拓扑相变与拓扑场论 (i) (2023/春季)
主讲老师: 龚明, 15156057001, 物质楼C812,mail: gongm@ustc.edu.cn
上课时间: 1~15周, 1(1,2), 5(8,9)
上课地点: 2106
为方便同学们沟通, 助教创建了一个qq群, 群号:599140540.
助教会在每周天晚前完成对于当周课程内容和参考资料的上传.
评分标准
- 平时作业 占比 1/2
- 作业要求纸质版, 一个月交一次(暂定每个月的第一个星期一的课, 可于当周补交. 之后按迟交处理).(题量较少)
- 如有特殊情况可通过邮箱将作业以pdf的格式发给助教, 同时说明原因
- 助教会在收作业的当周六晚(23:59)前, 在qq群的在线文档中登记当周的作业接受情况, 有问题的同学请及时联系,
若当周未及时联系, 后续关于作业接受情况的争议较大概率按迟交处理
- 评分细则
- Project 占比 1/2 阅读文献,可1/2/3人,约20页/人,ddl约7月底。
选题以公布在qq群在线文档,
请同学们选题后填写在线文档并发送电子邮件给助教确定。
project登记表
下一次作业ddl
6/23
homework_0616
之前的作业: homework_220403
(参考答案 ),
homework_220508
参考资料
- 教材
-
《Gauge fields, Knots and Gravity》 John Baez
-
《Geometry, topology, and physics》 Mikio Nakahara
-
《Topological Insulators》 沈顺清
-
《a short course on topological insulators》 János K. Asbóth
-
《Topological Insulators and Topological Supercondutors》 B. Andrel Bernevig
- 牛谦, 物理学中的几何相位,2(8,9,10), 2103, 课程主页
- online course on topology in condense matter
课程内容随讲课进度更新
-
03.06 笔记
- wedge外微分 "\( \wedge \)"
性质:
- dx \( \wedge \) sx = 0;
- dx \( \wedge \) dy = - dy \( \wedge \) dx;
- \(d(dx) = d^2x = 0 \).
- form (形式)
定义
- 1-form: \( w = \sum_i f_i dx_{i} \);
- 2-form: \( w = \sum_{ij} f_{ij} dx_{i}\wedge dx_{j} \);
- n-form: \( w = \sum_{i_1 i_2 ... i_n} f_{i_1 i_2 ... i_n}
dx_{i_1}\wedge dx_{i_2} ... \wedge dx_{i_n} \);
- Stokes定理
- 微积分中的定义(适用3维空间中的线积分)
\(I = \int_{\gamma}\left( P dx + Q dy + R dz\right)
=\iint_{\Sigma} (\frac{\partial R}{\partial y}
-\frac{\partial Q}{\partial z} )dydz +(\frac{\partial P}{\partial z}
-\frac{\partial R}{\partial x} )dzdx +(\frac{\partial Q}{\partial x}
-\frac{\partial P}{\partial y} )dydz \) with \( \gamma =\partial \Sigma \).
- 外微分中的定义(适用n维空间中的积分)
\( \int_{\partial \Sigma} \omega = \int_{\Sigma} d\omega \)
或者 \((\partial \Sigma,\omega) = (\Sigma,d\omega)\)
- 作业1:
证明: 设\( dx_{i}=a_{ij}dx'_{J}, 证明dx_{1}\wedge dx_{2} ... \wedge dx_{n}= J dx'_{1}\wedge dx'_{2} ... \wedge dx'_{n},
其中J=det(a) \).
-
3.10 笔记
- 形变下不变的特殊函数 \( F_{\lambda} (x_{1}, x_{2}, ..., x_{d}) \)
例: winding number (绕数) \( I_{l} = \frac{1}{2 \pi i} \int \frac{dz}{z} \)
形变不变的积分, 类比积分于路径无关仅于积分上下限有关. 其实就是全微分.
\( \int_{a}^{b} f(x)dx = \int_{a}^{b} \frac{\partial F}{\partial x}dx
= \int_{a}^{b} dF = F(b)-F(a) \). 如\( I_{l} = \frac{1}{2 \pi i} \int \frac{dz}{z} = \frac{1}{2 \pi i} \int d(ln z) \)
- 映射(Map): \(f: X\rightarrow Y \) 其中 \( X,Y \) 是集合.
分类:
- 单射(Injective Map): \(\forall x,x' \in X\), 若有 x' ≠ x ,则\( f(x) ≠ f(x') \);
- 满射(Surjective Map): \(\forall y \in Y \) , 至少存在一个\(x\in X\)有\(y = f(x)\);
- 双射(bijection):映射既是单射也是满射(存在逆映射\(f^{-1}\)).
- 拓扑(topology)基础概念
- 拓扑研究的是形变(连续变换)下, 不变的性质. <\li>
- 拓扑放弃了距离的概念, 通过元素(点)的相对关系定义开集(领域), 进而定义了拓扑空间.
- 拓扑空间的定义:\(X\)是集合,\(T\)是集合(X)中的一些子集构成的族\(T =\{u_i|u_i \subset X \}\).
则\((X,T)\)是一个拓扑空间,如果以下的性质成立
- \(\varnothing \)和\(X \)是\(T\)中的元素;
- \(T \)中任意元素的并集仍然是\(T\)中的元素;
- \(T \)中有限元素的交集仍然是\(T \)中的元素.
- 拓扑空间同胚 (topological isomorphism)
- 连续映射(continous Map): X, Y为两个拓扑空间, 映射 f(X)=Y. 若Y中任何一个开集的原象也是开集, 则称该映射为连续映射.
- 同胚映射(homeomorphic Map): 双射, 且映射本身, 逆映射都是连续的. 又称同胚.
- 拓扑空间同胚: 两个拓扑空间间存在同胚映射, 则称这两个拓扑空间同胚.
拓扑性质: 在同胚映射(形变)下不变的性质, 如开集,连通,流形的维数等.
eg. 单位开圆盘\( D^2 \) 和平面 \( R^2 \) 同胚. 映射(极坐标系) f: \( D^2 \rightarrow R^2 \),
\( \theta'=\theta \), \( r' = -ln(1-r) \).
- 流形: 局部同胚于n维欧几里得空间, 整体上并不一样.
-
3.13 笔记
- 流形上的积分, \( I_{s} =\int dx_{1} dx_{2} ... dx_{d} F(\vec{X}) \)
- 注意积分空间, 通常为闭空间(闭曲面);
- x在物理中的对应:实空间坐标, 如拓扑缺陷; 动量, 如拓扑能带.
- F的特殊性质以保证连续形变下不变
- \( I_{s} =\int_{\partial{V}} dx_{1} dx_{2} ... dx_{d} F(\vec{X})
= \int_{\partial{V}} \omega = \int_{V} d \omega \);
- \( \omega \rightarrow \omega + d \eta \), \( I_s \) 不变.
\( \omega \sim \omega + d \eta \) 等价;
- 特殊解 \( \int d \eta = 0 \); 真实情况中, \(I_{s} \ne 0 \),
因为Stokes定理要求函数光滑, 在实际问题中不一定满足.
