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Abstract
Traffic flow forecasting, as a fundamental task of intelligent trans-
portation systems driven by the Web, remains challenging due to
the complex spatial and temporal dependencies between different
roads. Considering the inherent graph structure of road networks,
recent works capture the spatial dependencies by utilizing graph
convolutional networks (GCNs) and have devoted great efforts to
enhancing GCNs. However, graph convolution, as the core of GCNs,
has quadratic time and space complexity due to the internal matrix
multiplication operation on the adjacency matrix, which prevents
existing works from being deployed on huge road networks. In
this paper, we doubt the necessity of graph convolution in captur-
ing spatial dependencies and find that the aggregating operation
in graph convolution can be replaced by Multi-Layer Perceptron
(MLP) with layer normalization in traffic forecasting. Inspired by
the emerging MLP models on other deep learning tasks, we further
propose a pure-MLP traffic forecasting model without the depen-
dence on graph convolution. Experiments on several real-world
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traffic datasets show that our pure-MLP model is more efficient and
has competitive performances compared to state-of-the-art works.
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1 Introduction
Traffic flow forecasting, as the premise and foundation of intelli-
gent transportation systems driven by the Web, aims at predicting
the future status of traffic systems, thereby assisting people in the
management and scheduling of urban traffic [15]. Due to its huge
practical value, traffic forecasting has attracted more and more
attention from the data mining and artificial intelligence research
community [2, 14]. The core challenge of traffic forecasting lies
in capturing spatial and temporal dependencies between different
nodes in road networks and different time steps. Recent works
mainly utilize graph convolutional networks (GCNs) to model the
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spatial dependencies between nodes and have devoted great efforts
to enhancing GCNs. Since GCNs calculate the products of adja-
cency matrices and features of nodes, the performance of existing
works heavily depends on the strategies for constructing adjacency
matrices.

Lots of novel strategies for constructing more effective adjacency
matrices have been proposed for more accurate prediction. Early
works [7, 13] intuitively define adjacency matrices according to the
distance between nodes, and believe that closer nodes are higher
correlated. However, distant nodes may share similar patterns and
have certain correlations, e.g., residential areas that are far away
may have similar traffic flow. Followingworks [1, 10]make attempts
to enhance the representation of the spatial model, and propose to
learn node embeddings, which are utilized to infer the proximity
among nodes by calculating their embedding similarities. Similar
to early distance-based adjacency matrices, the learned adjacency
matrices in those works are kept fixed after training and fall short of
representing dynamic spatial dependencies in traffic data. To tackle
this shortage, [4, 12] apply self-attention mechanism for modeling
spatial dependencies, which enables those models to build attention
matrices at each time step, and can be seen as building dynamic
adjacency matrices. Although existing works achieve improved
prediction performance, the strategies for calculating adjacency
matrices have become increasingly complex, resulting in larger and
more time-consuming models. Challenge: It is worth noting that
even for vanilla graph convolution, the time and space complexity
scales quadratically with the number of nodes. This unsatisfactory
time and space complexity hinders the deployment of these models
on large-scale road networks with a significant number of nodes.

Insight: Considering the efficiency challenge posed by graph
convolution in existing works, we can tackle this issue by replacing
graph convolution with alternative modules for modeling spatial de-
pendencies. Improvement: In this paper, we propose a Graph-Less
MLP SpatioTemporal (GLMST) architecture for traffic forecast-
ing, whose time and space complexity is linear to the number of
nodes. The proposed GLMST consists of Graph-Less Spatial MLP
blocks (GLSM) for capturing spatial dependencies andCross-Channel
Temporal MLP blocks (CCTM) for modeling temporal dependencies.
In the spatial perspective, instead of utilizing graph convolution,
we extract spatial dependencies by a simple fully-connected layer
equipped with residual connection and layer normalization, where
layer normalization connects the nodes in a graph-free way. In
the temporal perspective, we apply two fully-connected layers in
the time dimension and the feature dimension, respectively. We
evaluate the proposed GLMST on several widely used real-world
datasets for the multi-step traffic prediction task. Experimental
results demonstrate that the proposed pure-MLP architecture out-
performs existing methods in terms of both accuracy and efficiency.

