ′). Let α : (θ, φ) → (θ ′, φ′) be a 2-loop in X . If θ ′ = θ
and φ′ = φ, the point (θ ′, φ′) sweeps S2 once while the point (θ, φ) scans I 2

once in the same orientation. This 2-loop belongs to the class +1 ∈ π2(S2, x0).
If α : (θ, φ) → (θ ′, φ′) is given by θ ′ = θ and φ′ = 2φ, the point (θ ′, φ′)
sweeps S2 twice while (θ, φ) scans I 2 once. This 2-loop belongs to the class
2 ∈ π2(S2, x0). In general, the map (θ, φ) 
→ (θ, kφ), k ∈ �, corresponds to the
class k of π2(S2, x0). A similar argument verifies (4.53) for general n > 2.

Example 4.14. Noting that Sn is a universal covering space of �Pn for n > 2, we
find

πn(�Pn ) ∼= πn(S
n) ∼= � n ≥ 2. (4.54)
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Figure 4.19. A point in I 2 may be expressed by polar coordinates (θ, φ).

[Of course this happens to be true for n = 1, since �P1 = S1.] For example, we
have π2(�P2 ) ∼= π2(S2) ∼= �. Since SU(2) = S3 is the universal covering group
of SO(3) = �P3 , it follows from theorem 4.10 that (see also (4.48))

π3(SO(3)) ∼= π3(SU(2)) ∼= π3(S
3) ∼= �. (4.55)

Shankar’s monopoles in superfluid 3He-A correspond to non-trivial elements
of these homotopy classes, see section 4.10. π3(SU(2)) is also employed in the
classification of instantons in example 9.8.

In summary, we have table 4.1. In this table, other useful homotopy groups
are also listed. We comment on several interesting facts.

(a) Since Spin(4) = SU(2) × SU(2) is the universal covering group of SO(4),
we have πn(SO(4)) = πn(SU(2))⊕ πn(SU(2)) for n > 2.

(b) There exists a map J called the J-homomorphism J : πk(SO(n)) →
πk+n(Sn), see Whitehead (1978). In particular, if k = 1, the homomorphism
is known to be an isomorphism and we have π1(SO(n)) = πn+1(Sn). For
example, we find

π1(SO(2)) ∼= π3(S
2) ∼= �

π1(SO(3)) ∼= π4(S
3) ∼= π4(SU(2)) ∼= π4(SO(3)) ∼= �2.

(c) The Bott periodicity theorem states that

πk(U(n)) ∼= πk(SU(n)) ∼=
{
{e} if k is even

� if k is odd
(4.56)
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for n ≥ (k + 1)/2. Similarly,

πk(O(n)) ∼= πk(SO(n)) ∼=


{e} if k ≡ 2, 4, 5, 6 (mod 8)

�2 if k ≡ 0, 1 (mod 8)

� if k ≡ 3, 7 (mod 8)

(4.50)

for n ≥ k + 2. Similar periodicity holds for symplectic groups which we
shall not give here.

Many more will be found in appendix A, table 6 of Ito (1987).

4.8 Orders in condensed matter systems

Recently topological methods have played increasingly important roles in
condensed matter physics. For example, homotopy theory has been employed to
classify possible forms of extended objects, such as solitons, vortices, monopoles
and so on, in condensed systems. These classifications will be studied in
sections 4.8–4.10. Here, we briefly look at the order parameters of condensed
systems that undergo phase transitions.

4.8.1 Order parameter

Let H be a Hamiltonian describing a condensed matter system. We assume H is
invariant under a certain symmetry operation. The ground state of the system need
not preserve the symmetry of H . If this is the case, we say the system undergoes
spontaneous symmetry breakdown.