- 高维 \(I_{s} \) 的构造
- 矩阵 \( \frac{1}{2\pi i} \int \frac{dz}{z} \rightarrow
\frac{1}{2\pi i} \int Tr(A^{-1} dA) \);
- 高维矩阵 \( \int Tr(g^{-1} dg \wedge g^{-1} dg \wedge .. \wedge g^{-1} dg)
=\int Tr((g^{-1} dg)^{d}) \);
- 角度 \( \frac{1}{2\pi} \int d\theta \);
- 立体角 \( \frac{1}{4\pi} \int d\Omega \), 其中\( d\Omega= \frac{1}{r^{3}} \vec{r} \cdot
(\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y})dxdy
=\vec{n} \cdot (\vec{n_x} \times \vec{n_y}) dxdy \),
\( \vec{a} \cdot (\vec{b} \times \vec{c}) = \epsilon _{ijk} a_{i} b_{j} c_{k} \);
- 高维角 \( \epsilon_{i_{1} i_{2} ... i_{d}} n_{i_{1}} (\partial_{x_{1}} n_{i_{2}}) ...
(\partial_{x_{d-1}} n_{i_{d}}) dx_{1} dx_{2} ... dx_{d-1} \).
- 常见空间
- 实数空间 \( \mathbb{R}^{n} \);
- 球面 \( S^{d}= ((x_{1}, x_{2} ... x_{d+1}) | \sum_{i=1}^{d+1} x_{i}^2 = 1) \);
- 矩阵空间 A或g:
- U空间: \( UU^{\dagger} =1 \);
- O空间: \(O^{T}O = 1 \), 正交矩阵;
- d. 环面 \(T^{d} =S^{1} \times S^{1} ... \times S^{1} (d 个 S^{1}) \);
- 实射影空间 \( \mathbb{R}P^{n} = S^{n} / \mathbb{Z}_{2} \).
- 作业
- 通过使用 \( \frac{1}{x+iy} =\frac{x-iy}{x^{2} +y^{2} + \epsilon^{2}} \),
其中 \(\epsilon \rightarrow 0 \), 并使用Stokes定理计算\( \frac{1}{2\pi i} \int \frac{dz}{z} \)
- 考虑非对角的矩阵 \( A_{n \times n} \), 计算
\( \frac{1}{2\pi i} \int Tr(A^{-1} dA) =\sum_{j} \frac{1}{2\pi i} \int \frac{d \lambda_{j}}{\lambda_{j}} \)
-
3.17 笔记
- 复射影空间 \( \mathbb{C}P^{n} =S^{2n+1} /U(1) \)
- 群的定义 < G,* >
集合G, 和二元运算 * , 满足:
- 含单位元, \( e \in G \);
- 有逆, \( \forall g_{i} \in G, g_{i}^{-1} \in G \);
- 封闭, \( \forall g_{i}, g_{j} \in G, g_{i} * g_{j} \in G \);
- 结合律, \( (g_{i} *g_{j}) *g_{k} =g_{i} *(g_{j} *g_{k}) \).
其中, 群元 \( g_{i} \) 可以是数, 操作\矩阵 或映射.
- 乘法表
\( C_{3} \)群乘法表
|
a =1 |
\( b =\exp{i2\pi /3} \) |
\( c =\exp{i4\pi /3} \) |
a |
a |
b |
c |
b |
b |
c |
a |
c |
c |
a |
b |
- 重排定理: \( \forall g \in G, g*G =G*g =G \).
- 子群: \( \forall H \subset G \), < H,* > 也构成群.
子群不唯一
- 陪集
- 定义: 左陪集 \( 对于子集H, 群元g, gH=\left\{ g*h| h \in H \right\} \), 同理右陪集 Hg;
- 陪集定理: \( \exists h_{1} \in g_{1}H, h_{2} \in g_{2}H, h_{1} =h_{2},
则 g_{1}H =g_{2}H \)
-
3.20 笔记
- 陪集
- 定义: 左陪集 \( 对于子集H, 群元g, gH=(g*h| h \in H) \), 同理右陪集 Hg;
- 陪集定理: \( \exists h_{1} \in g_{1}H, h_{2} \in g_{2}H, h_{1} =h_{2},
则 g_{1}H =g_{2}H \)
- Lagrange 定理: \( |G| =|G/H| |H| \)
- 正规子群(Normal subgroup): \( \forall g \in G, gN =Ng \).
- 群表示论: 利用矩阵表示抽象的群元(同态/同构)
- 同态/同构基本定理
- 同态(homomorphic): \( f:G \rightarrow H, \forall a,b \in G, f(a) \times f(b) =f(ab) \);
- 同构(isomorphism): 同态映射f为双射;
- 同态/同构基本定理: \( f:G \rightarrow H 为群同态, 则 \)
- \( f(G) \subset H \);
- \( kerf 为G 的正规子群 \);
- \( G/kerf \simeq Im(f) \).
其中, \( kerf =\left\{ g| g \in G, f(g) =1_{H} \right\} \).
-
3.24 笔记
- 使用的课程资料:
- nakahara_chapter3 ,
nakahara_chapter6
- homomorphisms
- 阿贝尔群(Abelian groups)
交换不变, < G,+ >, e=0;
- 生成子 \( x_{1} ... x_{r} \)
群中元素由生成子生成 \( g = n_{1}x_{1} + ... + n_{r}x_{r} \)
- 有限生成群: 生成子个数有限;
- 线性独立: \( g = n_{1}x_{1} + ... + n_{r}x_{r} =0\) 当且仅当 \( n_{1} = n_{2} =...= n_{r} = 0 \);
- 自由阿贝尔群: 由r个线性独立的生成子生成的群
- 循环群: 由1个生成子生成的群
- 有限生成群都可表示为: \( G \simeq \mathbb{Z}^{r} \oplus \mathbb{Z}_{k_1} \oplus ... \oplus \mathbb{Z}_{k_m} \)
- 单(纯)形(simplex): 由r+1个几何独立的顶点构成的多面体内的所有点(含边界) 记为 \( \sigma_{r} = (p_{1}, p_{2}, ..., p_{r}) \)
从中选出q个点构成的单形 \( \sigma_{q} \), 称为 \( \sigma_r \)的面, 记为 \( \sigma_{q} \leq \sigma_{r} \)
- 单(纯)复形: 由有限个单形构成的集合, 记为 K, 且满足下列规则:
- \( \forall \sigma \in, \sigma' \leq \sigma, \sigma' \in K \);
- \( \forall \sigma, \sigma' \in K, \sigma \cap \sigma' = \emptyset 或 \leq \sigma 或 \leq \sigma' \)
多面体 |k| 为所有 K 中单形的点的集合.
- 定向单形(记为: (...))
