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Abstract
The World Wide Web thrives on intelligent services that depend
heavily on accurate time series forecasting to navigate dynamic
and evolving environments. Due to the partially-observed nature of
real world, exclusively focusing on the target of interest, so-called
endogenous variables, is insufficient for accurate forecasting, espe-
cially in web systems that are susceptible to external influences.
Thus, utilizing exogenous variables to harness external information,
i.e., forecasting with exogenous variable (FEV), is imperative. Never-
theless, as the external environment is complex and ever-evolving,
inadequately capturing external influences can even lead to learn-
ing spurious correlations and invalid prediction. Fortunately, recent
studies have demonstrated that large language models (LLMs) ex-
hibit exceptional recognition capabilities across open real-world
systems, including a deep understanding of exogenous environ-
ments. However, it is difficult to directly apply LLMs for FEV due to
challenges of task activation, exogenous knowledge extraction, and
feature space alignment. In this work, we devise ExoLLM, an LLM-
driven method to sufficiently utilize Exogenous variables for time
series forecasting. We begin by Meta-task Instruction to activate
the knowledge transfer of LLM from natural language processing
to FEV. To comprehensively understand the intricate and hierarchi-
cal influences of exogenous variables, we propose Multi-grained
Prompts, encompassing diverse external influences, including natu-
ral attributes, trend correlations, and period relationships between
two types of variables. Additionally, a Dual TS-Text Attention is
devised to bridge the feature gap between text and numeric data in
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LLM. Evaluation on real-world datasets demonstrates ExoLLM’s
superiority in exploiting exogenous information for forecasting
with open-world language knowledge.
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1 Introduction
The World Wide Web, as a continuously and ever-changing physi-
cal system, heavily depends on the ability to forecast and respond
to shifting patterns and user behaviors [16, 17, 20, 37]. Time series
forecasting is essential to modern web technologies, utilizing his-
torical data to anticipate future web patterns and trends [29, 34, 59].
Its predictive accuracy not only enhances user experience but also
drives the development of intelligent web services, ranging from
personalized content recommendations [36] and web economics
modeling [5] tomicroservice log analysis [11]. These capabilities po-
sition time series forecasting as a cornerstone in creating adaptive,
data-driven web platforms [32, 55].

Recently, deep models have achieved promising progress in time
series forecasting [3, 13, 14, 21, 24–27, 40–42, 50, 63, 64, 70], with
most of them focusing exclusively on the target of interest, known
as endogenous variables, to make predictions [30, 35, 49, 51, 54, 66].
This approach often ignores the influence of exogenous variables
from the external environment. Exogenous variables refer to ob-
servable data within a system that are not the target variable
being predicted. As shown in Figure 1 (a), the variations within
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web page views (endogenous variable) are often influenced by ex-
ogenous variables, such as traffic flow, hospitalization rate, and
societal events [47, 53, 62]. Thus, given the complex and changing
physical system [23, 46, 48, 58, 61, 71], incorporating exogenous
factors, i.e., forecasting with exogenous variables (FEV) is becoming
prevalent and indispensable [33]. Generally, the core of FEV is to ef-
fectively model the influence of exogenous variables on endogenous
variable [4, 22, 28, 39]. Recent research in FEV proposes using atten-
tion among observed numerical exogenous series and endogenous
series to capture this inherent relationship [33, 53]. Nevertheless,
due to the Intricate influences and interactions from external en-
vironment, relying solely on time series modality is insufficient
for capturing these external influences: (1) Multi-grained tempo-
ral dependencies [19]. The external influences and interactions
from exogenous variables is multi-grained, such as periodicity and
trends, which can be reflected by various aspects including com-
plex human behaviors and living habits [68]. It is difficult to model
such changing and diverse impact only by observed numeric [29],
highlighting the necessity of thoroughly learning multi-grained
temporal features to effectively model these intricate patterns [19].
(2) Spurious correlation [12]. Noise and interventions in current
data can lead to learning biased external influence, thereby affecting
the accuracy of forecasting results [45]. For example, traffic flows
are positively correlated with exogenous weather variables, but
mandatory controls can lead to less traffic even when the weather
is good, resulting in spurious association that may be learned by
models. Without any external knowledge from real world, a high
prediction uncertainty tends to be inevitable [69].

