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The E lectrom agnetic E quations o f  the S upraconducto r 

By F. and H. L o n d o n , Clarendon Laboratory, Oxford 

(<Communicated by F. A. Lindemann, F.R.S.—Received October 23, 1934)

Electric currents are commonly believed to persist in a supra-conductor 
without being maintained by an electromagnetic field. Thus the relation 
between the field strength E and the current density J  in a supraconductor 
has sometimes been describedf by means of an “ acceleration equation,” 
of the form

AJ — E ; A =  mine2. (1)

This equation, which might replace Ohm’s law for supraconductors, 
simply expresses the influence of the electric part of the Lorentz force on 
freely movable electrons of the mass m and charge e, the number per cm3 
being n (we use rational units). By definition the constant A must be 
positive. As a direct consequence of this equation (1) stationary currents 
in supraconductors are possible when E =  0.

We shall see, however, that actually equation (1), which we will refer 
to as the “ acceleration theory,” implies more than is verified by experi­
ment; moreover, presupposing an acceleration without any friction it 
implies a premature theory, the development of which has presented 
a hopelessly insoluble problem to mathematical physicists. Apparently a 
model was wanted which would explain that in its most stable state the 
supraconductor has always a persistent current. We shall give a 
formulation which is somewhat more restricted in this respect. On the 
other hand it includes one more important fact, namely, the experiment of 
Meissner and Ochsenfeld.J In this way we get a new description of 
the electromagnetic field in a supraconductor, which is consistent and, 
as it eliminates unnecessary statements, is in closer contact with experiment. 
This new description seems to provide an entirely new point of view for a 
theoretical explanation.

t  Becker, Heller, and Sauter, ‘ Z. Physik,’ vol. 85, p. 772 (1933); Braunbeck,
‘ Z. Physik,’ vol. 87, p. 470 (1934); London, ‘ Nature,’ vol. 133, p. 497 (1934).

$ ‘ Naturw.,’ vol. 21, p. 787 (1933).
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§ 1— t h e  F u n da m en ta l  E quations

Although we intend to abandon the “ acceleration equation ” (1) we 
shall take this equation as a provisional basis in order to find out the 
point where it must be corrected. Taking the eurl of (1) and using

curl E == — - H we obtainc
curl A j  =  — -  H, (2)c

or since - J =  curl H (neglecting the displacement current) 
c

curl curl AH =  — \ hc2
and as div H =  0

Ac2 V2 H =  H. (3)

Here we can integrate with respect to time and obtain:

Ac2 V2 (H — H0) — H — H0. (4)

(4) is a nonhomogeneous equation for H. H 0 denotes the magnetic field 
at the time t =  0. The general solution of (4) follows by superposition 
of any particular solution on the general solution of the homogeneous 
equation

Ac2 V2 H =  H. (5)

The solutions of (5) which behave regularly inside the supraconductor 
decrease exponentially very quickly as one recedes from the surface, 
where they are fitted into the values of the external field. Ac2 =  mc2;'ne2 
is of the order of magnitude 10-11 cm2. A particular solution of (4) 
may be written down immediately, namely,

H — H0.

Now the general solution of (4) follows by superposition of this solution 
(i.e.,of the original field H0) on our general solution of the homogeneous 

equation, which is not appreciably different from zero except near the 
surface.

The general solution means, therefore, that practically the original 
field persists for ever in the supraconductor. Only in a layer of the order 
10-B cm below the surface all disturbances take place reversibly, provided 
the threshold value is not exceeded. The field H0 is to be regarded as 
“ frozen in ” and represents a permanent memory of the field which



existed when the metal was last cooled below the transition tempera­
ture

Until recently the existence of “ frozen in ” magnetic fields in supracon­
ductors was believed to be proved theoretically and experimentally. By 
Meissner’s experiment,! however, it has been shown that this point of view 
cannot be maintained. It results clearly from the thermodynamic 
discussion of GorterJ that at the transition to the supraconducting state 
any magnetic field which may have existed before in the conductor is pushed 
out of it so that experiments which seemed to show that magnetic fields are 
frozen in are to be explained by the existence of non-supraconducting 
inclusions, in which the magnetic lines of force are pressed together.