2 Methodology
2.1 Problem Definition
Def 1 (Basic graph structure). A spatial graph G can be denoted
asG(A,V, E), whereA, V and E denote the adjacency matrix, the set
of vertices and edges respectively, 𝑣𝑖 ∈ V(1 ≤ 𝑖 ≤ |V|) corresponds
to the 𝑖-th vertex in V. Since A contains the same information as E,
we may also denote a graph as G(A,V) or G(V, E).
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Figure 1: Overview of the proposed GLMST framework.

Def 2 (Historical spatiotemporal data). The feature matrix of all
vertices in graphG in time interval 𝑡 can be denoted asV𝑡 ∈ R |V |×𝐷 ,
where 𝐷 is the dimensionality of the feature of each vertex. The
historical spatiotemporal features of G in historical 𝑃 time intervals
can be formulated as

[
V(𝑡−𝑃+1) ,V(𝑡−𝑃+2) , · · · ,V𝑡

]
∈ R𝑃×|V |×𝐷 .

Def 3 (Traffic forecasting). The goal of traffic forecasting is to
learn a function 𝑓 that predicts the spatiotemporal data of G for the
next 𝑄 time steps based on the data of G from the past 𝑃 steps, i.e.,

[V𝑡−𝑃+1, · · · ,V𝑡 , ]
𝑓
−→ [V𝑡+1, · · · ,V𝑡+𝑄 ] . (1)

2.2 Overall Structure
Following the Transformer architecture [9], we design GLMST, as
illustrated in Figure 1, which consists of three main components: (1)
stacked 𝐿 spatiotemporal blocks, each incorporating GLSM, CCTM,
residual connections, and normalizationmodules; (2) an input linear
projection without activation function for projecting the input V𝑡
from 𝑑-dimension to 𝑑𝑚𝑜𝑑𝑒𝑙 -dimension; and (3) an output linear
projection without activation function for projecting the output
of stacked spatiotemporal blocks from 𝑑𝑚𝑜𝑑𝑒𝑙 -dimension back to
𝑑-dimension. During the process of spatiotemporal block, including
GLSM and CCTM, the feature dimension is maintained as 𝑑𝑚𝑜𝑑𝑒𝑙 .

2.3 Cross-Channel Temporal MLP Block
Existing works have designed lots of novel but complex modules
for capturing temporal dependencies. Motivated by [8], we propose
a Cross-Channel Temporal MLP (CCTM) block. As shown in the
upper right of Figure 1, the proposed CCTM consists only of linear
projections, ReLU activation, and transpose operations. When fed
input asV ∈ R𝑁×𝑃×𝑑 , CCTMfirst applies linear projection followed
by a ReLU activation function in feature dimension 𝑑 , and then
applies linear projection in temporal dimension 𝑃 ,

V′ = {[ReLU(VW𝑡1 + b𝑡1 )]⊤W𝑡2 }⊤, (2)

whereW𝑡1 ∈ R𝑑×𝑑 , b𝑡1 ∈ R𝑑 andW𝑡2 ∈ R𝑃×𝑄 are learnable param-
eters, V′ ∈ R𝑁×𝑄×𝑑 is the output. Notably, the feature dimension
is kept unchanged during the calculation of CCTM and there is no
bias term in the linear projection of the temporal dimension. The
proposed temporal MLP block provides a simple and effective way
to model temporal dependencies.
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Figure 2: Learned adjacency matrix in [1] on PeMSD4 dataset.
The bottom left subfigure shows the whole matrix, which
has large values on the diagonal and small values elsewhere.
The rest three subgraphs are taken from the upper left cor-
ner, lower right corner, and upper right corner of the whole
matrix with a size of 50 × 50, respectively.

