
A Priority-based Task Scheduling Algorithm in Grid

Weifeng Sun, Yudan Zhu, Zhiyuan Su, Dong Jiao, Mingchu Li1

School of Software, Dalian University of Technology, Dalian 116621
Wfsun@dlut.edu.cn, zhu.yudan1205@gmail.com, ssdutsu@qq.com, jiaodong0418@yahoo.com.cn,

mingchul@dlut.edu.cn

1 Corresponding author

Abstract

Grid is proposed to solve large scale and
complicated problems, and it is a form of parallel
computing on Internet. Task scheduling in grid is one
of the most important technologies in grid system, and
it is a NP complete problem, which is used to schedule
a task on an appropriate grid node. Task scheduling
algorithms are used to improve the grid performance
by minimizing the scheduling length. A priority-based
task scheduling algorithm (P-TSA) in grid is proposed
in this paper. In this kind of priority-based algorithm,
tasks are scheduled according to the priority order
firstly. And then assign processors Comparing P-TSA
with existed grid scheduling algorithms on scheduling
length and resource utilization rates. Simulations are
done on examples of DAG, and simulation results
shown that the performance of P-TSA is better than
other scheduling algorithms such as Min-min and
Max-min.

1. Introduction

Grid [1] has become a most important way to solve
large-scale and complicate problems since Ian Foster
proposed the concept of it. Grid computing is the most
distributed form of parallel computing, and it makes
use of computers communicating over the Internet to
work on a given problem. Grid is used to connect the
most kinds of widespread resources in the Internet
(including computing resources, storage resources,
bandwidth resources, software resources, data
resources, information resources, knowledge resources,
etc.) to logic holistic. Grid can provide users with
integrated information and application services
(computing, storage, accessing etc) to realize resource
sharing and collaboration in this virtual environment.
Grid scheduling, which studies how tasks are scheduled

on resource computers, is one of the key point of
improving performance of grid. Efficient task
scheduling strategies and algorithms in grid can fully
utilize the processing power of grid system and
improve the performance of it. Grid applications are
usually divided into many interdependent subtasks in
real applications. Every single subtask is processed
dependently and the subtasks should process
concurrently in order to reduce the task running time,
which is one of the most important problems in parallel
computing. Grid scheduling objective function is to
map the independent tasks to the processor and decide
the order of task execution to minimize the total
running time. Directed acyclic graph (DAG) is usually
used to illustrate the data dependency among subtasks,
and it can be used to solve task scheduling problems. A
novel grid task scheduling model based on DAG is
proposed in this paper, which can get better
performance.

The rest of paper is organized as follows: section 2
is the related work; section 3 proposes the P-TSA
algorithm; section 4 elaborates the simulation and
result analysis is done. Section 5 draws the conclusion
and discusses about the future work.

2. Related work

Many static scheduling algorithms in grid and in
parallel computing have been proposed in the last few
years. List scheduling methods maintain a priority
queue according to the priority order of task graph,
which can be divided into two parts. One is the part of
task priority, which selects the high-priority waiting
tasks to be scheduled. The other part is the processor-
selecting part, which selects the appropriate processor
to minimize the payment function. Min-min, Max-min
[2, 3], HPS [4], DCP (Dynamic Critical Path) [5] are
some kinds of list scheduling methods. Min-Min
algorithm begins with the set MT of all unassigned



tasks, and it also has two phases. In the first phase, the
set of minimum expected completion time (such that
task has the earliest expected completion time on the
corresponding machine) for each task in MT is found.
In the second phase, the task with the overall minimum
expected completion time from MT is chosen and
assigned to the corresponding resource. Then this task
is removed from MT and the process is repeated until
all tasks in the MT are mapped. Max-Min is very
similar to Min-Min, except in phase 2. Max-Min
assigns task with maximum expected completion time
to the corresponding resource, in phase 2.