Since magnetic fields under no circumstances can be found in the 
supraconducting phase, one is tempted to give the integration constant 
H0 of (3) in (4) the value zero. But if not all solutions of a differential 
equation exist in reality, the equation gives too general a description. 
One should not use a differential equation like (1) which contains too 
many possibilities, as it gives nature more freedom than it wants. If in 
reality H0 is always confined to the value zero, then this means that
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Ac2 V2 H =  H

is to be considered as a fundamental law and not to be treated as a 
particular integral of a differential equation in consequence of (1). Hence
we abandon (1). Since curl H =  - J  we can write (5) in the formc

curl AJ — — —H. (6)c

This we postulate as the fundamental equation which replaces Ohm’s 
law in supraconductors.

Equation (6) says more than (2), so far as it includes Meissner’s effect. 
Proceeding from (6) to (2) by differentiating with respect to the time we

t  Meissner and Ochsenfeld, ‘ Naturw.,’ vol. 21, p. 787 (1933); 4 Z. ges. Kalte- 
industr.,’ vol. 11, p. 125 (1934) 4 Phys. Z., vol. 35, p. 954 (1934); de Haas and Casimir, 
4 Physica,’ vol. 1, p. 291 (1934); Mendelssohn and Babbit, 4 Nature,’ vol. 133, p. 459 
(1934);- Mendelssohn and Moore, 4 Nature,’ vol. 133, p. 413 (1934). Schubnikoff and 
Rjalinin, 4 Phys. Z. Sowjet,’ vol. 5, p. 671 (1934); 4 Nature,’ vol. 134, p. 286 (1934). 
Keeley and Mendelssohn, 4 Nature,’ vol. 134 p. 773 (1934).

t  4 Arch. Musee Teyler,’ ser. Ill, vol. 7, p. 378 (1933); 4 Nature,’ vol. 132, p. 931 
(1933). Gorter and Casimir, ‘Physica,’ vol. 1, p. 306 (1934), see also Ehrenfest and 
Rutgers, 4 Comm. Phys. Lab., Leiden,’ Supp. 75b. (Nachtrag).
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lose this content. The logical relation between the three propositions 
(1), (2) and (6) may be represented by the following scheme:

(1) AJ =  E (6) curl AJ =  — - H c

\
'N

(2) curl A j  =

The propositions (1) and (6) possess, so to speak, the same degree of 
generality. Assuming (6) instead of (1) we comprehend more in one 
respect, namely, Meissner’s Effect, but less in another respect, for we 
cannot deduce (1) from (6); but we obtain from (2) the weaker statement :

curl (A j -  E) =  0.

Inasmuch as (1) says more than (2) it expresses a prejudice which, in 
our opinion, is not tested by experience. We are only enabled to 
conclude, that A J — E can be represented as the gradient of a quantity ;x :

A j  — E =  grad (x. (7)

Now the question arises whether ;x is merely an integration constant or 
whether it represents a real physical quantity. Comparing (6) with (7) 
(which may be written in the form A (j  — grad ex/A) =  E) we see that 
we can put together these six equations in the form of an equation for 
an antisymmetrical tensor:

A / 3 J.
la i

'X*
dlA  =  i  f
dxj (8)

Here we have named the field strengths E„, Ez, Ux, Hy, Ha as 
usual by ifu ,if2i, if3i,/ 23, / 31, / 12 and the co-ordinates z, ict by xlr 
x2, x3, x4. Then the quantity jx/A has to be regarded as the time-like 
supplement of the current density J. As is well known from ordinary 
electrodynamics, this is the density of charge p.

Therefore the relativistic covariance would require

h ic A ic p. (9)
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This interpretation by the principle of covariance! now gives to equation 
(7) the quality of an independent physical statement

A (j  +  c2 grad p) =  E, (10)
where p is connected with E by

p =  div E. (11)

Here for the sake of simplicity we have taken the value of the di­
electric constant s equal to one as we do not know anything about it. 
This may subsequently have to be corrected.

Putting (11) in (10) we get
A (J  +  c2 grad div E) =  E,

or since grad div E =  V2E +  curl curl E =  V2E — j ,

Ac2 V2 E =  E (12)

and by taking the divergence we get
Ac2 V2 p =  p. (13)

Thus we see the 10 quantities E, H, J, p obey the same equation.
So far we have neglected throughout the displacement current. If one 

considers it, these equations follow: .