To illustrate this phenomenon, we consider the Heisenberg Hamiltonian

H = −J
∑
(i, j )

Si · S j + h ·
∑

i

Si (4.57)

which describes N ferromagnetic Heisenberg spins {Si }. The parameter J is a
positive constant, the summation is over the pair of the nearest-neighbour sites
(i, j) and h is the uniform external magnetic field. The partition function is
Z = tr e−βH , where β = 1/T is the inverse temperature. The free energy F
is defined by exp(−βF) = Z . The average magnetization per spin is

m ≡ 1

N

∑
i

〈Si 〉 = 1

Nβ

∂F

∂h
(4.58)

where 〈. . .〉 ≡ tr(. . . e−βH )/Z . Let us consider the limit h → 0. Although H
is invariant under the SO(3) rotations of all Si in this limit, it is well known that
m does not vanish for large enough β and the system does not observe the SO(3)
symmetry. It is said that the system exhibits spontaneous magnetization and
the maximum temperature, such that m �= 0 is called the critical temperature.
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The vector m is the order parameter describing the phase transition between
the ordered state (m �= 0) and the disordered state (m = 0). The system is still
symmetric under SO(2) rotations around the magnetization axis m.

What is the mechanism underlying the phase transition? The free energy is
F = 〈H 〉 − T S, S being the entropy. At low temperature, the term T S in F
may be negligible and the minimum of F is attained by minimizing 〈H 〉, which
is realized if all Si align in the same direction. At high temperature, however, the
entropy term dominates F and the minimum of F is attained by maximizing S,
which is realized if the directions of Si are totally random.

If the system is at a uniform temperature, the magnitude |m| is independent
of the position and m is specified by its direction only. In the ground state, m
itself is expected to be independent of position. It is convenient to introduce
the polar coordinate (θ, φ) to specify the direction of m. There is a one-to-one
correspondence between m and a point on the sphere S2. Suppose m varies as a
function of position: m = m(x). At each point x of the space, a point (θ, φ) of
S2 is assigned and we have a map (θ(x), φ(x)) from the space to S2. Besides
the ground state (and excited states that are described by small oscillations
(spin waves) around the ground state) the system may carry various excited
states that cannot be obtained from the ground state by small perturbations.
What kinds of excitation are possible depends on the dimension of the space
and the order parameter. For example, if the space is two dimensional, the
Heisenberg ferromagnet may admit an excitation called the Belavin–Polyakov
monopole shown in figure 4.20 (Belavin and Polyakov 1975). Observe that m
approaches a constant vector ( ẑ in this case) so the energy does not diverge. This
condition guarantees the stability of this excitation; it is impossible to deform this
configuration into the uniform one with m far from the origin kept fixed. These
kinds of excitation whose stability depends on topological arguments are called
topological excitations. Note that the field m(x) defines a map m : S2 → S2

and, hence, are classified by the homotopy group π2(S2) = �.

4.8.2 Superfluid 4He and superconductors

In Bogoliubov’s theory, the order parameter of superfluid 4He is the expectation
value

〈φ(x)〉 =  (r) = �0(x)eiα(x) (4.59)

where φ(x) is the field operator. In the operator formalism,

φ(x) ∼ (creation operator)+ (annihilation operator)

from which we find the number of particles is not conserved if  (x) �= 0. This
is related to the spontaneous breakdown of the global gauge symmetry. The
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Figure 4.20. A sketch of the Belavin–Polyakov monopole. The vector m approaches ẑ as
|x| → ∞.

Hamiltonian of 4He is

H =
∫

dx φ†(x)

(
−∇

2

2m
− µ

)
φ(x)

+ 1

2

∫
dx d y φ†(y)φ(y)V (|x − y|)φ†(x)φ(x). (4.60)

Clearly H is invariant under the global gauge transformation

φ(x)→ eiχφ(x). (4.61)

The order parameter, however, transforms as

 (x)→ eiχ�(x) (4.62)

and hence does not observe the symmetry of the Hamiltonian. The
phenomenological free energy describing 4He is made up of two contributions.
The main contribution is the condensation energy

�0 ≡ α

2! | (x)|
2 + β

4! | (x)|
4 (4.63a)

where α ∼ α0(T − Tc) changes sign at the critical temperature T ∼ 4 K.
Figure 4.21 sketches �0 for T > Tc and T < Tc. If T > Tc, the minimum
of �0 is attained at  (x) = 0 while if T < Tc at | | = �0 ≡ [−(6α/β)]1/2.
If  (x) depends on x, we have an additional contribution called the gradient
energy

�grad ≡ 1
2 K∇ (x) · ∇ (x) (4.63b)
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Figure 4.21. The free energy has a minimum at | | = 0 for T > Tc and at | | = �0 for
T < Tc.