Priority-based schemes [6-8] assume a priority for
each task that is utilized to assign the tasks to the
different processors. Priorities based scheduling
algorithms, such as Heterogeneous Earliest Finish Time
(HEFT) and Critical-Path-On a Processor (CPOP). The
heterogeneous earliest finish time (HEFT) [9]
algorithm has two phases: the task prioritizing phase
and the processor selection phase. In the task
prioritizing phase, the upward rank attribute is
computed for each task and a task list is generated by
sorting the tasks in decreasing order of the upward rank.
In the processor selection phase, tasks are selected in
order of their priorities and scheduled to the best
processor that minimizes the task’s finish time. The
CPOP [9] algorithm has the same two phases as the
HEFT algorithm. In the first phase, the upward and
downward rank values for all tasks are computed using
mean computation and communication costs. The
priority of each task is assigned with the summation of
the upward and downward ranks. A priority queue is
used to maintain the ready task, and the ready task with
the highest priority is selected for the processor
assignment. In the second phase, it defines the critical
path processor as the processor that minimizes the
cumulative computation cost of the tasks on the critical
path. If the selected task is on the critical path, it is
assigned to the critical path processor; otherwise, it is
assigned to a processor that minimizes the earliest
execution finish time of this task.

Max-min, Min-min and such algorithms don’t
consider the load balancing. The HEFT and CPOP
have no idea about the topology structure and resource
availability. The paper studies the minimum scheduling
time, task topology structure and the load balancing,
namely resource utilization.

3. P-TSA

3.1 Task scheduling problems

A grid application consists of many dependent tasks,
which are represented by a Directed Acyclic Graph
(DAG).

G=(V, E), where V={vi, i=1… n) is the set of n tasks.
The vi represents the node i.

E =(vi,vj)｛i,j=1… … n｝is the set of directed edges ,
which represents a partial order on V.

For any two tasks vi, vj  V, the vj cannot be
scheduled until task vi has been completed, hence vi is
a predecessor of vj and vj is a successor of vi. The tasks
executions of a given application are assumed to be
non-preemptive.

Datann is a n ╳ n matrix of communication data,
where Dataij is the amount of data required to be
transmitted from task vi to task vj.

In a given task graph, a task without any parent is
called an entry task and a task without any child is
called exit task.

In an actual implementation, we can create a
PseudoEntry task and PseudoExit task with zero
computation time and communication time.

The DAG of Fast Fourier Transform is shown in
Fig.1. The weight of edge denotes the processing and
transmitting time from one node to the next node.

Figure 1. A DAG of fast fourier transform

Assume grid system consists of m independent
different types of processors of a set P = { pj: j =0,… ,
m-1}. The estimate accomplish time that a set of tasks
execute on the 3 processors is shown in Tab.1.



Table 1. The execution time matrix

Rmm is an m╳m matrix of data transmission rate, so
that the transmission time between task vi (execute on
the px) and task vj(execute on the py) is shown in
formula 1. If the execution machine of the vi is the
same with the vj, then the transmission time is zero. If
not, the time is the amount of transmission data (The
transmission rate defined is 1).

3.2 Base algorithm

First of all, every task’s priority (TP) is computed by
formula 1, where depth(i) represents the depth of task
vi . Depth of node(depth) is used to describe the depth
of task vi and we suppose that depth(entry)=1.And vj is
is the next node of vi.

All of the tasks will be sorted by their priority values.
The ECT(estimate complete time) is the time which
every processors executes the task. The ULC (Up Link
Cost) of a task is the maximum data transmission time
with its immediate predecessors. The DLC (Down Link
Cost) of a task is the data transmission time with its
immediate successors. The target of our scheduling
algorithm is minimizing scheduling length, called
makespan, which is the measurement of grid computing
system’s throughput.

( )

1 1

( ) ( )
TP(i)=

( ) ( ( ))

j succ i depth j DLC i

ULC i average ECT i








(1)

The notes which have the same depth are in the
same team, and the lower depth team has a higher

priority. Then we will get the executing order by
computing the priority value of tasks in every team. So
we can get the ordered tasks from figure 1, which is
illustrated in figure 2.