\( (p_{i_{0}} p_{i_{1}} ... p_{i_{r}}) = sgn(P) (p_{0} p_{1} ... p_{r}) \)
\[ P = \begin{pmatrix}
0 & 1 & ... & r \\
i_{0} & i_{1} & ... & i_{r}
\end{pmatrix} \]
- 同调群(Homology group)
- chain group: 由K中 r-simplexes(共 \( I_{r} \) 个) 为生成子的自由阿贝尔群, 记为 \( C_{r}(K) \)
\( c = \Sigma^{I_{r}}_{i=1} c_{i} \sigma_{r,i} \)
\( C_{r}(K) \simeq \mathbb{Z}^{I_{r}} \)
- 边界算子 \( \partial_{r} \)
\( \partial_{r} \sigma_r = \Sigma^{r}_{i=0} (-1)^{i}(p_{0} ... \hat{p_{i}} ... p_{r}) \), 其中 \( \hat{p_{i}} \) 意为忽略该点.
- r-cycle group \( Z_{r}(K) = \left\{ c | \partial_{r}c = 0, c \in C_{r}(K) \right\} \)
- r_boundary group \( B_{r}(K) = \left\{ c | \partial_{r+1}d, d \in C_{r+1}(K) \right\} \)
- homology group \( H_{r}(K) = Z_{r}(K) / B_{r}(K) \)
-
3.27 笔记
今日讲课内容为对上次课的补充, 计算和一些应用的初步举例, 所以不在主页再次重复.
-
3.31 笔记
- 课上提及的两个资料
- online course on topology in condense matter
-
《a short course on topological insulators》 János K. Asbóth
- 路径(path)(对应群的元素):\( \alpha :t \in [0, 1] \rightarrow \alpha (t) \), 为X中的一条曲线
- 环路(loop): \( \alpha (0) =\alpha (1) =x_{0}, x_{0} \) 称为基点(basepoint)
- 常值路径(constant path, 记为 \( C_{x} \) ): \( \alpha (t) \equiv x_0 \)
- 粘接(对应群的乘法): \( (\alpha \times \beta) = \left\{
\begin{aligned}
\alpha (2s) & \quad & 0\leq s \leq 1/2 \\
\beta (2s-1) & \quad & 1/2 \leq s \leq 1
\end{aligned} \right. \)
- 群的逆元: \( \alpha^{-1}(s) =\alpha(1-s) \)
- 同伦类(homotopy class)
- 同伦关系(homotopy equivalence):可通过连续形变相互转换 \( \exists F(x,t), F(x,0)=f, F(x,1)=g \)
- 同伦类: 同一个同伦关系的道路的集合 \( [\alpha] =\left\{ \beta |\alpha \sim \beta \right\} \)
- 同伦群(homotopy group)
- \([C_{x}] =e \)
- \( [\alpha] \times [\beta] =[\alpha \times \beta] \)
- \( ([\alpha] \times [\beta]) \times [\gamma] =[\alpha] \times ([\beta] \times [\gamma]) \)
- 我们关注\( \Pi_{d}(X) =\left\{ f| f: S^{d} \rightarrow X \right\} \)
-
4.03 笔记
- \(\Pi_{d}(X) \) 的计算
- \(\Pi_{d}(S_{n}) =0 (n > d) \)
- \(\Pi_{d}(S_{n}) =\mathbb{Z} (n =d) \)
- \(\Pi_{d}(S_{n}) \neq 0 (n < d) \)
- Hopf map \(\Pi_{3}(S^{2}) =\mathbb(Z) \)
- 立体角:d维 \( d\Omega =\epsilon^{i_{0}i_{1}...i_{d}} n_{i_{0}} \partial_{x_{1}} n_{i_{1}} ... \partial_{x_{d}} n_{i_{d}}
dx_{i_{1}} ... dx_{i_{d}} \)
- Stokes定理: \( \int_{V} dx_{x_{0}} dx_{i_{1}} ... dx_{i_{d}} \sim \int_{\partial V} \epsilon^{i_{0}i_{1}...i_{d}} x_{i_0} dx_{i_{1}} ... dx_{i_{d}} \)
- \(\Pi_{d}(X) \)的应用: XY model 相变
- 作业
- 计算 Hppf map: \(\Pi_{3}(S^{2}) =\mathbb{Z} \)(参考mathematica)
- 阅读文章 Dirac's monopole and the Hopf map, 可推导文章内容或阅读其它内容写一些感想.
网址 ,
pdf
-
4.07 笔记
- 课堂资料
- 我们常用homotopy group 的表格
- stable homotopy group of sphere
- reference of QWZ model
-
lecture_notes_on_topological_insulators_Ming-Che_Chang
- 同伦群的应用
- \(\Pi_{1}(S^{1}) =\mathbb{Z} \): 描述XY model 中的缺陷
- \(\Pi_{1}(\mathbb{R}P^{d}) \):
- 描述液晶中的缺陷
由于\(\vec{n} \sim -\vec{n} \), 所以n空间为\(S^{d} /\mathbb{Z}_{2} =\mathbb{R}P^{d} \)
- 描述费米子/玻色子
由于\(\Pi_{1}(\mathbb{R}P^{1}) =\mathbb{Z} \), 所以二维时存在任意子;
由于\(\forall d>2, \Pi_{1}(\mathbb{R}P^{d-1}) =\mathbb{Z}_{2} \), 所以高维时仅存在玻色子和费米子.
- \(\Pi_{2}(S^{2}) =\mathbb{Z} \): 描述Qi-Wu-Zhang(QWZ) model
\(H(k_{x}, k_{y}) =\lambda sin(k_{x}) \sigma_{x} +\lambda sin(k_{y}) \sigma_{y} + (m -cos(k_{x}) -cos(k_{y})) \sigma_{z} \)
k空间同构于\(T^{2} \), 但仅其中较小区域对积分有贡献, 所以可以近似为 \(S^{2} \)
- 作业
- QWZ model 的能量可视为\(\vec{n} =\frac{1}{A} (\lambda sin(k_{x}), \lambda sin(k_{y}), m -cos(k_{x}) -cos(k_{y})),
\left\| \vec{n} \right\| =1 \), 计算关于 n 的立体角 \(\vec{n} \cdot (\frac{\partial \vec{n}}{\partial k_{x}}
\times \frac{\partial \vec{n}}{\partial k_{y}}) \), 画图(density plot 或等高线图)
(要求标注姓名+学号防止抄袭,并注明画图参数).(推荐使用mathematica)
- 画相图, \(\int \vec{n} \cdot (\frac{\partial \vec{n}}{\partial k_{x}}
\times \frac{\partial \vec{n}}{\partial k_{y}}) dk_{x} dk_{y}\) ,关于\(\lambda,m \) 的图(要求同上).