V2E

V2H

V2J

V2P

1 82E
c2 dt2

1 S2H
C2 dt2

l  8
c2 dt2

l__02p 
c2 dt2

1
Ac2 P

y.
/

(14)

The field strength E and H may be derived as usual from a scalar 
potential </> and a vector potential A by

E =  — grad </> — — A )
C . (15)

H =  curl A
t  It is very remarkable that equation (6) has a four-dimensional supplement, which 

does not explicitly contain the velocity o f the supraconductor. Of course (10) is not 
the only possible form of a covariant supplement, but it is apparently distinguished 
by its simplicity and there is no reason to consider more complicated ones.
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Comparing (15) with (10) and (6) we see, that it is possible! to choose 
the potentials—which are not absolutely uniquely determined by the 
field—so that they become proportional to the density of current and
charge:

AcJ =  — A j

Ac2 p =  — </> i
(16)

These equations, which could also be employed as the fundamental 
equations of the theory do not contain any dynamics as equation (1) 
nor any other explicit statements about temporal variations. Like the 
specific resistance in Ohm’s law A is a constant depending on the material. 
There is no particular reason now, for attributing to it the value given in 
(1) although for the atomistic explanation no very different interpretation 
is to be expected (see equation 32)).

The additional condition for the vector potential

div A +  0c '

corresponds, because of (16), to the equation of continuity:

div J +  p — 0.

Putting the second equation (16) in (10), which expresses the modified 
equation of acceleration, the latter becomes

A j  =  E +  grad <f>. (17)

We learn from it that the acceleration of J is only due to that part of 
E which remains when the potential part (— grad </>) has been subtracted. 
When E is merely a potential field it has therefore no influence on the 
supraconducting current.

§ 2— T he L aw  of Conservation  of E n er g y , P r o d u c tio n  of 
H eat, B o u n d a r y  Co nditio ns

As usual the law of conservation of energy follows from Maxwell’s 
equations. But now in the equation

div c [EH] =  -  A  {! (H2 +  E2)} -  (JE),

t  Here we consider only simply connected supraconductors. As to the generalization 
for multiply connected supraconductors see a paper in “ Physica.”
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the term (JE) has not simply the significance of Joule heat. From the 
equation E =  A (j  +  c2 grad p) we find:

(JE) =  A { J J  +  c2 (J grad p)}

=  A \ j t  ( j )  +  c2 div (PJ) -  c2P div j }

=  a ( r p ) +  c !A {d iv (p ,)  +  M ) } -

Therefore the energy principle may be written in the following form :

div c [EH] =  -  ~  | + (H2 +  E2) +  A (J2 +  c2p2) j  -  Ac2 div pj. (18)

In addition to the usual terms for the magnetic and the electric energy 
there is a term ~  J2, a kind of kinetic energy of the persistent currents

and another term c2p2, which may be interpreted as an additional

potential energy connected with the density of electric charges in the 
supraconductor.

The last term (— Ac2 div p J) is the most interesting one. Its signifi­
cance may become clearer by integrating over the whole of the supra­
conducting phase and transforming the integrals of the divergences 
into surface integrals:

[[EH], d
dt j [ i  H2 +  E2) +  ~ (J 2 +  p2c2) | dS -  Ac2 J PJ„ da.

In consequence of the continuity of the tangential components of E 
and H we can substitute on the left-hand side the components of the 
field outside the supraconductor, where c [EH] is known to be the 
Poynting vector, i.e., the flow of electromagnetic energy. The term

Q =  Ac2 j PJ„ da, (19)

therefore, must be an amount of energy, which balances the flow of 
electromagnetic energy particularly for stationary processes (3/3* ... =  0), 
where the state of the supraconductor does not change. Q must be a 
non-electromagnetic form of energy and as such heat is the only form of 
energy which comes into question.
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In the interior of the supraconductor the law of conservation of energy 
can be written in the form

divS +  ^  =  0.ct (20)

Here the 

and

quantities
W =  i(H2 +  E2) +  |  (J2 +  c2p2) 

S =  c [EH] -(- Ac2 pT

(21)

(22)

are to be interpreted as the density and as the flow of the total energy in 
the supraconductor.

Equation (20) states that inside the supraconductor no energy dis­
appears, i.e., changes into heat. The production of heat is therefore to 
be localized exactly on the surface of the supraconductor. There the 
flow of energy, changing discontinuously from Ac2p J  +  c[EH] to c[EH], 
has a surface divergence. (19) shows that the production of heat occurs 
where the electric current has a normal component to the surface and 
meets there an electric density. It can easily be shown that the heat 
Q produced, where the current I enters and leaves the supraconductor, 
is always positive and is exactly equal to VI, V being the difference of 
voltage through which the current passes. Joule’s law, therefore, is 
fulfilled, at least for the supraconductor as a whole.