2.4 Graph-Less Spatial MLP Block
The Graph-Less Spatial MLP (GLSM) block is designed based on the
observation that the learned adjacency matrices of several recent
works share a simple pattern of having large values on the diagonal
and small values elsewhere, as shown in Figure 2. The goal of the
proposed GLSM is to approximate the graph convolution operation
on adjacency matrices with such pattern, denoted as A𝑝 .

The detailed architecture of GLSM is shown on the left of Figure 1.
GLSM consists only of a linear projection with a ReLU activation
function and a layer normalization. Given input as V ∈ R𝑁×𝑄×𝑑 ,
GLSM first applies linear projection in feature dimension,

V′ = ReLU(VW𝑠1 + b𝑠1 ), (3)

where W𝑠1 ∈ R𝑑×𝑑 and b𝑠1 ∈ R𝑑 are learnable parameters, V′ ∈
R𝑁×𝑄×𝑑 is the result of projection. Then a layer normalization is
applied in the spatial and feature dimensions,

V̂ =
V′ − E[V′]√︁
Var[V′]

⊙
W𝑠2 + B𝑠2 , (4)

where E and Var denotes the mean and standard deviation of all
the elements in spatial and feature dimension of V′,

⊙
denotes

element-wise product, W𝑠2 ∈ R𝑁×1×𝑑 and B𝑠2 ∈ R𝑁×1×𝑑 are
learnable parameters, V̂ is the output of GLSM. As the calculation
of mean, standard deviation, and element-wise multiplication all
have linear complexity, the overall time and space complexity of
the proposed GLSM is linear.

We here present how layer normalization along the space/node
dimension can approximate the graph convolution operation on
A𝑝 . For simplicity, we set the feature dimension to 1 and omit the
bias term in layer normalization. Given an input x ∈ R𝑁×1, a layer
normalization with affine parameters a ∈ R𝑁×1 on x is equal to

Table 1: Statistical information of datasets.

Datasets #Nodes interval Time Range

PeMSD3 358 5 min 09/01/2018 - 11/30/2018
PeMSD4 307 5 min 01/01/2018 - 02/28/2018
PeMSD7 883 5 min 05/01/2017 - 08/31/2017
PeMSD8 170 5 min 07/01/2016 - 08/31/2016

the following multiplication:

LN(x) = [𝑑𝑖𝑎𝑔(a)
𝜎

(I − 1
𝑁
)]x = Ax, (5)

where 𝜎 is standard deviation of x, I ∈ R𝑁×𝑁 is the identity matrix
and 1

𝑁
∈ R𝑁×𝑁 is a matrix of all 1

𝑁
s. As can be found, layer normal-

ization is exactly equivalent to graph convolution with adjacency
matrix as A = [𝑑𝑖𝑎𝑔 (a)𝜎 (I − 1

𝑁
)]. Because of the term I − 1

𝑁
, A has

a similar pattern as A𝑝 , i.e., having large values on the diagonal
and small values elsewhere. Due to the affine parameters a, A has
different values at different rows rather than 1

𝑁
everywhere, which

allows A to capture spatial correlations among nodes more flexibly.

3 Experiments
3.1 Experimental Settings
3.1.1 Datasets. The experiments are conducted on four widely
used real-world traffic datasets about highway traffic flow in Cal-
ifornia, namely PeMSD3, PeMSD4, PeMSD7, and PeMSD8. The
statistical information is summarized in Table 1.

Data Preprocess: Linear interpolation is utilized to fill the miss-
ing values in the datasets. Then, we apply min-max normalization
to normalize the data into the range of [−1, 1] to make the training
process more stable. As we focus on multi-step traffic forecasting,
we set 𝑃 and 𝑄 in Eq. 1 to 12, which means that each sample con-
tains 24 points consecutively in the dataset which corresponds to
two-hour data points, then the historical one-hour data points are
taken as input and the next one-hour data points are taken as tar-
get. All datasets are divided into training sets, validation sets, and
testing sets according to the ratio of 6:2:2 in chronological order.