-
4.10 笔记
- 自发对称性破缺(spontaneous symmetry breaking)
- \(U =\alpha (T-T_{c}) |\Delta|^{2} +\beta |\Delta|^{4} \)
- Quench 过程产生topo defects
- \(\Delta \) 为实数, 产生Domain(筹, 例:磁畴)
- KZ机制
- topological excitation
- isotropy group (迷向群)
- Group \(G =\left\{g |F(\psi) =F(g\psi) \right\} \)
- Isotropy Group \(H =\left\{h |\psi) =h\psi \right\} \)
- order parameter manifold \(M =G/H \)
- 例: spin-1 BECs, \(\psi =(1,0,0)^{T}, M =\frac{U(1) \times SO(3)}{U(1)} =SO(3) \),
- 课程资料:
- cosmological experiment in superfluid helium
- Ueda Ch12 topological excitation
-
4.17 笔记
- 纤维丛 (Fibre Budle)
- 纤维(Fiber):\(映射f:X \rightarrow Y, Y 中元素 y 的原象称为纤维,即 F^{-1}(y) = \left\{x \in X | f(x) = y \right\} \)
- 纤维丛: 映射\(f:E \rightarrow B \), 其中\(B\)称为底空间.
(课堂中, \(\vec{X} 为底空间, 映射为 \Psi^{-1}: \mathbb{C}^{n} \rightarrow \vec{X} \))
- \(\Pi_{d}(X) \) 的几何图像: \(\vec{X} \in S^{d}, \Psi_{\vec{X}} \in X, \Psi_{\vec{X}} 随空间 \vec{X} 变化而变化, 具有几何的图像 \)
- 正合序列 (exact sequence)
- 正合: \(f:A \rightarrow B,\ g:B \rightarrow C\) 满足 \(\mathrm{Im}f = \ker g\)
- 短正合序列:
- \(0\rightarrow A\rightarrow B\rightarrow 0 \Rightarrow A \simeq B \)
- \(0\rightarrow A\rightarrow B \rightarrow C \rightarrow 0 \Rightarrow B \simeq A \times C\ \text{or}\ B/A \simeq C \)
- 长正合序列: 可通过分拆为短正合序列计算
- 计算 \(\Pi_{d}(G/H) \)
\[
\begin{matrix}
\vdots & \vdots & \vdots \\
\rightarrow \Pi_2(H) &\rightarrow \Pi_2(G)& \rightarrow \Pi_2(G/H) \rightarrow \\
\rightarrow \Pi_1(H) &\rightarrow \Pi_1(G)& \rightarrow \Pi_1(G/H) \rightarrow \\
\rightarrow \Pi_0(H) &\rightarrow \Pi_0(G)& \rightarrow \Pi_0(G/H)
\end{matrix}
\]
一般前两列可通过查表得到, 利用短正合序列求最后一列.
- 几何相, berry phase
- 绝热过程:
- 经典力学: 绝热不变量\(I = \frac{1}{2\pi} \oint pdq \) (量子力学中也具有相同的性质?)
- 量子力学: 一般意味着不会发生跃迁, 但能级可能发生变化\(\lambda_{n}(t) \)
- 几何相(推导详见笔记): \(\gamma_{n}(T) = i\int^{T}_{0} <\psi_{n}| \frac{\partial}{\partial t} |\psi_{n}> dt
= \int^{R(T)}_{R(0)} <\psi_{n} |i\nabla_{R} |\psi_{n}> dR
= \oint <\psi_{n} |i\nabla_{R} |\psi_{n}> dR (整圈) \)
- 推荐阅读:
Holonomy, the quantum adiabatictheorem, and Berry's phase 和
Quantal phase factors accompanying adiabatic changes
- 作业: \(设 H = B_{1} \sigma_{z} + B_{2} cos\theta \sigma_{x} + B_{2} sin\theta \sigma_{y}, 计算\)
- 本征态 \(|\psi (\theta)> \)
- \(\frac{\partial}{\partial \theta} |\psi(\theta)> \)
- \(\int^{2\pi}_{0} <\psi| \frac{\partial}{\partial \theta} |\psi(\theta)> d\theta \)
-
4.21 笔记
- berry 论文 Quantal phase factors accompanying adiabatic changes
- introduction
- Geometry Phase \(\gamma_{n}(c) = i \oint_{c} \langle \psi_{n} |\nabla_{R}| \psi_{n} \rangle d\vec{R} \)
Stokes定理 \(\begin{split} \gamma_{n}(c) & = -\mathrm{Im} \iint d\vec{S} \nabla \times \langle n| \nabla n \rangle \\
& = -\iint d\vec(S) \mathrm{Im} \sum_{m \neq n} \frac{\langle n| \nabla H |m\rangle
\times \langle m| \nabla H |m\rangle}{(\epsilon_{n} - \epsilon_{m})^{2} }
\end{split} \)
- spin model \(H = \vec{B} \cdot \vec{\sigma} = B(cos \theta \sigma_{z} + sin \theta cos \phi \sigma_{x}
+ sin \theta sin \phi \sigma_{y}) \)
\(\gamma_{c} = -a^{2} \oint d\phi = -2\pi a^{2} \) 立体角
- Zak Berry's Phase for Energy Band in Solid
- 1d Bloch band \(\gamma_{n} = \int^{\pi/a}_{-\pi/a} \chi_{nn}(k) dk \), 其中
\(\chi_{nn}(k) = \frac{2\pi}{a} \int^{a}_{0} U^{*}_{nk} (i\frac{\partial}{\partial k}) U_{nk} dx
\sim \int x |a_{n}(x)|^{2} dx \),即波包中心
- \(\gamma = 2\pi \frac{q}{a} \)
- Geometry phase 意义
- \(G = ie^{2} /h \)
- \(H = \vec{B} \cdot \vec{\sigma} \)
- Zak phase \(\gamma = 2\pi \frac{q}{a} \)
- 作业:阅读文献 Appearance of Gauge Structure in Simple Dynamical Systems,
Frank Wilczek and A. Zee, 1984
、
-
4.24 笔记
- 课程资料
-
Topological insulators and superconductors: tenfold way and dimensional hierarchy
- Unpaired Majorana fermions in quantum wires
- 拓扑分类表
对称性:
- T: time-reversal symmetry 时间反演对称性
- C: charge-conjugate / particle-hole 电子空穴对称性
- S: chiral symmetry 手征对称性
- 高量基础 \(c_{l} = \frac{1}{\sqrt(N)} \sum_{k} e^{ik(la)} c_{k} \)(自旋不影响\(e^{ika} \)项 )
- \( \sum_{l} c^{\dagger}_{l} c_{l} = \sum_{k} c^{\dagger}_{k} c_{k} \)
- \( \sum_{l} c^{\dagger}_{l} c_{l+1} = \sum_{k} e^{ika} c^{\dagger}_{k} c_{k} \)
- \( \sum_{l} c^{\dagger}_{l} c^{\dagger}_{l} = \sum_{k} c^{\dagger}_{k} c^{\dagger}_{-k} \)
- \( k \rightarrow 0 \) 时,做泰勒展开,\(2cosk_{x} \approx 2-k^{2}_{x}, sink_{x} \approx k_{x},
\sum_{\vec{k}} k_{x}k_{y}c^{\dagger}_{\vec{k}} c_{\vec{k}}
\approx \sum_{\vec{k}} sink_{x} sink_{y} c^{\dagger}_{\vec{k}} c_{\vec{k}}
\sim \sum_{i,j} (c^{\dagger}_{i,j} c_{i+1,j+1} + h.c.) \)
- Kitaev model \(H = -w \sum_{j} (a^{\dagger}_{j} a_{j+1} + h.c.) - \mu \sum_{j} (a^{\dagger}_{j} a_{j} - \frac{1}{2} )
