11.22主要内容
Goldstone mode, Goldstone theorem
- Background:Heisenberg model. \(H=J\sum_{\left \langle i,j \right \rangle}\vec{S_i}\cdot \vec{S_j}\)————Magnon(类似phonon), gapless & \(\varepsilon_k=v|k|\)
- Before SSB
\(\mathscr{L}= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)\),
其中\(V(\phi) = \frac{m^{2}}{2} \phi^2 - \frac{\lambda}{4!} \phi^{4}\)
After SSB
\(\mathscr{L}= \mathscr{L}_0 + {\rm cubic\ terms} + {\rm quartic\ terms}\),
其中\(\mathscr{L}_0 = \frac{1}{2} \partial_{\mu}\pi \partial^{\mu}\pi - \frac{1}{2} \partial_{\mu}\vec{\sigma} \cdot \partial^{\mu}\vec{\sigma} - m^2\pi^2\)
\((N-1)\) massless fields,1 massive field
- Application:
(1)Magnetism(Goldstone mode=magnon); (2)superfluid; (3)phonon.
- Goldstone Theorem(数学表达):
\(\left\{ \begin{aligned} G\longleftrightarrow \mathscr{L}\ {\rm before\ SSB} \\H\longleftrightarrow \mathscr{L}\ {\rm after\ SSB}\end{aligned} \right. \Longrightarrow {\rm dim}(G/H)={\rm Goldstone\ mode\ number}\)
Higgs mechanism(massive gauge field/boson)
- Background
Superconductivity + Maxwell equation.(1) London equation; (2) Ginzberg-Landau equation; (3) BCS theory
- N=2, \(\phi=\left( \begin{smallmatrix} \phi_1 \\ \phi_2 \end{smallmatrix} \right) = \phi_1 + i\phi_2\)
Before SSB,
\(\mathscr{L}= -\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \left(D_{\mu} \phi \right)^{\ast}\left(D^{\mu} \phi\right) - V(\phi)\),
其中\(V(\phi) = \frac{m^{2}}{2} \phi^{\dagger} \phi - \frac{\lambda}{4!} \left(\phi^{\dagger} \phi\right)^{2}\)
eat Goldstone mode,
\(\mathscr{L}=\frac{1}{2}\partial_{\mu} \phi_{1}\partial^{\mu} \phi_{1}-m^2\phi_{1}^{2}-\frac{1}{4}F_{\mu \nu} F^{\mu \nu}-\sqrt{2}ve(A_{\mu}-g_{\mu})\partial^{\mu}\phi_2 + e^2 v^2 A_{\mu} A^{\mu}\),
其中\(g_{\mu}=\frac{1}{2\sqrt{2}ev}\partial_{\mu} \phi_2\)
产生massive boson
- massive gauge boson \(\Leftrightarrow\) proca equation(只能写成\(A\)的形式,而不能写成\(\vec{E}, \vec{B}\)的形式)
break gauge invariant(Superfluid(Boson), Superconductivity(Fermion))
- 自由度不变
before SSB: \(\psi=(\phi_1, \phi_2, {\rm Boson}(2))\)共4个自由度
after SSB: \(\psi=(\phi_1, 0, {\rm Boson}(2+1))\)共4个自由度
London equation & Ginzberg-Landau equation
其他补充
USTC|
BBS