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Abstract
Spatio-temporal graph (STG) forecasting plays a crucial role in vari-
ous urban computing applications driven byWeb systems. However,
conventional STG forecasting methods, which rely on centralized
data processing, have posed obstacles to real-world applications in
numerous data silo scenarios. Given this, some researchers have
preliminarily explored incorporating federated learning into STG
forecasting. Though promising, the existingmethods encounter two
critical issues, i.e., dynamics and heterogeneity in STGs. To this end,
we propose a novel personalized Federated learning framework for
Spatio-Temporal Graph forecasting (called FedSTG), along with an
evolutionary graph learning module and a personalized federated
aggregation algorithm based on evolving temporal patterns in the
framework. Our approach enhances the STG learning capabilities
in the federated paradigm, yield addressing the problem of STG
forecasting in data silo scenarios. Extensive experiments on four
real-world datasets in STG forecasting have been conducted to
demonstrate the superiority of our approach.
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1 Introduction
Spatio-Temporal Graph (STG) is an effective tool for modeling the
physical world with structural information, especially in web net-
works and smart cities. Therefore, research on STG forecasting
has attracted much attention from enormous researchers in the
past decades [10, 13]. Graph neural networks (GNNs) are at the
forefront of deep learning techniques capable of learning structural
information from complex topologies of data, which have been
widely applied in various STG forecasting tasks [9]. Specifically,
STGCN [12] applies ChebNet graph convolution to extract spatio-
temporal correlations in traffic data. Graph WaveNet [11] captures
the spatial correlation with a diffusion convolution layer and learns
the temporal correlation using TCN. Evidently, the aforementioned
methods highly rely on large-scale data for centralized training,
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Figure 1: A case of STG (COVID-19 cases in Texas hospi-
tals). The data distribution presents heterogeneity in spatio-
temporal dimension, and the structural relationship between
nodes also evolves dynamically over time.

which inevitably puts forward strict requirements for the central-
ized management of data. Nowadays, with the increasing voice of
data isolation, data is often held by various distributed nodes and
cannot be shared with each other, which poses a new challenge for
the realistic application of STG forecasting.

In response to this, some work has preliminarily incorporated
Federated Learning (FL) into STG forecasting to enable distributed
nodes to collaboratively train models without raw data sharing [14].
CNFGNN [7] aggregates local temporal embeddings uploaded from
clients and employs GNNs to obtain spatial embeddings, which
are sent back to the corresponding clients for forecasting. SFL [1]
learns both the global and personalized models simultaneously us-
ing client-wise relation graphs and clients’ private data. Though
intriguing, there are still two critical challenges that remain to be
further addressed: ↩→ Distribution heterogeneity: As depicted in
Fig. 1, the distribution of data in STGs is inconsistent in temporal
and spatial dimensions, and as a result, a unified global model can-
not be applicable to the local data of each node. Existing FL work,
like CNFGNN, mostly uses Federated Averaging (FedAvg) [6] to
train a shared global model for all nodes through equally aggre-
gating the parameters of the client models, so that the models in
all clients are indistinguishable, which fail to achieve local model
personalization and lead to undesirable performance. ↩→ Dynamic
graph structure: In addition to the pre-defined structure based on
geographical proximity, there is also a potential dynamic structural
relationship among nodes that evolves over time. A sample illus-
tration is given in Fig. 1, the strong correlation (i.e., connectivity
in STG) among these three nodes changes from "M-A" (𝑡0 ∼ 𝑡1)
to "M-W" (𝑡1 ∼ 𝑡2). Previous FL methods only focus on capturing
static graph structure, which discards the evolutionary patterns of
STG structure, thereby limiting the propagation of global temporal
patterns in space and the capacities of federated STG learning.

Consequently, developing a novel personalized FL framework,
which simultaneously solves the problem of distribution hetero-
geneity and dynamic graph structure, would drastically promote
the effectiveness and practicability of STG forecasting in data silo
scenarios. Meanwhile, in real-world federated spatio-temporal sce-
narios, each node is an isolated organization holding only its own
data. Unlike high-performance central servers, the nodes have lim-
ited computing and storage capacity and do not support massive

data processing. Generally, each node can only access recent few-
shot spatio-temporal data (e.g., several months of data), and such
incremental data hinders an obstacle to long-term spatio-temporal
pattern modeling. According to Fig. 1, we discover that the evo-
lutionary rule of long-term spatio-temporal patterns will bring
insights into understanding spatio-temporal heterogeneity and dy-
namics. Therefore, we will start with long-term spatio-temporal
pattern mining to address the above challenges.