K being a positive constant. If the spatial variation of  (x) is mild enough, we
may assume�0 is constant (the London limit).

In the BCS theory of superconductors, the order parameter is given by
(Tsuneto 1982)

 αβ ≡ 〈ψα(x)ψβ(x)〉 (4.64)

ψα(x) being the (non-relativistic) electron field operator of spin α = (↑,↓). It
should be noted, however, that (4.64) is not an irreducible representation of the
spin algebra. To see this, we examine the behaviour of  αβ under a spin rotation.
Consider an infinitesimal spin rotation around an axis n by an angle θ , whose
matrix representation is

R = I2 + i
θ

2
nµσµ,

σµ being the Pauli matrices. Since ψα transforms as ψα → Rαβψβ we have

 αβ → Rα
α′ α′β ′ Rβ

β ′ = (R · · Rt)αβ

=
[
 + i

δ

2
n(σ σ2 − σ2σ )

]
αβ

where we note that σ t
µ = −σ2σµσ2. Suppose  αβ ∝ i(σ2)αβ . Then  does not

change under this rotation, hence it represents the spin-singlet pairing. We write

 αβ(x) = �(x)(iσ2)αβ = �0(x)eiϕ(x)(iσ2)αβ. (4.65a)

If, however, we take
 αβ(x) = �µ(x)i(σµ · σ2)αβ (4.65b)
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we have
 αβ → [�µ + δεµνλnν�λ](iσµ · σ2)αβ.

This shows that �µ is a vector in spin space, hence (4.65b) represents the spin-
triplet pairing.

The order parameter of a conventional superconductor is of the form (4.65a)
and we restrict the analysis to this case for the moment. In (4.65a),�(x) assumes
the same form as  (x) of superfluid 4He and the free energy is again given by
(4.63). This similarity is attributed to the Cooper pair. In the superfluid state,
a macroscopic number of 4He atoms occupy the ground state (Bose–Einstein
condensation) which then behaves like a huge molecule due to the quantum
coherence. In this state creating elementary excitations requires a finite amount
of energy and the flow cannot decay unless this critical energy is supplied. Since
an electron is a fermion there is, at first sight, no Bose–Einstein condensation.
The key observation is the Cooper pair. By the exchange of phonons, a pair of
electrons feels an attractive force that barely overcomes the Coulomb repulsion.
This tiny attractive force makes it possible for electrons to form a pair (in
momentum space) that obeys Bose statistics. The pairs then condense to form
the superfluid state of the Cooper pairs of electric charge 2e.

An electromagnetic field couples to the system through the minimal coupling

�grad = 1
2 K

∣∣(∂µ − i2eAµ)�(x)
∣∣2 . (4.66)

(The term 2e is used since the Cooper pair carries charge 2e.) Superconductors
are roughly divided into two types according to their behaviour in applied
magnetic fields. The type-I superconductor forms an intermediate state in which
normal and superconducting regions coexist in strong magnetic fields. The
type-II superconductor forms a vortex lattice (Abrikosov lattice) to confine the
magnetic fields within the cores of the vortices with other regions remaining in
the superconducting state. A similar vortex lattice has been observed in rotating
superfluid 4He in a cylinder.

4.8.3 General consideration

ln the next two sections, we study applications of homotopy groups to the
classification of defects in ordered media. The analysis of this section is based
on Toulouse and Kléman (1976), Mermin (1979) and Mineev (1980).