3.1.2 Baselines. We compare the proposed GLMST model with
several representative and advanced baseline models, including
VAR [16], LSTM [5], STGCN [13], DCRNN [7], GraphWaveNet [11],
ASTGCN(r) [4], AGCRN [1], STFGNN [6], and STG-NCDE [3].

3.1.3 Implementation. OurGLMSTmodel is implemented in Python
with PyTorch 1.9, under the environment with one CPU Intel(R)
Xeon(R) E5-2620 v4 @ 2.10GHz and one GPU Nvidia Tesla V100
16GB. Mean Absolute Error (MAE) is chosen as the loss function,
and Root Mean Square Error (RMSE) andMean Absolute Percentage
Error (MAPE) are involved to evaluate the prediction accuracy of
all the models. We utilize Adam for tuning the learnable parameters
with an initial learning rate of 0.0008 on PeMSD3, 0.003 on PeMSD4,
0.005 on PeMSD7, and 0.005 on PeMSD8, respectively.

3.2 Experimental Results
3.2.1 Overall Comparison. Table 2 and Table 3 demonstrate the
averagedMAE, RMSE, andMAPE over 12-step prediction of GLMST
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Table 2: Performance comparison on PeMSD3 and PeMSD4
datasets. The best results are highlighted in bold, and * indi-
cates the second-best results, hereinafter the same.

Model PEMSD3 PEMSD4
MAE RMSE MAPE MAE RMSE MAPE

VAR 23.65 38.26 24.51% 24.54 38.61 17.24%
FC-LSTM 21.33 35.11 23.33% 26.77 40.65 18.23%
STGCN 17.55 30.42 17.34% 21.16 34.89 13.83%
DCRNN 17.99 30.31 18.34% 21.22 33.44 14.17%

GraphWaveNet 19.12 32.77 18.89% 24.89 39.66 17.29%
ASTGCN(r) 17.34 29.56 17.21% 22.93 35.22 16.56%
AGCRN 15.98 28.25 15.23% 19.83 32.26 12.97%
STFGNN 16.77 28.34 16.30% 20.48 32.51 16.77%

STG-NCDE 15.57* 27.09* 15.06%* 19.21* 31.09 12.76%*
GLMST 15.21 26.77 14.74% 19.00 31.20* 12.46%

Table 3: Performance comparison on PeMSD7 and PeMSD8.

Model PeMSD7 PeMSD8
MAE RMSE MAPE MAE RMSE MAPE

VAR 50.22 75.63 32.22% 19.19 29.81 13.10%
FC-LSTM 29.98 45.94 13.20% 23.09 35.17 14.99%
STGCN 25.33 39.34 11.21% 17.5 27.09 11.29%
DCRNN 25.22 38.61 11.82% 16.82 26.36 10.92%

GraphWaveNet 26.39 41.5 11.97% 18.28 30.05 12.15%
ASTGCN(r) 24.01 37.87 10.73% 18.25 28.06 11.64%
AGCRN 22.37 36.55 9.12% 15.95 25.22 10.09%
STFGNN 23.46 36.6 9.21% 16.94 26.25 10.60%

STG-NCDE 20.53 33.84 8.80%* 15.45 24.81* 9.92%*
GLMST 20.73* 34.60* 8.76% 15.48* 24.69 9.78%

and alternative baselines, which reveal that our GLMST achieves
competitive performance across all datasets.

3.2.2 Exploratory Analysis of GLMST. To further analyze GLMST,
we select three representative baselines that represent different
calculating strategies of adjacency matrix, including (1) STGCN
constructs distance-based adjacency matrix, (2) AGCRN learns em-
beddings for nodes and calculates the adjacency matrix according to
the dot products of node embeddings, and (3)ASTGCN utilizes self-
attention mechanism for calculating attention weights at each time
step, and dot-products the attention weights with distance-based ad-
jacency matrix which results in different adjacency matrices at each
time step. Additionally, we involve STG-NCDE in this comparison,
since STG-NCDE performs best in all baselines.