For the sake of completeness we announce the components of the 
Maxwell stresses Tik in the supraconductor:

T„ =  Tik (E) +  Ti;. (H) -  Tik (J) -  ^  Ac2p2.

Here Tik (E) =  E<E* — i§ rtE2, etc.

(1 for i — k
=

10 for I ^  k.

Then the energy impulse tensor @ik comprehending as usual the stresses, 
the flow and the density of energy in its four-dimensional scheme may 
be written in the form:

=  S f irf kr ~  2 f j  -  A
r, s =  1 JiJ* ~  S J , 2Z r = 1

Here we use the same notation as in equation (8). The four-dimensional 
divergence of this tensor vanishes identically:
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That means that no ponderomotiv volume forces are acting inside Jhe 
supraconductor, even when charges and currents are present in its 
interior.

It remains to establish the boundary conditions for the transition from 
the supraconductor to the adjacent insulator or normal conductor 
respectively. Of course, as always in Maxwell’s theory, the tangential 
components of E and the normal components of H and of J  +  E 
(or J  +  D) must be continuous. Further, we think it reasonable to 
postulate continuity of the normal component of E (or D) and of the 
tangential component of H in order to get a unique solution. Dis­
continuity of these components would mean the possibility of mathematical 
surface charges of an arbitrary amount. As the space charges lie always 
so near the surface that they appear macroscopically to be superficial ones 
it does not seem physically plausible to assume mathematical surface 
densities in addition. In contrast to normal conductors surface currents 
and surface charges of a finite amount would lead to an infinite value of
the additional energy term — (J2 -j- c2p2) in the supraconductor and
therefore they are excluded by the theory itself. But applying these 
boundary conditions (continuity of all components of E and H) there is 
some consideration necessary, as the smallest normal conducting layer on 
the surface would give rise to surface charges according to Maxwell’s 
theory. A special question will be the boundary conditions at the 
boundary between supraconducting and non-supraconducting phase in 
the same metal. We shall treat this in § 4.

§ 3— Su p r a c o n d u c t in g  Sphere o n  a  H omogeneous E lectric
F ield

As a simple application of this theory we consider a supraconducting 
sphere in a homogeneous electric field. Let R be the radius of the sphere 
and /•<,$■„ <j> spherical polar co-ordinates with the axis coinciding with the 
direction of the field.

(1) The adjacent medium is an insulatorThen we have the equations 

V2<f> =  0 outside the sphere,

V2</> =  (i2 </> {i2 =  inside the sphere.f

t  In the supraconductor <j> can always be chosen so that it becomes proportional to p 
(see equation (16) ) and then, like the latter, obeys equation (13).
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The potential is completely determined from its asymptotic values at 
great distances by the postulate that and shall be continuous on
the surface of the sphere. We obtain

<t>
A  ~  r E )COS *\* i

or r R

fi {'cosh p, -  siS-h- g r ) cos » for r <  R{ir ■ K pr

E is the asymptotic field strength and

3A =  ER3 

B =

1 -  ^  (ctgh PR -  pr)]
3RE

sinh pR ’

For r <  R the potential gives immediately the electric charges according to
p =  — 6. It is easy to see that the distribution of these charges near

to the surface is practically the same as the distribution of charges induced 
on the surface of a normal conducting sphere in a homogeneous electric 
field. The lines of the electric field strength end on the charges below 
the surface.

(2) Now the adjacent medium may be a conductor of the conductivity cr. 
Then the equations and boundary conditions of <f> are exactly the same 
as before and we obtain the same electric field and charges. But now 
outside the sphere a current J is connected with the field by J =  — grad </>. 
Since div J =  0 we have to postulate the continuity of Jr on the surface 
of the sphere. Now the current J inside is uniquely determined by its 
normal component on the surface and by the equations

We obtain
curl curl J +  p2J 

k  cos h-

0 and div J  =  0.

J ,=

pr2
k sin It 

2 r
3ctER 

sinh pR

cosh pr sinh [ir 
P r

1 +  ^ 2) sinh P'

2 + P2R2

^ c o sh  pr]

1 pR ctgh pRj
In the supraconductor the distribution of current is not parallel to the 
electric field. The streamlines of J are broken at the surface in contrast 
to the electric lines of force, which are continuous.
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§ 4— Su p r a c o n d u c t in g  W ire . T he T ransition  C urve

As another application we shall consider the problem of the distribution 
of a given current in a circular supraconducting wire of infinite length.