Consequently, designing more intelligent and robust FEV frame-
work that enable models to effectively understand the intricate
external influence and avoid spurious correlation is in demand.
Fortunately, with rapid development of large language models
(LLMs) [7–9, 15, 52], there have beenmore opportunities to leverage
the vast language knowledge to comprehend external influence on
endogenous variables. Through extensive training on large-scale
text corpora, pre-trained LLMs have extensively acquired knowl-
edge of multi-grained correlation between two types of variables.
Intuitively, empowering FEV with these full-scale external knowl-
edge can significantly enhance forecasting accuracy [67]. Neverthe-
less, as shown in Figure 1 (b), considering distinct task differences
between NLP and time series forecasting [2, 67], and distant data
gap between discrete text and continues numeric [19], employing
LLMs to FEV faces several urgent challenges: (1) Task activation.
How to construct task instruction to fully activate the potential
of LLMs in FEV, enabling the knowledge transfer across tasks. (2)
Full-scale language-driven knowledge acquirement. Given
an LLM-based solution, how to devise effective and comprehen-
sive prompts to acquire hierarchical and sufficient knowledge from
exogenous variables. (3) Feature space alignment. Given the so-
lution is concerned with two data modalities of both numerical and
text data, how to construct a feasible encoding-decoding strategy
to ensure the alignment between text space and time series space.

In this work, we devise ExoLLM to forecast with Exogenous
variables using LLM, capturing diverse and changing external in-
fluences from exogenous variables with language-based knowl-
edge. Technically, we elaborately craft domain-specific Meta-task
Instructions to guide LLMs to process FEV tasks in different data

domains. Subsequently, we establish Multi-grained Prompts to dy-
namically capture the natural attributes, periodic associations, trend
correlations, and other granular external influence of exogenous
variables, thereby adaptive transferring the dynamic auxiliary in-
formation into knowledge that can be understood by ExoLLM. Ad-
ditionally, we design the Dual Time series-Text Attention Attention
(DT2Attention) to mitigate data discrepancies during time series
encoding and feature decoding, respectively. Comprehensive evalu-
ation demonstrates that LLM can even act as an effective few-shot
and zero-shot FEV learners when adopted through our elaborate de-
sign, outperforming specialized forecasting models. Our meticulous
design enables LLMs to function even as a proficient few-shot and
zero-shot FEV learner, surpassing specialized forecasting models
in terms of effectiveness, as demonstrated by the comprehensive
evaluation. Our contributions can be summarized as follows:

• Given the complex and evolving external environment of
real-world system, i.e., web service, traffic, electricity and
weather, we introduce LLMs to maximally explore the auxil-
iary information of exogenous variables.

• We propose ExoLLM, the first LLM-based forecasting model
to accomplish FEV:
1) To fully exploit the potential of LLM in FEV, we elaborately
design Meta-task Instruction and Multi-grained Prompt, re-
alizing the pre-trained knowledge transfer from NLP to FEV
and integrate dynamic context information into knowledge
of time-series domain.
2) To deal with the distant data gap between discrete text and
continues numeric, we design modality-aware encoding and
decoding mechanisms, i.e., DT2Attention, to achieve aligned
feature before and after LLM encoding.

• ExoLLM demonstrates outstanding predictive performance
across various real scenarios, including long-term, short-
term, few-shot, and zero-shot forecasting. Quantitatively,
ExoLLM outperforms 10 state-of-the-art models for long-
term forecasting, achieving top-1 performance in 51 settings
and top-2 in 5 settings out of a total of 56 settings. In addi-
tion, ExoLLM reduces MAE by an average of 4.1%, 5.2%, and
4.5% in short-term, few-shot, and zero-shot forecasting tasks,
respectively.