As we saw in the previous subsections, when a condensed matter system
undergoes a phase transition, the symmetry of the system is reduced and this
reduction is described by the order parameter. For definiteness, let us consider the
three-dimensional medium of a superconductor. The order parameter takes the
formψ(x) = �0(x)eiϕ(x). Let us consider a homogeneous system under uniform
external conditions (temperature, pressure etc). The amplitude �0 is uniquely
fixed by minimizing the condensation free energy. Note that there are still a large
number of degrees of freedom left. ψ may take any value in the circle S1 ∼= U(1)
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Figure 4.22. A circle S1 surrounding a line defect (vortex) is mapped to U(1) = S1. This
map is classified by the fundamental group π1(U(1).

determined by the phase eiϕ . In this way, a uniform system takes its value in
a certain region M called the order parameter space. For a superconductor,
M = U(1). For the Heisenberg spin system, M = S2. The nematic liquid crystal
has M = �P2 while M = S2×SO(3) for the superfluid 3He-A, see sections 4.9–
4.10.

If the system is in an inhomogeneous state, the gradient free energy cannot be
negligible and ψ may not be in M . If the characteristic size of the variation of the
order parameter is much larger than the coherence length, however, we may still
assume that the order parameter takes its value in M , where the value is a function
of position this time. If this is the case, there may be points, lines or surfaces in the
medium on which the order parameter is not uniquely defined. They are called the
defects. We have point defects (monopoles), line defects (vortices) and surface
defects (domain walls) according to their dimensionalities. These defects are
classified by the homotopy groups.

To be more mathematical, let X be a space which is filled with the medium
under consideration. The order parameter is a classical field ψ(x), which is also
regarded as a map ψ : X → M . Suppose there is a defect in the medium. For
concreteness, we consider a line defect in the three-dimensional medium of a
superconductor. Imagine a circle S1 which encircles the line defect. If each part
of S1 is far from the line defect, much further than the coherence length ξ , we
may assume the order parameter along S1 takes its value in the order parameter
space M = U(1), see figure 4.22. This is how the fundamental group comes into
the problem; we talk of loops in a topological space U(1). The map S1 → U(1)
is classified by the homotopy classes. Take a point r0 ∈ S1 and require that r0 be
mapped to x0 ∈ M . By noting that π1(U(1), x0) = �, we may assign an integer
to the line defect. This integer is called the winding number since it counts how
many times the image of S1 winds the space U(1). If two line defects have the
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same winding number, one can be continuously deformed to the other. If two
line defects A and B merge together, the new line defect belongs to the homotopy
class of the product of the homotopy classes to which A and B belonged before
coalescence. Since the group operation in � is an addition, the new winding
number is a sum of the old winding numbers. A uniform distribution of the order
parameter corresponds to the constant map ψ(x) = x0 ∈ M , which belongs to
the unit element 0 ∈ �. If two line defects of opposite winding numbers merge
together, the new line defect can be continuously deformed into the defect-free
configuration.

What about the other homotopy groups? We first consider the dimensionality
of the defect and the sphere Sn which surrounds it. For example, consider a point
defect in a three-dimensional medium. It can be surrounded by S2 and the defect
is classified by π2(M, x0). If M has many components, π0(M) is non-trivia1. Let
us consider a three-dimensional Ising model for which M = {↓} ∪ {↑}. Then
there is a domain wall on which the order parameter is not defined. For example,
if S =↑ for x < 0 and S =↓ for x > 0, there is a domain wall in the yz-plane
at x = 0. In general, an m-dimensional defect in a d-dimensional medium is
classified by the homotopy group πn(M, x0) where

n = d − m − 1. (4.67)

In the case of the lsing model, d = 3,m = 2; hence n = 0.

4.9 Defects in nematic liquid crystals

4.9.1 Order parameter of nematic liquid crystals

Certain organic crystals exhibit quite interesting optical properties when they are
in their fluid phases. They are called liquid crystals and they are characterized
by their optical anisotropy. Here we are interested in so-called nematic liquid
crystals. An example of this is octyloxy-cyanobiphenyl whose molecular structure
is

The molecule of a nematic liquid crystal is very much like a rod and the order
parameter, called the director, is given by the average direction of the rod. Even
though the molecule itself has a head and a tail, the director has an inversion
symmetry; it does not make sense to distinguish the directors n =→ and −n =
←. We are tempted to assign a point on S2 to specify the director. This works
except for one point. Two antipodal points n = (θ, φ) and −n = (π − θ, π + φ)
represent the same state; see figure 4.23. Accordingly, the order parameter of the
nematic liquid crystal is the projective plane �P2 . The director field in general
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Figure 4.23. Since the director n has no head or tail, one cannot distinguish n from −n.
Therefore, these two pictures correspond to the same order-parameter configuration.