We use cylindrical co-ordinates 2, r, 0- with the z-axis coinciding with 
the axis of the wire. Let a be the radius of the wire and R that of the 
boundary surface between the supraconducting and the normally con­
ducting phase.

1—As long as I <  IT =  2tocHt (Ht is the threshold value) only the 
supraconducting phase exists. With the notation (32 =  -^-2 the equation 
for the current density J may be written

curl curl J +  (32J  =  0. (23)
From reasons of symmetry J  has only a z-component, which can only 
depend on r. Then J =  Jz (r) obeys the equation

+  I  ^  _  b2J =  0
drz ' r dr P

This is the Bessel differential equation for J0 (z'pr).f This solution has 
still to be normalized. This gives

t _t Jp 0*Pr)
2to Jx (3a) '

For H we get
1 T 1 (25)

(24)

LT _ U _____i_ Ciirl J — 1 Jt (l {if )
H * [i2c * J  2nac Jx (i(ia) ‘

1Current and field are near the surface in a layer of the thickness - ~  10~5 cm.
p

If r ̂ > 10-5 cm we may replace the Bessel functions by exponential functions 
and we get

J =  J* =  I 

H =  H* =  I

P _ _  g/3 (r—a) 

£0  (r—a)

27i \/ar 
1

27tc Var

for r <^a.

Outside the wire H is given, as usual, by div H =  0, rot H =  0 and 
the postulate of continuity on the surface.

The well-known solution is
H =  =  I J — for >2iire

t  Confusion between current density J and the Bessel functions J should not arise 
since the latter have always numbers as indices.

VOL. CXLIX.— A. G
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Tn the supraconductor the electric field is not connected with the 
current; it is only determined by the equations v 2E =  f±2E and curl E =  0. 
If we assume continuity of all components of E on the boundaries these 
equations involve only a very short continuation of the external fields 
at the ends into a layer of the supraconductor about 10 cm thick. In 
this layer E decreases exponentially from the adjacent normal conducting 
leads, so that in practice one would find no potential-difference in a 
supraconductor, in agreement with the classical experiment of supra- 
conductivity.

2—Suppose now I >  IT =  2tmcHt .
From the centre to a radius R we have H <" HT. Here the equations 

of § 1 are valid, beyond R, where H >  HT, we will assume Ohm’s law.f
Then the total current I is divided into

I =  I«> +  p>.

On the surface of the inner current I(i) the magnetic field produced by it 
will have just the value HT, therefore we get for I(<) the equation

P> =  2tcRHt . (26)

$2

The part Ve) flowing on the outside as an ordinary conduction current is 
necessarily accompanied by an electric field strength E =  according 
to Ohm’s law

oE .7  I (a2 -R2) =  P> =  I -  2ttcRHx =  I -  IT R ,
or

I - I  Rlx —a
C77U a2 1 -  ( in (27)

This field strength E has to be continued through the boundary into 
the supraconducting part. If the equation of acceleration (1) were 
true, the current I(i) in the supraconducting phase would be accelerated 
by the electric fields. The magnetic field connected with the current 
would increase and rise above the threshold value HT below the separating 
surface. The latter would, therefore, shrink inwards and the process 
would continue until no supraconducting phase would be left.

t This condition for the boundary between both phases of the supraconductor is 
to be regarded as quite provisional, as possibly the whole conception of these two 
separated phases is too simple.
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But during this process in the non-supraconducting part the magnetic 
field would decrease. An elementary calculation shows that as soon as 
R is smaller than a certain value R0 given by

the magnetic field in the non-supraconducting phase would not every­
where exceed HT. There supraconductivity should appear again, in 
contradiction with the mechanism we have described, provided that we 
accept the conception that supraconductivity appears where the magnetic 
field is smaller than the threshold value.

In contrast to that our equations do not imply any acceleration by an 
electrostatic field in a supraconductor. We will consider how far this 
enables us to avoid these difficulties.

For current density J (i) and magnetic field H(<) we can simply take the 
solution (24), (25) replacing a by R :

Since H(<) =  0 the electric field EU) has no curl and therefore it may be 
represented by a potential 4>, the latter obeying the equation.