To this end, we propose a novel personalized Federated learning
framework for Spatio-Temporal Graph forecasting (called FedSTG).
Targeting the first challenge, we conduct Federated Aggregation
with Temporal Pattern of clients (FedATP), which can adaptively
aggregate parameters based on temporal pattern characteristics
to obtain the personalized client model. To overcome the second
issue, we introduce an evolutionary graph learning module based
on dynamic graph structure in the server-side model, which can
facilitate the capacity of graph structure modeling in STGs. The
main contributions of this paper lie in four aspects:

❶ We propose a novel federated STG learning paradigm. Our
FedSTG provides an ingenious marriage of FL and STG forecasting,
and extends STGs to data silo scenarios. ❷ We develop a person-
alized aggregation algorithm called FedATP dedicated to STGs.
It alleviates the problem of data heterogeneity and facilitates lo-
cal model personalization. ❸ We extract complex graph structure
among clients from temporal evolution perspectives, which empha-
sizes dynamic inter-client topology and enhances STG modeling in
FL setting. ❹ The experiments show impressive results brought by
our novel setting of FL for STG forecasting, where our FedSTG can
consistently outperform other baselines.

2 Preliminary
Definition 1 (Spatio-Temporal Graph). Given the data held by 𝑁
correlated organizations (nodes). We denote the topological struc-
ture of nodes as a weighted graph 𝐺 = (𝑉 , 𝐸,A), where 𝑉 is the
set of |𝑉 | = 𝑁 nodes 1, 𝐸 is the set of edges, and A ∈ R𝑁×𝑁 is
a weighted adjacency matrix representing the proximities among
nodes, e.g., measured by the distance of node pairs. The incremental
data in organization 𝑖 is denoted as X𝜏,𝑖 ∈ {X1,𝑖 ,X2,𝑖 , · · · ,XT,𝑖 },
where 𝜏 ∈ {1, · · · ,T } is the time interval, meaning the data keeps
updating over time. Notably, X𝜏,𝑖 ∈ R𝑇×𝐷 is only locally accessible
by organization 𝑖 , where 𝐷 is the feature dimension and 𝑇 denotes
the past time steps in a time interval.
Problem 1 (Optimization Objective in FL). Our goal is to forecast
the future STG data held by the 𝑁 organizations, i.e., learning a
function 𝑓𝜽𝜏 that can predict future 𝐻 time steps based on the past
𝑇 time steps. In FL setting, the objective function is as follows:

min
𝜽𝜏,1,𝜽𝜏,2,· · · ,𝜽𝜏,𝑁

1
𝑁

𝑁∑︁
𝑖=1
L𝑖

(
𝑓𝜽𝜏,𝑖

)
, (1)

where 𝜽𝜏,𝑖 is the parameters of the local model in client 𝑖 in the 𝜏-th
interval, L𝑖 denotes the loss function of local model in client 𝑖 .

3 Methodology
The core idea of our proposal is to establish an effective personalized
model for each client without data sharing as illustrated in Fig. 2.
1In this paper, each node denote a data silo, corresponding to a client in FL system.
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Firstly, We preserve and update evolutionary temporal patterns in
clients using temporal pattern bank. Next, we extract the static and
dynamic graph structure among clients on the server side. Then,
we conduct parameter aggregation based on the temporal patterns
of clients to obtain personalized models applicable to local tasks.

3.1 Temporal Pattern Modeling
Long- and short-term temporal patterns exist simultaneously in
spatio-temporal data. Generally, each client can only access recent
few-shot data, which hinders an obstacle to long-term pattern mod-
eling. Inspired by Fig. 1, we discover that the evolutionary rule of
long-term patterns will bring insights into the solution of hetero-
geneity and dynamics. Therefore, we start with long-term temporal
pattern mining to facilitate downstream tasks.