2 Related Work
2.1 Forecasting with Exogenous Variables
In practical forecasting scenarios, the utilization of exogenous vari-
ables as auxiliary information for forecasting endogenous vari-
ables is more prevalent. Previous research has explored statistical
methods such as ARIMAX [56] and SARIMAX [44], which un-
derstand relationships between exogenous and endogenous series
along with auto-regression. Additionally, deep learning models like
NBEATSx [38] and TiDE [6] argue that forecasting models can
leverage future values of exogenous variables during the forecasing
endogenous variables. Notably, TimeXer [53] introduces external
information into transformer architectures through well-designed
embedding strategies to effectively incorporate external informa-
tion into segmented representations of endogenous variables, ac-
commodating temporal lags ormissing data records. However, these
approaches rely on establishing auxiliary information only based on

4044



Exploiting Language Power for Time Series Forecasting with Exogenous Variables WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia.

Figure 1: (a) Illustration of Knowledge Reserve from Pre-trained LLM: The extensive pre-trained text data endows LLMs with
the potential to understand intricate influence of exogenous variables on web page views. (b) Huge Gaps in Feature Space
and Tasks: Text embeddings and time series features are usually mapped to different feature spaces, and it is challenging to
fine-tune text-generation pre-trained LLM for FEV.

Table 1: Comparison between prior LLM-based time series forecasting models and ExoLLM.

Method ExoLLM AutoTimes TimeLLM LLM4TS UniTime LLMTime TEST TEMPO GPT4TS
(Ours) [2024] [2023] [2023] [2024] [2023] [2023] [2023] [2023]

Exogenous Variables ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Multimodal ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗

Feature Alignment ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

numeric correlation between exogenous and endogenous series. In
contrast, ExoLLM has the capability to extract multi-grained effects
of exogenous variables on endogenous ones as auxiliary informa-
tion from extensive world knowledge, thereby holding significant
potential for enhancing accuracy and generalization in FEV.

2.2 LLM-based Forecasting
The recent emergence of LLMs has opened up new possibilities
for time series forecasting [29, 31]. GPT4TS [67] utilizes a pre-
trained language model without updating its self-attention and
feedforward layers. The model undergoes fine-tuning and evalua-
tion across various time series analysis tasks, demonstrating com-
parable or state-of-the-art performance by leveraging knowledge
transfer from natural language pre-training. LLM4TS [2] adopts a
two-stage fine-tuning approach on the LLM to fully leverage time
series data. TimeLLM [19] introduces the concept of text prototypes
and reprograms time series based on these prototypes to align them
more naturally with language models. Tempo [1] decomposes the
trend, seasonality, and residual components of time series while dy-
namically selecting prompts to address comprehension challenges
for LLMs. UniTime [29] proposes a language-empowered unified
model to efficiently capture knowledge from cross-domain time
series data. With their extensive knowledge base, LLMs exhibit
tremendous potential in time series forecasting. However, as shown
in Table 1, there has been no prior research exploiting LLM for fore-
casting with exogenous variables (FEV) to enhance the prediction
accuracy. To address this gap, we propose ExoLLMwhich harnesses
the power of language to capture the influence of exogenous vari-
ables on endogenous variables.

3 Problem Definition
In forecasting with exogenous variables, there is a historical endoge-
nous series X ∈ R1×𝐿 and its associated exogenous information
E, where 𝐿 is look-back window size. Concretely, E ∈ R𝑀×𝐿 com-
prises multiple exogenous variables {E(1) , E(2) , . . . , E(𝑀 ) }, where
𝑀 is the variable num and E(𝑚) ∈ R1×𝐿 is the 𝑚-th exogenous
series. Our goal is to learn a forecasting model 𝑓 (·), which predicts
the future 𝑇 time steps of endogenous series X̂ ∈ R1×𝑇 , based on
its historical observation X and the exogenous variables E.