(28)

V2<£ — (32<£ 0,

and the boundary condition on the surface,

The only regular solution is
(29)

Therefrom we derive the components of the electric field E(<>

p (i) __ -p Jo 0'Pr)
z ■ Jo (30)

G 2
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As this field is derived from a potential it has no influence on the 
distribution of current calculated before. In contrast to the “ theory of 
acceleration ” we have now stationary conditions.

It seems important to emphasize that the field E'4' could not be deter­
mined unless the normal component of E on the boundary surface 
between supraconducting phase and normal conducting phase is dis­
continuous. It is evident that the boundary between two phases of one 
substance is a quite different thing from the boundary between two sub­
stances and therefore the same boundary conditions may not be expected 
in both cases. If En were postulated to be continuous on the surface 
between both phases no solution would exist as long as we maintain 
the conception that H <  HT or H >  HT decides where supraconductivity 
occurs and where not.

It seems to be remarkable that our solution has charges linearly 
increasing along the wire. The order of magnitude of the electric fields 
belonging to them are, however, very small compared with the magnetic 
fields, at least for such lengths of supraconducting wire as have been 
investigated until now. For longer wires it may be necessary to consider 
an influence of these charges and fields on equation (26). On the other 
hand it would be interesting to calculate the conditions at the ends of a 
finite wire where the current enters. But here we shall defer the con­
sideration of such details.

The radius R of the boundary surface is not yet determined. We see 
only that any radius R >  R0 (see equation (28)) would agree with our electro­
dynamics and could give us a stationary distribution of current with a 
certain field strength E. R functions here as a parameter and therefore 
cannot be determined by the differential equations of the problem. In 
order to determine R we need a further condition. Whether this condition 
can be derived from thermodynamics or whether the present theory requires 
still another supplement as to the electrodynamics at the boundary between 
both phases is a question which must be the subject of a more thorough 
and general consideration, with which we cannot deal in this paper. 
But one is tempted to guess that in our special case only the value R =  R0 
(equation (28)) can come into question. It is distinguished from any 
other possible value of R. For instance, it could be characterized as 
giving the minimum of the surface charges or of the Joule-heat. Taking 
the Joule-heat,

Q =  I E - GTXCfi
1
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we get for its minimum the equation,

R \2 
a >

The only solution of this equation which comes into question (R <  ) 
is R =  R0 (equation (28) ).

Though this supposition requires further examination we will shortly 
consider its consequences.

Putting R =  R 0 into (27) we get the resistance <o as a function of the
/

current I j w cnt a2
1 being the resistance per cm length of the wire in

the non-supraconducting state),

Eo > = T
T R0
± T -------_ ^0

1 — R 2

=  ^ ( h - y ' i - ( If ) ‘)- (3i)

This can be used, of course, only for I >• IT. For I =  IT this solution 
gives the value <o0/2. For I <  IT we have the solution which was calcu­
lated at the beginning of this paragraph with E =  0; that means w =  0. 
Therefore the resistance drops discontinuously from its half value to 
zero.

Considered as a function of IT (31) gives the transition curve as a 
function of temperature. Possibly A is to be regarded as dependent on 
temperature. But the result (31) is not dependent on the value of A. 
IT is given by the curve of the threshold value of the critical magnetic 
field Ht which, near the critical temperature T0, can be represented linearly 
in the form

Hx =  k(T0 -  T).
Therefore analogously

1, =  2tccuHt =  b (T0 — T).
This gives

In the limit for very weak currents the resistance curve therefore drops 
absolutely vertically from its value at the temperature T0 to the value 
zero (see fig. 1). The comparison with the measurements of de Haas and
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Voogdf shows qualitative conformity, but it seems premature to discuss 
the experiments without considering further details.

Co n c l u d in g  R emarks

In considering the equations (16) one is very strongly reminded of 
Gordon’s formula; for electric current and charge in his relativistic 
formulation of Schrodinger’s Theory:

Aram
he

(4 grad 4* — 41* §rad 4) — <H*Ame

I.( (L* 44- — 4*A rime2 \
3 4*11. I ----— <h d>J m e 9

(32)

T em pera tu re
Fig. 1—The transition curve for different values of the current I. I in arbitrary units

Let 4 be the wave function of a single electron in the self-consistent field 
of the others; then in Gordon’s formulation 44* gives at least approxi­
mately the value of the statistical expectation for an electron at every 
point of the space. Summing over all electrons £44* givcs the number 
of electrons per cm3, varying about its average only in very small spaces.