3.1.1 Temporal Pattern Bank. We adopt a Temporal Pattern Bank
(TP-Bank) module to store and update the significant patterns. TP-
Bank is a parameterized embedding matrix B ∈ R𝐾×𝑑 , where 𝐾
represents the number of temporal pattern categories and 𝑑 is the
dimension of the pattern representation. In particular, we employ
GRU encoder depicted in Fig. 2 to obtain the short-term temporal
embedding h𝜏,𝑖 of client 𝑖 in time interval 𝜏 , and then we conduct
query projection with h𝜏,𝑖 to get the query vector for the attention
mechanism:

h𝜏,𝑖 = GRU𝑖 (X𝜏,𝑖 , h(0)𝜏,𝑖 ), q𝜏,𝑖 =𝑊 𝑙
𝜏 h𝜏,𝑖 + 𝑏𝑙𝜏 , (2)

where h(0)
𝜏,𝑖

is a zero-valued initial hidden state vector.
Next, we calculate the similarity score between the query vector

q𝜏,𝑖 and the patterns stored in the TP-Bank B𝜏,𝑖 by the dot product
operation and extract the corresponding patterns from B𝜏,𝑖 :

p𝜏,𝑖 (𝑘) =
exp

(〈
q𝜏,𝑖 ,B𝜏,𝑖 (𝑘)

〉)∑𝐾
𝑘 ′=1 exp

(〈
q𝜏,𝑖 ,B𝜏,𝑖 (𝑘′)

〉) ,
z𝜏,𝑖 =

𝐾∑︁
𝑘=1

p𝜏,𝑖 (𝑘) ∗ B𝜏,𝑖 (𝑘),
(3)

where B𝜏,𝑖 (𝑘) denotes the 𝑘-th pattern category.

3.1.2 Optimization. Then, we concatenate the long-term repre-
sentation z𝜏,𝑖 with the short-term representation (output of GRU
decoder) of client 𝑖 , and input the enhanced representation to a fully
connected layer to predict future values in the next 𝐻 steps. We
use mean absolute error (MAE) to measure the predicted results:

L𝑝
(
𝜽𝜏,𝑖

)
=


X̂𝜏,𝑖 − X𝜏,𝑖



 , (4)

where X̂𝜏,𝑖 , X𝜏,𝑖 are predicted value and ground truth of client 𝑖 .
Notably, TP-Bank can be automatically updated over time end-

to-end, adopting parameter regularization inspired by [2]. The core
idea is to preserve parameters with high weights and allow unim-
portant parameters to be flexible for updating. Concretely, we first
compute the attention coefficient between the data in the current
interval X𝜏,𝑖 and pattern knowledge in the last interval B𝜏−1,𝑖 to
obtain optimization matrix Ω𝜏,𝑖 , and then utilize Ω𝜏,𝑖 to constrain
the optimization direction of pattern updating in TP-Bank:

L𝑘 =


B𝜏,𝑖 − B𝜏−1,𝑖Ω𝜏,𝑖

2 ,

Ω𝜏,𝑖 = 𝜎
( (

X𝜏,𝑖U1
)⊤ U2

(
U3B𝜏−1,𝑖

) )
,

(5)
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Figure 2: Overview of FedSTG: Personalized federated learn-
ing framework for STG forecasting across data silos.

where U1, U2 and U3 are the learnable parameters.
In this way, the long-term temporal pattern is retained and up-

dated adaptively according to the current spatio-temporal context.
Thus, the final optimization objective of client 𝑖 is:

min
𝜽𝜏,𝑖
L𝑝 (𝜽𝜏,𝑖 ) + 𝛼L𝑘 (𝜽𝜏,𝑖 ), (6)

where 𝛼 is the regularization weights for balancing loss.

3.2 Graph Structure Learning
As graph structure constantly evolves depicted in Fig. 1, modeling
both static and dynamic graph structures is crucial for STG learning.
We propose an evolutionary graph learning module based on the
variation of temporal distribution, to effectively implement the
modeling of federated dynamic graphs without raw and extra data.