4 Methodology
The detailed framework of ExoLLM is illustrated in Figure 2. Firstly,
the Meta-task Instruction (MTI) and Multi-grained Prompt (MGP)
text are embedded using frozen large languagemodel to get uniform
size embedding. Then, exogenous and endogenous series will be
tokenized by shared Temporal-property preserved Tokenizer (TPT)
to preserve temporal properties. Furthermore, a mainly frozen pre-
trained LLM is utilized to integrate exogenous knowledge into
endogenous token. It’s worth noting that a Dual TS-Text Attention
(DT2Attention) is devised to align TS-Text feature space before and
after LLM encoding, which enables the model to aware of specific
modality. The output endogenous token wil be finally mapped to
the future time series by a lightweight forecasting head.

4.1 Language-driven Exogenous Knowledge
Utilization

Meta-task Instruction. To activate the knowledge transfer of LLM
from nature language processing (NLP) to FEV, it is necessary to
construct task instructions as guidance. As illustrated in Figure 3,
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Figure 2: Overall architecture of ExoLLM, which consists of
Dual TS-Text Attention and pre-trained LLM to sufficiently
exploit exogenous variables in FEV.

the meta-task instruction comprises three key elements: (1) Overall
description and analysis of dataset, offering explicit domain identifi-
cation information to the model. (2) Brief summary of endogenous
and exogenous variables, facilitating model to discern the source
of each variables. (3) Introduction to the FEV task, fully activating
LLM to accomplishing forecasting task with exogenous variables.
We aim to activate the LLM’s FEV capability in different domains
through carefully designed meta-task instructions.

Figure 3: Example of Meta-task Instruction and headlines of
Multi-grained Prompt in ETTh1.

Multi-grained Prompt. To comprehensively understand the ex-
ternal environment of Entire systems [60], we need to consider not
only the apparent data correlation between numerical exogenous
and endogenous variables, but also the natural properties, con-
stant relationships, sequential trends, period influences, stability,
and other multilevel factors. Therefore, we design multi-grained
prompts (MGP) to exploit the LLM’s comprehensive knowledge
of the world to a diversified understanding of a specific environ-
ment. As shown in Table 2, the multi-grained prompt mainly con-
sists of two elements: (1) Revealing the natural attribute of exoge-
nous variables and their essential correlation with endogenous
variables, endowing the model with prior knowledge of external
environment. (2) Describing the dynamic characteristics of exoge-
nous/endogenous series in term of trends, period, stability, and
noise intensity, enabling the model to consider dynamic external

influences. Intuitively,MGP not only deepens the LLM’s understand-
ing of exogenous variables, but also enhances the LLM’s perception
of the external invisible environment.

Uniform-scale Text Encoding. After constructing the meta-task
instruction and multi-grained prompt, the next step involves en-
coding the text to obtain embeddings of uniform dimensions. To
integrate these text with adequate language knowledge, we use a
pre-trained LLM to encode these text descriptions. Since the text
length of each prompt is different, we design an ingenious method
to obtain the same embedding size. Particularly, we add a special
token <EOS> at the end of the prompt. Since all the previous to-
kens are visible to <EOS> throughout the causal attention in LLM,
the embedding of <EOS> could represent the entire text. The text
encoding process is given by:

PT = SelectLast(LLM(TD; <EOS>)), (1)

where SelectLast(·) denotes selecting the embedding of the last
<EOS> token, LLM(·) represents encoding part of large language
model, TD = {𝑡𝑑task, 𝑡𝑑

(1)
exo, 𝑡𝑑

(2)
exo, ..., 𝑡𝑑

(𝑀 )
exo , 𝑡𝑑end} is text descrip-

tion set of Meta-task Instruction and Multi-grained Prompt. PT =

{𝑝𝑡task, 𝑝𝑡
(1)
exo, 𝑝𝑡

(2)
exo, ..., 𝑝𝑡

(𝑀 )
exo , 𝑝𝑡end} represents the uniform-scale

text embeddings of TD, where 𝑝𝑡task ∈ R1×𝐷 is the embedding of
meta-task instruction, 𝑝𝑡 (𝑖 )exo ∈ R𝑘×𝐷 is the 𝑖-th exogenous prompt
embedding set, 𝑝𝑡end ∈ R𝑘×𝐷 is endogenous prompt embedding
set, 𝑘 is multi-grained prompt number of one-type variable and 𝐷
is the uniform hidden dimension.