+ \sum_{j} (\Delta a_{j} a_{j+1} \Delta^{*} a^{\dagger}_{j+1} a^{\dagger}_{j} ) \)
- majorana 表示:\(c_{2j-1} = a_{j} + a^{\dagger}_{j}, c_{2j} = \frac{a_{j} - a^{\dagger}_{j} }{i} \)
性质:
- \(c_{j} = c^{\dagger}_{j} \)
- \(c^{2}_{j} = 1 \)
- \(c_{i} c_{j} = - c_{j} c_{i} (i \neq j) \)
- \(H = \sum_{j} \frac{i}{2} (-\mu c_{2j-1} c_{2j} +(w+\Delta) c_{2j}c_{2j+1} +(\Delta-w) c_{2j-1}c_{2j+2} ) \)
- 作业:编程计算一个 \(200 \times 200 \)格点的QWZ model,分析其相变,边界态。
-
4.28 笔记
- Kitaev model \(H = -w \sum_{j} (a^{\dagger}_{j} a_{j+1} + h.c.) - \mu \sum_{j} (a^{\dagger}_{j} a_{j} - \frac{1}{2} )
+ \sum_{j} (\Delta a_{j} a_{j+1} \Delta^{*} a^{\dagger}_{j+1} a^{\dagger}_{j} ) \)
- majorana 表示:\(c_{2j-1} = a_{j} + a^{\dagger}_{j}, c_{2j} = \frac{a_{j} - a^{\dagger}_{j} }{i} \)
性质:
- \(c_{j} = c^{\dagger}_{j} \)
- \(c^{2}_{j} = 1 \)
- \(c_{i} c_{j} = - c_{j} c_{i} (i \neq j) \)
- \(H = \sum_{j} \frac{i}{2} (-\mu c_{2j-1} c_{2j} +(w+\Delta) c_{2j}c_{2j+1} +(\Delta-w) c_{2j-1}c_{2j+2} ) \)
- 图像、极限分析:特殊解 \(\mu = 0, \Delta = -w , H = \sum_{j} \frac{i}{2} 2\Delta c_{2j-1}c_{2j+2} \)
- 考虑单独一项: \( c_{2j-1} = a_{j} + a^{\dagger}_{j}, c_{2j} = \frac{a_{j} - a^{\dagger}_{j} }{i},
c_{2} c_{3} = \frac{1}{i} (f^{\dagger} f - f f^{\dagger}) = \frac{1}{i} (2f^{\dagger} f - 1) \)
- 边界态:\( c_{1},c_{10} \) 可视为 \( \lim_{\epsilon \rightarrow 0 } \epsilon c_{1} c_{10} \)
在 \(0 \) 处两重简并,且和其余态具有能隙,可以保持稳定。
- 局域态和拓展态的耦合\(\sim \frac{e^{-\frac{L}{\xi}}}{\Delta} \)
- Transverse Ising model 详见笔记
- Pfaffian: \(Pf(A) = \frac{1}{2^{N} N!} \sum_{\tau \in S_{2N}} sgn(\tau) A_{\tau (1) ,\tau (2)} ... A_{\tau (2N-1) ,\tau (2N)} \)
- \((Pf (B))^{2} = det (B) \)
- \(B = W^{T} \Lambda W, Pf(B) = Pf(\Lambda) det(W) = Pf(\Lambda) \)
- \(\mathcal{M}(B) = sgn[Pf B(0)] sgn[Pf B(\pi)] \)
- 守恒量 \(P = \prod_{j} (-ic_{2j-1}c_{2j}) \)
- \(P = P^{\dagger} \)
- \(P^{2} = 1 \)
- \([H,P] = 0 \)
- 4\(\pi\) 周期
- BdG 方程 Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
\(H = h_{ij} c^{\dagger}_{i} c_{j} + \Delta_{ij}c^{\dagger}_{i} c^{\dagger}_{j} + h.c. \)
矩阵形式
\( (c^{\dagger}_{1} ... c^{\dagger}_{N} c_{1} ... c_{N} )
\left( \begin{array}{cc} h \quad & \Delta \\ \Delta^{T} \quad & -h^{*} \end{array} \right)
\left( \begin{array}{c} c_{1} \\ ... \\ c_{N} \\ c^{\dagger}_{1} \\ ... \\ c^{\dagger}_{N} \end{array} \right) \)
其中\(\Delta^{T} = - \Delta \)
- TR symmetry sakurai
- \(T^{2} = -1, T = \sigma_{y} K , THT^{-1} = H\)
- \(T^{2} = 1, T = K / \sigma_{x}K / \sigma_{z} K \),为实表示
- 作业: 利用 BdG 方程计算 \( H = \sum_{i} (t c^{\dagger}_{i} c_{i+1} + \Delta c^{\dagger}_{i} c^{\dagger}_{i+1} + h.c.
- \mu c^{\dagger}_{i} c_{i}) \)
- 计算相图与边界态;
- 改变化学势\(\mu c^{\dagger}_{i} c_{i} \rightarrow Vcos(Qi) c^{\dagger}_{i} c_{i} \),其中\(Q = \frac{\sqrt{5} -1}{2} \);
- 尝试任意的 \(V_{i} c^{\dagger}_{i} c_{i} \)
-
5.05 笔记
- particle-hole symmetry \(CH_{k}C^{-1} = -H_{-k} \)
- e.g. \(C = \sigma_{x} K, \sigma_{y} K. \)
- 性质: 若\(H_{k} |\psi\rangle = E_{k} |\psi\rangle, H_{-k}C |\psi\rangle = -E_{k}C |\psi\rangle. \)
对于时间反演对称性, \(H_{-k}T |\psi\rangle = -E_{k}T |\psi\rangle. \)
- 手征对称性 \(SH_{k}S^{-1} = -H_{k} \)
同时具有\(T, C \) 时具有手征对称性,或都不具备时,可能具有手征对称性。(十重分类)
- non-Abelian geometry phase \(A^{ab} = \langle \psi_{a} |d| \psi_{b} \rangle \)
- \(\gamma = i\int_{\partial \Sigma} \mathrm{Tr}(A) = i\int_{\Sigma} \mathrm{Tr}(F), F = dA + A^{2} \)
- 设\(\psi_{a}\rangle = g_{ai} |\psi_{j}\rangle, A' = g^{-1}Ag + g^{-1} dg \)
- \(d=2n+2, ch_{n+1}(F) = \frac{1}{(n+1)!} tr(\frac{iF}{2\pi})^{n+1}, Ch_{n+1}(F) = \int_{BZ} ch_{n+1}(F) \)
- \(ch_{n+1} = dQ_{2n+1}(A,F), Q_{2n+1}(A,F) = \frac{1}{n!} (\frac{i}{2\pi})^{n+1} \int^{1}_{0} dt \mathrm{Tr} (AF^{n}t),
Ft = tdA + t^{2} A^{2} = tF + (t^{2} - t) A^{2} \)
- 如何使用Stokes定理
- 计算球面上的积分 \(\oint \vec{B} \cdot d\vec{S} \),分为上下两个半球面
\(\int_{\epsilon^{+} } \vec{B} \cdot d\vec{S} + \int_{\epsilon^{-} } \vec{B} \cdot d\vec{S}
= \oint_{l} (\vec{A}_{+} - \vec{A}_{-} ) \cdot d\vec{l} \)
- 作业:阅读文献(2选1)
- A four-dimension generation of quantum hall effect
- Dirac's monopole wihtout strings: classical lagrange theory
-
5.08 笔记
- 奇数维量子系统的拓扑数
- 手征对称性:设 \(H = \left( \begin{array}{cc} a \quad & b \\ b^{\dagger} \quad & c \end{array} \right) \),
由手征对称性 \(\{H, S\} = 0, H = \left( \begin{array}{cc} 0 \quad & b \\ b^{\dagger} \quad & 0 \end{array} \right) \)
- winding number: \(\frac{1}{2\pi i} \oint \mathrm{Tr} (q^{-1}dq) = \frac{1}{2\pi i} \oint \mathrm{Tr} (q^{\dagger}dq) \)
- Chein-Simons invarient: \(CS_{2n+1} = \int_{BZ^{2n+1}} Q_{2n+1} (A, F) \)
- 拓扑不变量\(W_{2n+1} = e^{i2\pi CS_{2n+1}} \)
- 计算 \(\Pi_{d} (G/H) \)
- 资料: Concise Tables of James Number And some Homotopy ...