Figure 4.24. A vortex in a nematic liquid crystal, which corresponds to the non-trivial
element of π1(�P2) = �2.

depends on the position r. Then we may define a map f : �3 → �P2 . This
map is called the texture. The actual order-parameter configuration in �3 is also
called the texture.

4.9.2 Line defects in nematic liquid crystals

From example 4.10 we have π1(�P2 ) ∼= �2 = {0, 1}. There exist two kinds
of line defect in nematic liquid crystals; one can be continuously deformed into
a uniform configuration while the other cannot. The latter represents a stable
vortex, whose texture is sketched in figure 4.24. The reader should observe how
the loop α is mapped to �P2 by this texture.

Exercise 4.9. Show that the line ’defect’ in figure 4.25 is fictitious, namely the
singularity at the centre may be eliminated by a continuous deformation of
directors with directors at the boundary fixed. This corresponds to the operation
1+ 1 = 0.
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Figure 4.25. A line defect which may be continuously deformed into a uniform
configuration.

Figure 4.26. The texture of a point defect in a nematic liquid crystal.

4.9.3 Point defects in nematic liquid crystals

From example 4.14, we have π2(�P2 ) = �. Accordingly, there are stable point
defects in the nematic liquid crystal. Figure 4.26 shows the texture of the point
defects that belong to the class 1 ∈ �.

It is interesting to point out that a line defect and a point defect may be
combined into a ring defect, which is specified by both π1(�P2 ) and π2(�P2 ),
see Mineev (1980). If the ring defect is observed from far away, it looks like



162 HOMOTOPY GROUPS

Figure 4.27. The texture of a ring defect in a nematic liquid crystal. The loop α classifies
π1(�P2) while the sphere (2-loop) β classifies π2(�P2).

a point defect, while its local structure along the ring is specified by π1(�P2 ).
Figure 4.27 is an example of such a ring defect. The loop α classifies π1(�P2 ) ∼=
�2 while the sphere (2-loop) β classifies π2(�P2 ) = �.

4.9.4 Higher dimensional texture

The third homotopy group π(�P2 ) ∼= � leads to an interesting singularity-
free texture in a three-dimensional medium of nematic liquid crystal. Suppose
the director field approaches an asymptotic configuration, say n = (1, 0, 0)t,
as |r| → ∞. Then the medium is effectively compactified into the three-
dimensional sphere S3 and the topological structure of the texture is classified
by π3(�P2 ) ∼= �. What is the texture corresponding to a non-trivial element of
the homotopy group?

An arbitrary rotation in �3 is specified by a unit vector e, around which the
rotation is carried out, and the rotation angle α. It is possible to assign a ‘vector’
� = αe to this rotation. It is not exactly a vector since � = πe and −� = −πe
are the same rotation and hence should be identified. Therefore,� belongs to the
real projective space �P3 . Suppose we take n0 = (1, 0, 0)t as a standard director.
Then an arbitrary director configuration is specified by rotating n0 around some
axis e by an angle α: n = R(e, α)n0, where R(e, α) is the corresponding rotation
matrix in SO(3). Suppose a texture field is given by applying the rotation

αe(r) = f (r)r̂ (4.68)
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Figure 4.28. The texture of the non-trivial element of π3(�P2) ∼= �. (a) shows the
rotation ‘vector’ αe. The length α approaches π as |r| → ∞. (b) shows the corresponding
director field.

to n0, where r̂ is the unit vector in the direction of the position vector r and

f (r) =
{

0 r = 0

π r →∞.

Figure 4.28 shows the director field of this texture. Note that although there
is no singularity in the texture, it is impossible to ‘wind off’ this to a uniform
configuration.