4.2 Temporal-property Preserved Tokenizer
To facilitate LLM’s understanding of the different types of variable
series, we need to compress each series into a single token. Recent
studies [30] use a linear layer to embed the entire time series as a to-
ken. However, this embedding approach neglects the temporal prop-
erties of data, resulting in the model’s incomplete understanding of
the relationships between exogenous and endogenous series. There-
fore, we devise a Temporal-property Preserved Tokenizer (TPT) to
obtain tokens reserving the temporal characteristics. Firstly, we par-
tition the exogenous variables E and endogenous variables X into
non-overlapping patches to enhance the local semantics at each
time step [35], resulting in P𝑒𝑛𝑑 ∈ R1×𝑁×𝑃 and P𝑒𝑥𝑜 ∈ R𝑀×𝑁×𝑃 ,
where 𝑃 is patch length, and 𝑁 = 𝐿

𝑃
is the corresponding numbers

of patches. To compress the temporal representations, TPT employs
Self-Attention to learn temporal interactions among patches and
selects the the last patch as the output:

TK𝑡𝑖𝑚𝑒
∗ = SelectLast(Self-Attn(PE + P∗)), (2)

where Self-Attn(·) denotes self-attention applied to time series, PE
represents the position embedding, SelectLast(·) denotes the opera-
tion of selecting the last patch, P∗ is patched exogenous or endoge-
nous series and TK𝑡𝑖𝑚𝑒

∗ is the corresponding token. Selecting the
last patch as the token representation of the entire series is justified
by two reasons: (1) It interacts with all preceding patches through
attention, thus possessing sequence-level temporal information;
(2) It is closest to the future sequence, providing crucial near-term
information. Finally, we obtain exogenous tokens TK𝑡𝑖𝑚𝑒

𝑒𝑥𝑜 ∈ R𝑀×𝐷

and endogenous token TK𝑡𝑖𝑚𝑒
𝑒𝑛𝑑

∈ R1×𝐷 in the time series feature
space.
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Table 2: An example of Multi-grained Prompt of one variable in ETTh1. Orange is chosen from exogenous and endogenous.
Green is the variable name. Blue is prior knowledge about the variable’s nature attribute. Black is the fixed template.

Characteristics Prompts

Nature Attribute

1○ This Exogenous variable is High UseLess Load, representing external load that is inefficiently utilized.
2○ Exogenous High UseLess Load indicates a potential inefficiency in the system’s external load handling.
3○ Exogenous High UseLess Load can lead to increased energy consumption without corresponding output.
4○ Exogenous High UseLess Load might suggest that the system is operating under suboptimal external conditions.

Trend

5○ Exogenous High UseLess Load series shows an overall upward trend .
6○ Exogenous High UseLess Load series initially rises and then declines .
7○ Exogenous High UseLess Load series exhibits an overall declining trend .
8○ Exogenous High UseLess Load series initially declines and then rises .

Period

9○ Exogenous High UseLess Load series has no apparent periodicity .
10○ Exogenous High UseLess Load series exhibits shorter periodicity and higher frequency .
11○ Exogenous High UseLess Load series displays clear periodicity .
12○ Exogenous High UseLess Load series exhibits relatively longer periodicity .

Stability

13○ Exogenous High UseLess Load series undergoes significant instability over all the time.
14○ Exogenous High UseLess Load series remains relatively stable with minimal fluctuations .
15○ Exogenous High UseLess Load series experiences occasional bouts of volatility, interspersed with periods of relative calm.
16○ Exogenous High UseLess Load series shows consistent stability, with values remaining close to a steady mean.