❶ Time Consuming.We compare the training and testing time
consuming on PeMSD4 of our model and the selected four baselines.
As shown in Table 4, the proposed GLMST has the least testing time
cost among the five models and is 7× faster than STG-NCDE, which
indicates the improvement in time-consuming of our model is much
greater than the performance improvement. Due to the learnable
parameters involved in layer normalization, the training speed of
GLMST on PeMSD4 is slower than STGCN, AGCRN, and ASTGCN,
but is still 5× faster than STG-NCDE.

❷ Deploying GLSM on other models. We deploy the pro-
posed GLSM on STGCN, AGCRN, ASTGCN, and STG-NCDE to
compare both the efficiency and effectiveness of GLSM and graph

Table 4: Time consumption (s/epoch) of different models on
PeMSD4. GLMST demonstrates the lowest testing time cost.

Model MAE Testing time Training time
STGCN 21.16 2.88 17.94
AGCRN 19.83 2.44 21.72
ASTGCN 22.93 3.98 21.69
STG-NCDE 19.21 16.54 167.58
GLMST 19.00 2.17 33.21

Table 5: Effect of replacing graph convolution with GLSM.
The replacement is nearly harmless to performance, and
GLSM leads to faster training and testing on all models.

Model MAE RMSE MAPE(%) Testing time Training time

STGCN
Origin 22.3 36.13 14.528 2.79 18.94

With GLSM 21.51 35.25 14.13 2.74 18.67

ASTGCN
Origin 22.71 33.82 15.51 3.98 21.69

With GLSM 20.51 32.84 14.00 0.87 7.56

AGCRN
Origin 19.74 32.16 13.14 2.44 21.72

With GLSM 19.69 32.02 12.87 1.18 15.30

STG-NCDE
Origin 19.21 31.09 12.76 16.54 167.58

With GLSM 19.32 31.19 12.78 13.90 142.69

convolution on PeMSD4. Graph convolution in the original models
is replaced with GLSM while keeping all other settings unchanged.
As shown in Table 5, replacing graph convolution with GLSM leads
to less time consumption both in training and testing procedures,
which validates that GLSM has lower time complexity than graph
convolution. Notably, when replacing the graph convolution with
GLSM in the existing models, the prediction accuracy is nearly the
same as that of the origin models or even better. Since the perfor-
mance loss from such replacement of graph convolution is little,
the proposed GLSM can be deployed as a plug-in spatial module to
replace the graph convolution. The experimental results validate the
effectiveness of the proposed GLSM in modeling spatial dependencies.

❸ Variants of GLSM.As in Eq.5, multiplication with 1
𝑁

is equiv-
alent to the mean operation on node dimension, thus, we present
the following variants to further investigate GLSM. (1) Mean re-
places layer normalization of GLSM with mean function, which is
equal to directly use (X +𝑚𝑒𝑎𝑛(X))W. (2)MeanP replaces layer
normalization with mean function but keeps the affine parameters
of layer normalization, which is designed to compare mean function
and layer normalization. (3) NoLNP removes layer normalization
in GLSM but keeps the affine parameters of layer normalization
in Eq 4. (4) NoRes removes the residual connection of GLSM. (5)
LNNoP removes the affine parameters of layer normalization. Re-
sults on PeMSD4 (Fig. 3) show that MeanP performs best among
the variants but falls short of GLSM, highlighting the superiority
of normalization. Affine parameters significantly enhance perfor-
mance with both mean and layer normalization. The gap between
NoRes and Origin GLSM underscores the importance of residual
connections. The substantial performance drop in NoLNP demon-
strates that, despite minimal spatial operations, layer normalization
is crucial and has a greater impact than affine parameters.
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Figure 3: The performance of different variants of GLSM.

4 Conclusion
In this work, we propose a novel graph-less pure-MLP architecture
(GLMST) for traffic forecasting, which consists of a Graph-Less
Spatial MLP block (GLSM) and a Cross-Channel Temporal MLP
block (CCTM). Experimental results on four real-world traffic flow
datasets show the effectiveness of GLSM in capturing spatial de-
pendencies and the superiority of our GLMST in traffic forecasting.
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