3.2.1 Static and Evolutionary Graph Construction. Primarily, we
construct the pre-defined (static) and dynamic graph to represent
the structural relationships among nodes. We compute the connec-
tivity (edge weight) A𝑆

𝑖,𝑗
between node 𝑣𝑖 and 𝑣 𝑗 (𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 )

via a threshold Gaussian kernel weighting function for the static
graph. For the evolutionary graph, we obtain the connectivity A𝐸

𝑖,𝑗

by calculating the similarity of temporal patterns in node 𝑣𝑖 and 𝑣 𝑗 :

A𝑆𝑖,𝑗 =

{
exp

(
−𝑑 (𝑖, 𝑗 )

2

𝜎2

)
, 𝑑 (𝑖, 𝑗) ≤ 𝜅

0, otherwise
,

A𝐸𝑖,𝑗 =
{
Sim(z𝑖 , z𝑗 ), Sim(z𝑖 , z𝑗 ) ≥ 𝛽

0, otherwise ,

(7)

where 𝑑 (·, ·) is Euclidean distance, Sim(·, ·) is similarity measure, 𝜅
and 𝛽 are threshold parameters to control neighborhood size, and
z𝑖 , z𝑗 2 are the long-term patterns of 𝑣𝑖 and 𝑣 𝑗 stored in TP-Bank.

3.2.2 Graph Fused Learning. Next, we capture the structural infor-
mation in STG with temporal embeddings h𝑐 = {h𝑐,1, · · · , h𝑐,𝑁 }
uploaded by clients. By performing two parallel Graph Convolution
Networks (GCNs) on both static and evolutionary graphs, we obtain

2We omit 𝜏 for succinctness in the following.

1536



WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yudong Zhang et al.

Table 1: Average performance comparison (MAE and RMSE) of FedSTG and all alternative baselines on the four datasets.

(a) Air Quality Forecasting Task.

Datasets Methods Settings 6-step ahead 12-step ahead

MAE RMSE MAE RMSE

KnowAir

GRU Centralized 21.33 28.29 29.73 38.22
STGCN Centralized 20.82 27.59 27.81 37.47

TrafficStream Centralized 19.55 25.45 26.11 34.48

FedGRU Federated 23.48 31.69 31.38 41.32
SFL Federated 22.39 30.49 31.04 40.96

CNFGNN Federated 22.08 30.26 30.64 39.59
FedSTG (ours) Federated 20.79 28.36 29.14 38.12

AirBJ

GRU Centralized 23.44 41.17 33.94 53.90
STGCN Centralized 21.17 36.27 28.01 48.15

TrafficStream Centralized 17.59 31.69 31.71 42.94

FedGRU Federated 26.91 48.55 38.72 60.13
SFL Federated 25.66 46.31 37.23 57.81

CNFGNN Federated 25.21 45.49 36.63 56.89
FedSTG (ours) Federated 23.27 40.98 32.86 52.98

(b) Epidemic Spread Forecasting Task.

Datasets Methods Settings 6-step ahead 12-step ahead

MAE RMSE MAE RMSE

Covid-TX

GRU Centralized 33.82 53.86 46.81 77.64
STGCN Centralized 32.83 51.79 45.38 73.60

TrafficStream Centralized 28.19 44.34 39.70 60.86

FedGRU Federated 43.82 68.91 61.71 94.59
SFL Federated 39.99 65.18 57.02 92.00

CNFGNN Federated 38.13 61.63 52.61 88.73
FedSTG (ours) Federated 35.90 57.22 48.70 84.93

Covid-CA

GRU Centralized 212.82 332.22 278.30 425.85
STGCN Centralized 201.24 316.64 266.25 417.47

TrafficStream Centralized 181.43 286.72 240.61 393.54

FedGRU Federated 240.16 379.54 318.50 520.94
SFL Federated 232.28 371.21 311.09 505.65

CNFGNN Federated 228.19 358.58 295.51 468.32
FedSTG (ours) Federated 220.31 346.39 286.79 443.76

two structural embeddings of complementary information:

h𝑆𝐺 = 𝜎 ((A𝑆 + I𝑆 )h(𝑙 )𝑐 W(𝑙 )1 + b(𝑙 )1 ),

h𝐸𝐺 = 𝜎 ((A𝐸 + I𝐸 )h(𝑙 )𝑐 W(𝑙 )2 + b(𝑙 )2 )
(8)

where W(𝑙 ) , b(𝑙 ) are learnable, and I𝑆 , I𝐸 are identity matrices.
Then, we adopt the gated fusion [15] to adaptively consider static

and dynamic effects. The two structural embeddings are fused as:

h𝐺 = g ⊙ h𝑆𝐺 + (1 − g) ⊙ h𝐸𝐺 ,

g = 𝜎

(
h𝑆𝐺W𝑔,1 + h𝐸𝐺W𝑔,2 + b𝑔

)
,

(9)

where h𝐺 is global structural embedding calculated by the server
and fed back to clients, g is the gate, W𝑔,1, W𝑔,2, b𝑔 are learnable.