Figure 2. The ordered tasks

At last, we assign the tasks with established order to
executing machines. Before doing that, the resource
machines will be scanned and the tasks’executing time
of machines (mi) that cannot provide the resource will

be changed into ∞. With regard to every task, each of
them will travel across all the resource machines to
record the completion time when assigning tasks. The
resource machine having a minimum completion time
will be chosen for scheduling. We can minimize the
total completion time by this way.

Figure 3 shows a scheduling result created by P-TSA.

Figure 3. The scheduling result generated by P-
TSA

The three processers should process the subtask at
the proper time an all the processing orders are based
on the priorities of DAG.

3.3 Algorithm description

To assess the performance of the P-TSA, we make a
series of simulation experiments using the Matlab. P-
TSA algorithm pseudo-code is as follows:

1. Read the DAG
2. Divide the tasks into groups
3. Initialize the Estimated Completion Time (ECT)

of each task, the amount of data between tasks,
and the transmission rate between the machines
(define the value is 1). And initialize the
Machine Available Time (MAT).

4. For each group do

T1 T3 T2 T6 T7 T5 T4 T8 T11 T10

T9 T14 T13 T15 T12



5. Begin
6. compute the average ECT of every task in

this group
7. Sort the tasks in the group
8. For each task in this group do
9. Begin
10. For each machine do
11. Begin
12. ACT(vi)=Max{ MAT,EST(vi)}+TET(vi)
13. Select the minimum ACT
14. End
15. Delete the task from the group
16. Update the value of MAT 、ACT and

EST of the tasks
17. End
18. End

4. Simulations and performance analysis

Scheduling length and resource utilization are the
parameters to be compared in the simulations.
Scheduling length of grid task, an indicator of
performance of the grid system, is important in task
scheduling system. While the resource utilization
reflects the load of resource machine which is also
important to the grid system. So the two parameters are
selected to compare the effect of P-TSA.

P-TSA algorithm is compared with Min-min and
Max-min algorithm in the simulation by using the DAG
map.

4.1. Simulation environment

Application maps of three typical problems are used
in the simulation, Fast Fourier Transform (Fig.1), the
random DAG (Fig.4) and Molecular Dynamics Code
(Fig.5). Fast Fourier Transform algorithm is the
example in this paper. We focus on the analysis and
comparison of random generated DAG and Molecular
Dynamics Code in this simulation. In this paper, we
design the random parameter generator to get the
scheduling result. The experimental parameters are as
follows:

1. The number of hosts m,
2. m ∈ (10,20,30,40,60) for random generated

DAG;
m (2,4,8,16,32∈ ,64) for Molecular Dynamics
Code;

3. The eliminate completion time of task on the
resource host ECT;

4. The data transmission between spots DT (Data
Transmission);

5. The ratio between average of DT and average

of ECT, set to be 1.
According to the above parameters, the paper runs

the Max-min, Min-min and P-TSA algorithm based on
the two DAGs.

Figure 4. The random DAG

Figure 5. DAG of molecular dynamics code

4.2 Experiment results and analysis

Using the two DAGs, the makespan based on P-
TSA and the other two algorithms show as the fig.6 and



fig.7 while the resource utilization show as the fig.8
and fig.9.

As randomly generated DAG experiment, the
resource utilization of Max-min and Min-min are
almost the same. When the number of resource
machines is selected to be {10, 20,30,40,60} based on
the random DAG and {2, 4, 8, 16, 32, 64} based on the
real application DAG, the scheduling length curve of
P-TSA algorithm is under the curve of Max-min and
Min-min algorithm.

The makespan based on P-TSA and the other two
algorithms show as the fig.6 and fig.7.

Figure 6. The makespan contrast with the
random DAG

Figure 7. The makespan contrast with molecular
dynamics code

The simulation results show that the average of
scheduling length of P-TSA is smaller than the Max-
min and Min-min. The average of scheduling length of

P-TSA based on a random generated DAG is 82.2% of
Max-min algorithm and 83.4% of Min-min algorithm,
and the scheduling length can save 41.6% time at most.
The minimal makespan occurred when the number of
processors is 16 or 32 in molecular dynamics code
scenario. But the makespan is high when the number
of processors reaching 30 in random DAG scenario.
The nodes in the two scenarios are different, while the
changing of makespans in different scenarios is quite
different.