4.10 Textures in superfluid 3He-A

4.10.1 Superfluid 3He-A

Here comes the last and most interesting example. Before 1972 the only example
of the BCS superfluid was the conventional superconductor (apart from indirect
observations of superfluid neutrons in neutron stars). Figure 4.29 is the phase
diagram of superfluid 3He without an external magnetic field. From NMR and
other observations, it turns out that the superfluid is in the spin-triplet p-wave
state. Instead of the field operators (see (4.65b)), we define the order parameter
in terms of the creation and annihilation operators. The most general form of the
triplet superfluid order parameter is

〈cα,kcβ,−k〉 ∝
3∑
µ=1

(iσ2σµ)αβdµ(k) (4.69a)
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Figure 4.29. The phase diagram of superfluid 3He.

where α and β are spin indices. The Cooper pair forms in the p-wave state hence
dµ(k) is proportional to Y1m ∼ ki ,

dµ(k) =
3∑

i=1

�0 Aµi ki . (4.69b)

The bulk energy has several minima. The absolute minimum depends on the
pressure and the temperature. We are particularly interested in the A phase in
figure 4.29.

The A-phase order parameter takes the form

Aµi = dµ(�1 + i�2)i (4.70)

where d is a unit vector along which the spin projection of the Cooper pair
vanishes and (�1,�2) is a pair of orthonormal unit vectors. The vector d takes
its value in S2. If we define l ≡ �1 × �2, the triad (�1,�2, l) forms an
orthonormal frame at each point of the medium. Since any orthonormal frame
can be obtained from a standard orthonormal frame (e1, e2, e3) by an application
of a three-dimensional rotation matrix, we conclude that the order parameter of
3He-A is S2 × SO(3). The vector l introduced here is the axis of the angular
momentum of the Cooper pair.

For simplicity, we neglect the variation of the d̂-vector. [In fact, d̂ is locked
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along l̂ due to the dipole force.] The order parameter assumes the form

Ai = �0(�̂1 + �̂2)i (4.71)

where �̂1, �̂2 and l̂ ≡ �̂1 × �̂2 form an orthonormal frame at each point of
the medium. Let us take a standard orthonormal frame (e1, e2, e2). The frame
(�̂1, �̂2, l̂) is obtained by applying an element g ∈ SO(3) to the standard frame,

g : (e1, e2, e2)→ (�̂1, �̂2, l̂). (4.72)

Since g depends on the coordinate x , the configuration (�̂1(x), �̂2(x), l̂(x))
defines a map ψ : X → SO(3) as x 
→ g(x). The map ψ is called the texture
of a superfluid 3He.1 The relevant homotopy groups for classifying defects in
superfluid 3He-A are πn(SO(3)).

If a container is filled with 3He-A, the boundary poses certain conditions on
the texture. The vector l̂ is understood as the direction of the angular momentum
of the Cooper pair. The pair should rotate in the plane parallel to the boundary
wall, thus l̂ should be perpendicular to the wall. [Remark: If the wall is diffuse,
the orbital motion of Cooper pairs is disturbed and there is a depression in the
amplitude of the order parameter in the vicinity of the wall. We assume, for
simplicity, that the wall is specularly smooth so that Cooper pairs may execute
orbital motion with no disturbance.] There are several kinds of free energy and
the texture is determined by solving the Euler–Lagrange equation derived from
the total free energy under given boundary conditions.

Reviews on superfluid 3He are found in Anderson and Brinkman (1975),
Leggett (1975) and Mermin (1978).

4.10.2 Line defects and non-singular vortices in 3He-A

The fundamental group of SO(3) ∼= �P3 is π1(�P3 ) ∼= �2 ∼= {0, 1}.
Textures which belong to class 0 can be continuously deformed into the uniform
configuration. Configurations in class 1 are called disgyrations and have
been analysed by Maki and Tsuneto (1977) and Buchholtz and Fetter (1977).
Figure 4.30 describes these disgyrations in their lowest free energy configurations.