3.3 Personalized Federated Aggregation
To enable model to adapt to local tasks, we propose a Federated
Aggregation algorithm based on Temporal Pattern characteristics
of clients, namely FedATP, which can adaptively aggregate partial
parameters from local models and perform a personalized update
for each client. Primarily, we calculate the similarity of temporal
patterns in each node-pairs, and then compute the relevance score to
obtain the relevance matrix of the clients’ temporal patterns. If the
long-term patterns of clients possess a higher similarity, the spatio-
temporal characteristics are also of greater relevance. Therefore,
we perform parameter aggregation based on the relevance matrix
for each client. The process of FedATP is formulated as:

𝜽𝐺,𝑖 ←
𝑁∑︁
𝑗=1

W𝑖 𝑗𝜽
′
𝑗 , whereW𝑖 𝑗 =

exp{Sim(z𝑖 , z𝑗 )}∑𝑁
𝑗=1 exp{Sim(z𝑖 , z𝑗 )}

(10)

where 𝜽 ′
𝑖
is the parameter of GRU in client 𝑖 , and 𝜽𝐺,𝑖 is the updated

parameter after aggregation. Notably, we only aggregate and update
the parameter of GRU in each client, and the other parameters
in local models (TP-Bank and predictor) are not involved, which
remedies the issues of model personalization and overfitting.

Table 2: Detailed information of the evaluated datasets.

Properties Datasets

KnowAir AirBJ Covid-TX Covid-CA

Data Type Air quality Air quality Epidemic spread Epidemic spread
# of Nodes 184 35 251 55

# of Time span 01/2016-12/2016 01/2016-12/2016 01/2020-12/2020 01/2020-12/2020
Time step 3 hour 1 hour 1 day 1 day

4 Experiments
4.1 Experimental Settings
Tasks & Datasets. To investigate the effectiveness of FedSTG, we
evaluate FedSTG and baselines on four datasets in STG forecasting:
Air quality forecasting: 1) KnowAir is a PM2.5 concentration
dataset that covers 184 cities in China [8]. 2) AirBJ is an air quality
dataset [4] that contains the concentration of PM2.5 held by 35
stations in Beijing. Epidemic spread forecasting: 3) Covid-TX is a
COVID-19 spread dataset that covers 251 counties (hospitalizations)
in Texas [3]. 4) Covid-CA is a COVID-19 spread dataset that covers
55 counties in California [3]. Details are provided in Table 2.
Baselines. We compare FedSTG with two kinds of methods: Cen-
tralized methods: GRU, STGCN [12], TrafficStream [2]. Feder-
ated methods: FedGRU [5], SFL [1], CNFGNN [7]. We use 𝑇=12
historical time steps to predict the next 𝐻=12 time steps.

4.2 Experimental Results
Result 1 (Improvement). The average performances are summa-
rized in Table 1. For the federated approach, the performance of
FedSTG surpasses the others by a large margin across all datasets.
Result 2 (Ablation). We conduct ablation studies with 6 variants.
❶ Effect of Evolutionary Graph Learning: (i) without Graph
Structure Learning (w/o GSL), (ii) without Evolutionary Graph
Learning (w/o EGL). ❷ Effect of FedATP: (iii) a variant adopts
FedAvg (FedSTG-Avg), (iv) a variant aggregates all local parameters
(FedSTG-EA). ❸ Effect of TP-Bank: i) a variant removes TP-
Bank (w/o TP+Avg), ii) a variant omits TP-Bank, and aggregation
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Figure 3: Ablation analysis on 12-step ahead forecasting across all datasets. MAE is reported.

is conducted with temporal embedding h𝑖 (w/o TP). The results in
Fig. 3 prove that all components in FedSTG play an important role.

5 Conclusion
In this paper, we propose a novel federated spatio-temporal graph
learning framework (FedSTG) for cross-silo STG forecasting. We
address two critical issues that have not been well-solved in fed-
erated STG learning, i.e., heterogeneity and dynamics. Extensive
experiments have been conducted to demonstrate the superiority
of FedSTG. Therefore, our work not only extends STG learning to
data silo scenarios, but also improves the level of Web services.
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