Noise Intensity

17○ Exogenous High UseLess Load series is subject to very strong noise interference .
18○ Exogenous High UseLess Load series has a low signal-to-noise ratio, where noise significantly affects the clarity of the underlying data.
19○ Exogenous High UseLess Load series experiences moderate noise, partially obscuring the underlying pattern.
20○ Exogenous High UseLess Load series is not influenced by any noise interference .

4.3 Knowledge-retained LLM Encoder
Understanding the exogenous impact on endogenous variables is
crucial for time series forecasting. We utilize meta-task instruction
along with tokenized exogenous and endogenous variables to LLMs
to fully exploit the prior knowledge in LLMs, thereby forming
enhanced representations of endogenous token:

TK𝑙𝑙𝑚
𝑒𝑛𝑑

= LLM({𝑝𝑡𝑡𝑎𝑠𝑘 ,TK𝑒𝑥𝑜 ,TK𝑒𝑛𝑑 }), (3)

where LLM(·) denotes the encoder part of LLM. Each variable is
treated as a token, and exogenous and endogenous variables are
concatenated in a fixed order to form a "sentence" in a fixed order,
like [𝑝𝑡𝑡𝑎𝑠𝑘 ,TK

(1)
𝑒𝑥𝑜 ,TK

(2)
𝑒𝑥𝑜 , ...,TK

(𝑀 )
𝑒𝑥𝑜 ,TK𝑒𝑛𝑑 ]. Following [67], we

freeze the positional embedding layers and self-attention blocks in
LLM to retain majority of learned knowledge from language pre-
training. Ultimately, we obtain an exogenous variable enhanced
representation of endogenous token, TK𝑙𝑙𝑚

𝑒𝑛𝑑
∈ R1×𝐷 , which encap-

sulates rich information from prior exogenous knowledge.

4.4 Feature Alignment with Dual TS-Text
Attention

Given that LLM is pre-trained on discrete textual data and lack
exposure to continuous numerical values, directly inputting tokens
TK𝑡𝑖𝑚𝑒

𝑒𝑥𝑜 and TK𝑡𝑖𝑚𝑒
𝑒𝑛𝑑

in time series featrue space into LLMs would
increase the difficulties in understanding never-seen modality, thus
resulting in degraded predictive performance. Besides, the output
token from LLM in text space is difficult to decode into future series.
Thus, a Dual TS-Text Attention (DT2Attention) is devised to align
ts-text feature space before and after LLM encoder, respectively.

TS-Text Attention. Intuitively, there should be a certain distinc-
tion between exogenous and endogenous tokens to avoid over-
smoothing representation among different types of tokens, and
absorb certain prior external knowledge to enhance the LLM’s en-
coding ability. Thus, a TS-Text Attention is designed to achieve:

1) Mapping tokens from time series feature space to text feature
space; 2) Distinguishing between endogenous and exogenous To-
kens. Specifically, for any type of token, TS-Text Attention designs
its Query as token in time series space, while the Key and Value are
its corresponding multi-grained prompt. Then, we perform Cross
Attention to align tokens:

TK𝑡𝑒𝑥𝑡∗ = Cross-Attn(TK𝑡𝑖𝑚𝑒
∗ , PT∗, PT∗), (4)

where TK𝑡𝑖𝑚𝑒
∗ ∈ R𝐷 is the exogenous/endogenous token in time

series space, PT∗ ∈ R𝑘×𝐷 is this variable’s corresponding multi-
grained prompt, TK𝑡𝑒𝑥𝑡∗ ∈ R𝐷 is the mapped token in text space
and will be input into LLM in Eq (3).