A remarkable property of �2 is the addition 1 + 1 = 0; the coalescence of
two disgyrations produces a trivial texture. By merging two disgyrations, we may
construct a texture that looks like a vortex of double vorticity (homotopy class
‘2’) without a singular core; see figure 4.31(a). It is easy to verify that the image
of the loop α traverses �P3 twice while that of the smaller loop β may be shrunk
to a point. This texture is called the Anderson–Toulouse vortex (Anderson and
Toulouse 1977). Mermin and Ho (1976) pointed out that if the medium is in a
cylinder, the boundary imposes the condition l̂ ⊥ (boundary) and the vortex is
cut at the surface, see figure 4.31(b) (the Mermin–Ho vortex).
1 The name ‘texture’ is, in fact, borrowed from the order-parameter configuration in liquid crystals,
see section 4.9.
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Figure 4.30. Disgyrations in 3He-A.

Figure 4.31. The Anderson–Toulouse vortex (a) and the Mermin–Ho vortex (b). In (b) the
boundary forces l̂ to be perpendicular to the wall.

Since π2(�P3 ) ∼= {e}, there are no point defects in 3He-A. However,
π3(�P3 ) ∼= � introduces a new type of pointlike structure called the Shankar
monopole, which we will study next.

4.10.3 Shankar monopole in 3He-A

Shankar (1977) pointed out that there exists a pointlike singularity-free object
in 3He-A. Consider an infinite medium of 3He-A. We assume the medium is
asymptotically uniform, that is, (�̂1, �̂2, l̂) approaches a standard orthonormal
frame (e1, e2, e3) as |x | → ∞. Since all the points far from the origin are mapped
to a single point, we have compactified �3 to S3. Then the texture is classified
according to π3(�P3 ) = �. Let us specify an element of SO(3) by a ‘vector’
� = θn in �P3 as before (example 4.12). Shankar (1977) proposed a texture,

�(r) = r
r
· f (r) (4.73)
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Figure 4.32. The Shankar monopole: (a) shows the ‘vectors’ �(r) and (b) shows the triad
(�̂1, �̂2, l̂). Note that as |r | → ∞ the triad approaches the same configuration.

where f (r) is a monotonically decreasing function such that

f (r) =
{

2π r = 0

0 r = ∞. (4.74)

We formally extend the radius of �P3 to 2π and define the rotation angle modulo
2π . This texture is called the Shankar monopole, see figure 4.32(a). At first sight
it appears that there is a singularity at the origin. Note, however, that the length
of � is 2π there and it is equivalent to the unit element of SO(3). Figure 4.32(b)
describes the triad field. Since �(r) = 0 as r →∞, irrespective of the direction,
the space �3 is compactified to S3. As we scan the whole space, �(r) sweeps
SO(3) twice and this texture corresponds to class 1 of π3(SO(3)) ∼= �.

Exercise 4.10. Sketch the Shankar monopole which belongs to the class −1 of
π3(�P3 ). [You cannot simply reverse the arrows in figure 4.32.]

Exercise 4.11. Consider classical Heisenberg spins defined in �2 , see section 4.8.
Suppose spins take the asymptotic value

n(x)→ ez |x | ≥ L (4.75)

for the total energy to be finite, see figure 4.20. Show that the extended objects in
this system are classified by π2(S2). Sketch examples of spin configurations for
the classes −1 and +2.

Problems

4.1 Show that the n-sphere Sn is a deformation retract of punctured Euclidean
space Rn+1 − {0}. Find a retraction.
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4.2 Let D2 be the two-dimensional closed disc and S1 = ∂D2 be its boundary.
Let f : D2 → D2 be a smooth map. Suppose f has no fixed points, namely
f (p) �= p for any p ∈ D2. Consider a semi-line starting at p through f (p) (this
semi-line is always well defined if p �= f (p)). The line crosses the boundary at
some point q ∈ S1. Then define f̃ : D2 → S1 by f̃ (p) = q . Use π1(S1) = �
and π1(D2) = {0} to show that such an f̃ does not exist and hence, that f must
have fixed points. [Hint: Show that if such an f̃ existed, D2 and S1 would be of
the same homotopy type.] This is the two-dimensional version of the Brouwer
fixed-point theorem.

4.3 Construct a map f : S3 → S2 which belongs to the elements 0 and 1 of
π3(S2) ∼= �. See also example 9.9.