- stiefel manifold: \(\forall X = U(N+M)/U(N) or SP(N+M)/SP(N) or O(N+M)/O(N), \Pi_{d}(X) = 0 \)
-
\[
\begin{matrix}
d & U(M) & U(N+M)/U(N) & U(N+M)/U(N) \times U(M) \\
3 & \mathbb{Z} & 0 & 0 \\
2 & 0 & 0 & \mathbb{Z} \\
1 & \mathbb{Z} & 0 & 0 \\
0 & 0 & 0 & \\
\end{matrix}
\]
- 作业:
- \(if |\psi_{\alpha} \rangle = g_{\alpha j} |\psi_{j}\rangle, A' = g^{-1} \wedge g + g^{-1} dg, F' = g^{-1} F g \)
证明:\(Q_{2n+1}(A', F') - Q_{2n+1}(A, F) = Q_{2n+1}(g^{-1}dg, 0) +d\alpha_{2n-2}, Q_{2n+1}(g^{-1}dg, 0) = \omega_{2n+1}(g)
eq24,25\) NJP,12,065010(2010)
- 利用 \( lundell Table 1, steifel manifold \), 推导
NJP,12,065010(2010) Table 3
-
5.12 笔记
- Dimension reduction
- \(d=2n+3, chiral sym, \vec{k} = (k_{1}, k_{2}, ..., k_{2n+3}), H = \sum^{2n+3}_{i=1} k_{i} \Gamma^{i}_{2n+3}, E = \pm |\vec{k}| \);
\(d=2n+2 \),设\( k_{2n+3} = m, H = \sum^{2n+2}_{i=1} k_{i} \Gamma^{i}_{2n+3} + m\Gamma^{2n+3}_{2n+3} \),对称性改变;
\(d=2n+1 \),设\( k_{2n+2} = 0, H = \sum^{2n+1}_{i=1} k_{i} \Gamma^{i}_{2n+3} + m\Gamma^{2n+3}_{2n+3} \),对称性改变。
- eg: \(d=3, H = \vec{k} \cdot \vec{\sigma} \),具有时间反演对称性;
\(d=2 \),设\( k_{3} = m, H = k_{x} \sigma_{x} + k_{y} \sigma_{y} + m \sigma_{z},CH_{1}(F) = \frac{1}{2} sgn(m) \),无对称性;
\(d=1 \),设\( k_{2} = 0, H = k_{x} \sigma_{x} + m \sigma_{z}, W = \frac{1}{2} sgn(m) \),具有手征对称性。
- \(why \enspace \mathbf{Z}_{2}?\)
\(q_{1}(k) \sim q_{2}(k) \) 同伦等价,通过构造可以证明从偶数维度(AIII)升高一个维度后,整个系统可以分为两个等价类,即\(\mathbf{Z}_{2} \)。
- 物理实现
Jackin_Rebbi model, PRD,13,3398(1976)
- \(H = k\sigma_{x} + m\sigma_{z}, E = \pm \sqrt{k^{2} + m^{2}} \)
- \(H = P\sigma_{x} + m\sigma_{z}, H^{2} = P^{2} + m^{2} + 2\sigma_{y} m \delta(x) \rightarrow
P^{2} + m^{2} + 2 m \delta(x) \),存在束缚态。
-
5.15 笔记
- SSH model soliton in polyacetylene ,
QMC 2d SSH model
- \(H = - \sum_{n} t_{n+1,n} (c^{\dagger}_{n+1} c_{n} + h.c. ) + \frac{1}{2} m \dot{u}^{2}_{n} + \frac{1}{2} k (u_{n+1} - u_{n})^{2} \)
- 采用半经典近似 \(H = - \sum_{n} (t_{0} + (-1)^{n} 2\alpha u) (c^{\dagger}_{n+1} c_{n} + h.c. ) + 2 nk u^{2} \)
- 转到k空间 \(H = - \sum_{k}(t_{0} + 2\alpha u) (A^{\dagger}_{k} B_{k} + h.c. )
- \sum_{k}(t_{0} - 2\alpha u) (B^{\dagger}_{k} A_{k} e^{ik} + h.c. ) \)
- 设\(\sum_{k} cos(k) = 0 \),则\(E_{g} = const + 2u^{2} nk - 4\alpha un \),能量极小点发生漂移,破坏对称性。
- Haldane model Model for a Quantum Hall Effect without Landau Levels
- \(H = - \sum_{< ij >} t_{0} (A^{\dagger}_{i} B_{j} + h.c. )
- \sum_{<< ij >>} t_{1} (A^{\dagger}_{i} A_{j} e^{i\phi /3} + h.c. )
- \sum_{<< ij >>} t_{1} (B^{\dagger}_{i} B_{j} e^{i\phi /3} + h.c. ) \)
- 转到k空间,做好区分,分别转换,最后汇总所有相互作用。详细计算见笔记。
- 作业:
推导 SSH model 论文 eq.2.1 ~ eq.3.19,
可参考 Su-Schrieffer-Heeger model applied to chains of finite length 。
-
5.19 笔记
- SSH model: 通过不同的方式打开gap (结构相变、不同的原子)
- Haldane: 添加磁通,添加对角项,产生gap。\(\sqrt{|q|^{2} + |\Delta|^{2} } \)
- Spin Hall Effect: Z2 Topological Order and the Quantum Spin Hall Effect,
Kane and Mele
- Qi-Wu-Zhang model 参考文献
- \( H = sink_{x} \sigma_{x} - sink_{y} \sigma_{y} + c(2 - ocsk_{x} - cosk_{y} - e_{s}) \sigma_{z} \)
- \( \sigma_{xy} = \left\{ \begin{array}{cc} 1/2\pi, \quad & 0 < e_{s} < 2, \\
-1/2\pi, \quad & 2 < e_{s} < 4, \\ 0, \quad & otherwise. \end{array} \right. \)
- \( \sigma^{\Gamma}_{xy} = \frac{n}{\pi} (n = 0, \pm 1). \)
- 作业:推导文章 Finite Size Effects on Helical Edge States in a Quantum Spin-Hall System,
Zhou Bin, Shunqin Shen.