The resource utilization of three algorithms in the
simulation is shown as fig.8 and fig.9.

Figure 8. The resource utilization contrast with
the random DAG

Figure 9. The resource utilization contrast with
molecular dynamics code

The resource utilization of P-TSA is increased by
12.5 percentage points compared with the Max-min



and Min-min algorithm. The average of scheduling
length of P-TSA based on DAG of molecular dynamics
code is 73.3% of Max-min algorithm and 76.3% of
Min-min algorithm, and the scheduling length can save
41.2% time at most. The resource utilization of P-TSA
is increased by 11.6 percentage points compared with
the Max-min and Min-min algorithm. The changing of
resource utilization in different scenarios is also quite
different.

P-TSA shows better performance than Max-min
and Min-min in the makespan and resource utilization
based on the graphs of real applications and random
DAG, especially in the environment with large num of
the tasks and processors.

5. Conclusion

Grid computing is a special form of parallel
computing, the scheduling algorithm in grid can solve
the scheduling problems in parallel computing. A QoS-
aware algorithm P-TSA is proposed in this paper to
solve the priority-based task scheduling problem in
grid. P-TSA divides tasks by priority and schedule
grids according to the priority. Considering the service
migration, the P-TSA algorithm can get smaller grid
scheduling length in solving the dependent task
scheduling problems. Compared with Min-min and
Max-min algorithm by using the randomly generated
DAG and DAG used in the real world, the P-TSA have
had a better performance and got a distinct advantage
on the aspect of scheduling length.

The scheduling length is the only factor to be
considered in this paper and other QoS factors will be
considered in the P-TSA algorithm in the future work.

6. Acknowledgement

This paper is partially supported by Supported by
Nature Science Foundation of China under grant No.:
60673046，60903153.

7. References

[1] Ian Foster. What is the grid? A three point checklist, Grid
Today, vol.1, pp.6-12, 2002.

[2] Ehsan Ullan Munir and Jian-Zhong Li. Performance
Analysis of Task Scheduling Heuristics in grid. Proceedings
of the Sixth International Conference on Machine Learning
and Cybernetics, Hong Kong,19-22 August 2007.

[3] Ladislau L.boloni and Muthucumaru Maheswaran, A
Comparison of Eleven Static Heuristics for Mapping a Class
of Independent Tasks onto heterogeneous Distributed
Computing Systems. Journal of Parallel and Distributed
Computing 61, 810-837 ,2001.

[4]E.Ilavarasan,P.Thambidurai,R.Mahilmannan,”High
Performance Task Scheduling Algorithm for Heterogeneous
Computing System,” Lecture Notes in Computer
Science3719,pp.193-203,2005.

[5] M.Wu and D.Gajski,”Hypertool:A programming Aid for
Message Passing System” IEEE Trans.Parallel and
Distirbuted Systems,vol.1,pp.330-343,July 1990.

[6] Marjan Abdeyazdan,Amir Masoud
Rahmani,”Multiprocessor Task Scheduling using a new
Prioritizing Genetic Algorithm based on number of Task
Childern”,Distributed and Parallel System,Springer
US,pp.105-114,2008.

[7] M.Iverson, F.Ozguner and G.Follen, “Parallelizing
Existing Applications in a Distributed Heterogeneous
Environments”, Proc. Heterogeneous Computing Workshop,
pp.93-100, 1995.

[8] H. Topcuglou, S. Hariri and M.Y. Wu, “Performance
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing”, IEEE Trans. on Parallel and
Distributed Systems, vol. 13, No.3, Feb’2002.

[9] M.Rahman,S.Venugopal,andR.Buyya.A dynamic critical
path algorithm for scheduling scientific workflow 
applications on global grids. Proceedings of the 3rd IEEE
International Conference on e-Science and Grid
Computing,Bangalore,India,2007.