t  ‘ Comm. Phys. Lab. Leiden,’ No. 214c.
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• • TYlTherefore macroscopically, since A =  —2, the last terms in (32) are equal

to 4 -  A and respectively.Ac Ac2
Using the original eigenfunctions of the free electrons in the metal the 

terms in brackets in (32) would vanish by summing over all electrons and 
(32) would become exactly identical with (16). This follows for J  from 
reasons of symmetry, for p from the compensating presence of the 
positive ions. But actually the eigenfunctions of the electrons in the 
metal are disturbed by the magnetic field and therefore the terms in 
brackets in (32) do not vanish. Moreover, they compensate almost 
completely the terms containing the potentials and only a very small 
diamagnetism results, the so-called Landau-Peierls diamagnetism.f

But now suppose the electrons to be coupled by some form of inter­
action. Then the lowest state of the electrons may be separated by a 
finite distance from the excited ones and the disturbing influence of the 
field on the eigenfunctions can only be appreciable if it is of the same order 
of magnitude as the coupling forces. As long as the magnetic field is 
sufficiently weak there should not be more than a negligible disturbance of 
the eigenfunctions, and therefore equations (32) would be approximately 
identical with (16). With increasing magnetic field the very highly 
degenerate excited states, which are partly paramagnetic, split up. Some 
of them decrease and, being already at a lower temperature than would be 
possible without field, suddenly become occupied and supraconductivity 
disappears. Of course these last remarks are to be taken as indicating 
roughly a programme which requires a detailed quantum mechanical 
investigation.

In conclusion we should like to express our thanks to Professor F. A. 
Lindemann, F.R.S., for his kind hospitality at the Clarendon Laboratory 
and for his interest in our work. We should also like to thank Imperial 
Chemical Industries whose generous assistance to one of us has enabled 
us to undertake this work.

Su m m ar y

A new formulation of the dependence of current on field in supra­
conductors is established.

E =  A ( j  +  c2 grad p) (10)
H =  — Ac curl J. (6)

t  Landau, ‘ Z. Physik,’ vol. 64, p. 629 (1930); Peierls, ‘ Z. Physik,’ vol. 80, p. 763 
(1933).
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A characteristic feature of this formulation is the possibility of electro­
static fields existing in supraconductors. In contrast to the customary 
conception that in a supraconductor a current may persist without being 
maintained by an electric or magnetic field, the current is characterized as 
a kind of diamagnetic volume current, the existence of which is necessarily 
dependent upon the presence of a magnetic field. That magnetic field 
itself may be produced reciprocally by the current (§ 1).

The law of conservation of energy is discussed. The production of 
Joule-heat is localized on the surface of the supraconductor, where the 
current enters and leaves it (§ 2).

As examples the field, boundary surfaces, and distribution of currents 
in a supraconducting sphere and a wire are treated and the transition 
curve is calculated (§§ 3, 4).

Shear W aves th rough  the E a r th ’s C ore

By L. Bastings, M.Sc., F.Inst.P., Associate in Seismology, Dominion 
Observatory, Wellington, N.Z.

( Communicated by Lord Rutherford, O.M., F.R.S.—Received October 27,
1934)

1— G row th  of the C ore T heory

Seismological evidence of a central core to the earth was first pointed 
out by Oldham in 1906.* From his analysis of travel-time data regarding 
longitudinal (P) and transverse (S) waves observed at great distances 
from earthquake epicentres, he concluded that at a depth equal to about 
three-fifths of the radius there occurs a transition to material possessing 
radically different physical properties from that external to this boundary.

With the aid of more extensive data assembled by Turnerf and others, 
the problem was later re-examined independently by Knott J aud by 
Gutenberg.§ The latter concluded that at a depth of 2900 km the

* ‘ Quart. J. Geol. Soc.,’ vol. 62, p. 456 (1906). 
t  “ The Large Earthquakes of 1913,” ‘ Rep. Brit. Ass.’ (1917). 
t  ‘ Proc. Roy. Soc. Edin.,’ vol. 39, p. 157 (1919).
§ ‘ Nachr. Ges. Wiss. Gottingen,’ p. 1 (1914). This paper was probably not avail­

able to Knott in 1918. It has long been out of print, and no copy is available in N.Z. 
1 am indebted to Professor Gutenberg for the loan of his own copy.