-
5.22 笔记
- 课程资料
- Linear Magnetization Dependence of the Intrinsic Anomalous Hall Effect,
Yugui Yao, Qian Niu
- Quantum Spin Hall Effect andTopological Phase Transition inHgTe Quantum Wells
- Bosonization of the interacting Su-Schrieffer-Heeger model
- 几何相的计算:\( \gamma = i \oint \langle \psi | \nabla | \psi \rangle \cdot d\Omega
= \sum_{R} i [\langle \psi(R) | \psi(R+\delta R) \rangle - 1]
= i\sum_{R} [ln(\langle \psi(R) | \psi(R+\delta R) \rangle)]
= i ln \Pi_{n} \langle \psi_{n} | \psi_{n+1} \rangle \)
- Spin HE 物理实现 Quantum Spin Hall Insulator Statein HgTe Quantum Wells
- Strong SOC, 小的 Energy gap
- 3d system and weyl semimetal \( H = \left( \begin{array}{cc}
\epsilon_{k} & Ak_{-} \\
Ak_{+} & -\epsilon_{k}
\end{array} \right), \epsilon_{k} = \frac{k^{2}_{x} + k^{2}_{y} +k^{2}_{z} }{2 m} - \mu \)
- 无能隙零点: \(k_{x} = k_{y} = 0, k_{z} + \pm \sqrt(2m\mu) \)
- 扰动,零点移动
- 拓扑因子:取\(k_{z} = \lambda \) 为参数,\(H(k_{x}, k_{y} ) \),计算chen number
-
5.29 笔记
- 背景
- Ehrenfest theorem
\( \begin{equation} \left\{ \begin{split}
\frac{ d \langle x \rangle }{ dt} = \frac{ \langle p \rangle }{m} \\
\frac{ d \langle p \rangle }{ dt} = - \langle \frac{\partial V }{\partial x} \rangle
\end{split} \right. \end{equation}\)
- Drude model
\( \begin{equation} \left\{ \begin{split}
\frac{ d x }{ dt} = \frac{ p }{m} \\
\frac{ d p }{ dt} = F - \gamma P
\end{split} \right. \end{equation}\)
- 固体物理 Kittle
\( \begin{equation} \left\{ \begin{split}
\frac{ d r }{ dt} = \frac{\partial \epsilon }{\partial k} \\
\frac{ d k }{ dt} = -e (E + v \times B)
\end{split} \right. \end{equation}\)
Bloch oscillation
- Bloch电子在磁场中的行为:peierls 替换 \(P \rightarrow P - eA \)
Hofstadter butterfly
- effective motion of bloch wavepacket
- 参考文献:
- Ming-Che Chang and Qian Niu
- Ganesh Sundaram and Qian Niu
- Topology in condensed matter systems 張明哲
- Di Xiao, Ming-Che Chang, and Qian Niu, Rev. Mod. Phys
- \(L = P_{c} \dot{r}_{c} - H = \langle \psi | i\frac{d}{dt} |\psi \rangle - \langle \psi | H |\psi \rangle\)
- \( \langle \psi | x |\psi \rangle = [i \frac{\partial}{\partial q} \delta_{nn ' }
+ \langle u_{nq} |i\frac{\partial u_{n '}}{\partial q '} \rangle ] \delta_{qq '} \)
- 作业:推导文章公式和结论
Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides_Di Xiao
-
6.02 笔记
- effective motion of bloch wavepacket
- \( \langle \psi | x |\psi \rangle = [i \frac{\partial}{\partial q} \delta_{nn ' }
+ \langle u_{nq} |i\frac{\partial u_{n '}}{\partial q '} \rangle ] \delta_{qq '}
= - \left( \frac{\partial r}{\partial k} \right) |_{k=k_{c}} + |w(k)|^{2} A(k) \)
- \(L = P_{c} \dot{r}_{c} - H = \langle \psi | i\frac{d}{dt} |\psi \rangle - \langle \psi | H |\psi \rangle
= eA \cdot r + \hbar k \cdot \dot{r} - \hbar A \cdot \dot{k} - E(k), \quad
E(k) = \epsilon(k) + \frac{e}{2m} \delta B \cdot L \)
- 课程资料
- Time reversal polarization and a Z2 adiabatic spin pump,
Liang Fu and C. L. Kane
- Topological Insulator Materials, Yoichi Ando, JPSP
- 反线性算子 \(A(\lambda_{1} \phi_{1} + \lambda_{2} \phi_{2}) = \lambda^{\ast}_{1} A \phi_{1} + \lambda^{\ast}_{2} A \phi_{2} \)
- \( T=UK, \langle \phi |T| \phi \rangle = - \langle \phi |T| \phi \rangle =0, \langle Tx|Ty \rangle = \langle y|x \rangle \)
-
6.05 笔记
- Time reversal sysmetry
- W矩阵 \(W_{\alpha \beta}(k) = \langle u_{\alpha, -k} |\theta| u_{\beta, k} \rangle \)
- \(W^{\dagger} W = 1 \)
- \(W_{\alpha \beta}(-k) = - W_{\beta \alpha}(k) \)
- \(a_{\alpha \beta}(k) = -i \langle u_{\alpha, k} |\nabla_{k}| u_{\beta, k}, \quad
a(-k) = W(k) a(k) W^{\dagger}(k) + i W(k) \nabla_{k} W^{\dagger}(k) \)
- \(P_{\theta} = \int^{\pi}_{-\pi} dk [a_{11}(k) - a_{22}(k) ], \quad (-1)^{P_{\theta}}
= \Pi_{j} \frac{Pf(W(\Lambda_{j})) }{\sqrt{Pf^{2}(W(\Lambda_{j}))} } \)
-
6.09 笔记
- 课程资料:
- Douglas R. Hofstadter, PRB 14,2239(1976)
- Xiaogang Wen, Nuclear Physics B316 (1989) 641-662
- 出发点:磁场中的平移对称性 \(\vec{P} = \vec{P} - e \vec{A} \)
\(T_{x} = e^{-ia(p_{x} - eA_{x})}, T_{y} = e^{-ia(p_{y} - eA_{y})}, T_{x} T_{y} = e^{-ia^{2}B} T_{y}T_{x}. \)
若 \(a^{2}B = 2\pi p/q, [T_{x}, T^{q}_{y}] = 0 \),具有平移对称性(\(T_{x}, T_{y} \)的次数不唯一)。
- Harper eq
- \(H = -t \sum_{< ij >} e^{-i\int^{j}_{i} \vec{A} \cdot d\vec{l}} a^{\dagger}_{i} a_{j} \)
- 设 \(\vec{A} = (0, Bx, 0), Eu_{i} = -t(u_{i-1} + u_{i+1} ) - 2t cos(iBa^{2} -k_{y} a ) u_{i},
H = -t(a^{\dagger}_{i} a_{i+1} + h.c. ) - 2v cos(i \phi - \theta) a^{\dagger}_{i} a_{i}. \)
- Wen Xiaogang \(H = v(k_{x} \sigma_{x} + k_{y} \sigma_{y}), \Gamma = \sigma_{z},
\nu = \frac{1}{4\pi i} \oint \mathrm{Tr} (\Gamma H^{-1} dH ) \)
- 作业:推导计算 Ganeshan et al. PRL,110,180403(2013) 。
-
6.12 笔记
- Xiaogang Wen \(H = t\sum_{k} c^{\dagger}_{k+w} c_{k} e^{ik_{x}a} + c^{\dagger}_{k-w} c_{k} e^{-ik_{x}a}
+ 2cos(k_{y}a) c^{\dagger}_{k} c_{k}, \quad w = (0, \theta) = (0, 2\pi q/p) \)
- \(\nu = \frac{1}{2\pi i} \oint \frac{dz}{z} \)
- \(p=2, q=1, \quad z = det(h) = 2cos(k_{x}) + 2icos(k_{y}) \)
\(p=4, q=1, \quad z = det(h) = -2sin(2k_{x}) - 2isin(2k_{y}) \)
\(p=6, q=1, \quad z = det(h) = 2cos(3k_{x}) + 2icos(3k_{y}) \)
\(p=8, q=1, \quad z = det(h) = -2sin(4k_{x}) - 2isin(4k_{y}) \)
- 零点 \(sin(nk_{y}) = 0 \rightarrow nk_{y} = m\pi \)
- 算子形式,令\(a = 1 \),\(H = e^{-ik_{y}} A + e^{ik_{x}} B + h.c. \)
- \(A^{p} = B^{p} = 1, AB = BA e^{i2\pi q/p} \),A、B的具体形式见笔记;
- \(A H(k_{x}, k_{y}) A^{-1} = H(k_{x} + 2\pi q/p, k_{y},
B H(k_{x}, k_{y}) B^{-1} = H(k_{x}, k_{y} + 2\pi q/p ) \)
- p、q互质,存在\(nq - mp = 1 \),设\(\tilde{A} = A^{n}, \tilde{B} = B^{n} \),
\(\tilde{A} H(k_{x}, k_{y}) \tilde{A}^{-1} = H(k_{x} + 2\pi /p, k_{y},
\tilde{B} H(k_{x}, k_{y}) \tilde{B}^{-1} = H(k_{x}, k_{y} + 2\pi /p ) \)
- 若\(H(k_{x}, k_{y}) \psi = \epsilon \psi,
\tilde{A} H \tilde{A}^{-1} \tilde{A} \psi = \epsilon \tilde{A} \psi \),
存在p重简并。
- Kitaev
- 课程资料
-
Fault-tolerant quantum computation by anyons, A. Yu. Kitaev
-
Anyons in an exactly solved model and beyond, Alexei Kitaev
- Toric-code model \(H = -\sum_{s} A_{s} - \sum_{p} B_{p} \)
- \(s-star A_{s} = \Pi_{j \in star(s)} \sigma^{x}_{j}, \quad
p-plaquette B_{p} = \Pi_{j \in boundary(p)} \sigma^{z}_{j} \)
- 所有\(A_{s}, B_{p} \)都对易;
- groud-state\(- (N_{s} + N_{p}) \),简并度/能否实现?与欧拉定理关联。
-
6.19 笔记
- Toric-code model \(H = -\sum_{s} A_{s} - \sum_{p} B_{p} \)
- 基本性质
- \(A_{s}, B_{p} \) 都对易,且\([A_{s}, H] = [B_{p}, H] = 0 \)
- \(A_{s} = A^{\dagger}_{s}, B_{p} = B^{\dagger}_{p}, A^{2}_{s} = B^{2}_{p} = 1,
\Pi_{s} A_{s} = \Pi_{p} B_{p} = 1 \)
- \(n=2k^{2} \) 个节点,希尔伯特空间 \(2^{2k^{2}} \) 维,考虑约束 \(\Pi_{s} A_{s} = \Pi_{p} B_{p} = 1 \),
应为 \(2^{2k^{2}-2} \) 维,4重简并\(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \)
- Groud State \(|G\rangle = \Pi_{p} \frac{1 + B_{p}}{2} \Pi_{s} \frac{1 + A_{s}}{2} |\phi \rangle \)
- Loop(contractible or not):详细图像见笔记
- \(\mathbb{Z}_{2} \) gauge theory, Ising model
\(Z = Tr[e^{-\beta J \sum_{< ij > } \sigma_{i} \sigma_{j}}]
= Tr[1 - \beta J \sum_{< ij >} \sigma_{i} \sigma_{j} + (\beta J \sum_{< ij >} \sigma_{i} \sigma_{j})^{2}/2] \)
考虑是否可以形成环,1、3阶为0,2、4阶非0。图像见笔记。
- KiteaV honeycomb lattice
\(H = -J_{x} \sum_{ij} \sigma^{x}_{i} \sigma^{x}_{j} - J_{y} \sum_{ij} \sigma^{y}_{i} \sigma^{y}_{j} - J_{z} \sum_{ij} \sigma^{z}_{i} \sigma^{z}_{j} \)
- \(W_{p} = \sigma^{x}_{1} \sigma^{y}_{2} \sigma^{z}_{3} \sigma^{x}_{4} \sigma^{y}_{5} \sigma^{z}_{6} \)
- \(\sigma^{\alpha} = i b^{\alpha} c \), \( b^{\alpha} \)、c 为 majorana fermion,
\( \sigma^{x} \sigma^{y} \sigma^{z} = i b^{x} b^{y} b^{z} c = i D \)
- \(u_{ij} = i b^{\alpha}_{i} b^{\alpha}_{j} \),\(\alpha \) 由ij决定,\(W_{p} = \Pi u_{ij} \)
- \(H = \frac{i}{4} \sum A_{ij} c_{j} c_{k}, A_{ij} = 2i J_{\alpha} b^{\alpha}_{i} b^{\alpha}_{j} \),
对\(groud\ state, i b^{\alpha}_{i} b^{\alpha}_{j} = 1 \)
- 最终 \(H = \left( \begin{array}{cc}
0 & f(q) \\
f^{*}(q) & 0
\end{array} \right),
f(q) = J_{z} + J_{x} e^{i \vec{q} \cdot \vec{R}_{1}} + J_{y} e^{i \vec{q} \cdot \vec{R}_{2}} \)