Text-TS Attention. Denote TK𝑙𝑙𝑚
𝑒𝑛𝑑

∈ R1×𝐷 as the endogenous
token encoded by LLM encoder in Eq (3). SinceTK𝑙𝑙𝑚

𝑒𝑛𝑑
remains in the

text space, directly decode TK𝑙𝑙𝑚
𝑒𝑛𝑑

for forecasting faces the challenge
of converting textual semantics into time series. Thus, we use Text-
TS Attention to alleviate such problem, decoding TK𝑙𝑙𝑚

𝑒𝑛𝑑
into time

series space based on the temporal information of exogenous series.
This can be expressed as:

TK𝑙𝑙𝑚
𝑑𝑒𝑐

= Cross-Attn(TK𝑙𝑙𝑚
𝑒𝑛𝑑

,TK𝑡𝑖𝑚𝑒
𝑒𝑥𝑜 ,TK𝑡𝑖𝑚𝑒

𝑒𝑥𝑜 ), (5)

where TK𝑡𝑖𝑚𝑒
𝑒𝑥𝑜 represents exogenous variables in time series space,

TK𝑙𝑙𝑚
𝑑𝑒𝑐

∈ R1×𝐷 is the decoded endogenous token. Through this
approach, we can better utilize the representation capability of
LLMs and combine exogenous series to enhance the endogenous
forecasting.

4.5 Lightweight Forecasting Head
Considering the richness of the encoded token and maximumly
preserving exogenous information by LLMs, a simple linear layer
is employed to transform TK𝑙𝑙𝑚

𝑑𝑒𝑐
for forecasting:

X̂ = Linear(TK𝑙𝑙𝑚
𝑑𝑒𝑐

). (6)

4047



WWW ’25, April 28–May 2, 2025, Sydney, NSW, Australia. Qihe Huang, Zhengyang Zhou, Kuo Yang, and Yang Wang

Table 3: Full results of the long-term FEV. The input sequence length is set to 96 for all baselines. Results are averaged from all
prediction lengths.

Models ExoLLM
(Ours)

TimeXer
[2024]

ITrans.
[2024]

PatchTST
[2023]

Cross.
[2023]

TiDE
[2023]

SCINet
[2022]

Auto.
2021

GPT4TS
[2023]

TimeLLM
[2024]

LLM4TS
[2023]

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.330 0.404 0.336 0.415 0.365 0.486 0.394 0.446 0.344 0.412 0.419 0.468 0.428 0.450 0.495 0.528 0.392 0.442 0.365 0.413 0.378 0.427

Weather 0.001 0.027 0.002 0.031 0.002 0.029 0.002 0.031 0.005 0.055 0.002 0.029 0.007 0.030 0.007 0.061 0.005 0.056 0.003 0.036 0.004 0.046

ETTh1 0.069 0.205 0.074 0.211 0.075 0.224 0.078 0.216 0.285 0.447 0.084 0.223 0.437 0.256 0.130 0.282 0.126 0.305 0.104 0.277 0.115 0.304

ETTh2 0.175 0.327 0.183 0.337 0.200 0.357 0.192 0.345 1.027 0.873 0.205 0.356 1.154 0.406 0.243 0.386 0.277 0.443 0.226 0.388 0.251 0.415

ETTm1 0.049 0.165 0.051 0.168 0.053 0.173 0.054 0.173 0.412 0.548 0.053 0.173 0.099 0.204 0.086 0.231 0.106 0.264 0.080 0.233 0.093 0.248

ETTm2 0.113 0.249 0.116 0.252 0.127 0.261 0.120 0.258 0.976 0.769 0.122 0.261 0.685 0.334 0.154 0.304 0.196 0.349 0.162 0.311 0.179 0.330

Traffic 0.145 0.220 0.150 0.227 0.161 0.412 0.173 0.253 0.182 0.268 0.319 0.408 0.447 0.362 0.303 0.353 0.166 0.247 0.186 0.271 0.177 0.260

Table 4: Full results of the short-term FEV. The input length and prediction length are set to 168 and 24 respectively for all
baselines. Avg means the average results from all five datasets.

Models ExoLLM
(Ours)

TimeXer
[2024]

ITrans.
[2024]

PatchTST
[2023]

Cross.
[2023]

TiDE
[2023]

SCINet
[2022]

Auto.
2021

GPT4TS
[2023]

TimeLLM
[2024]

LLM4TS
[2023]

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

NP 0.216 0.234 0.238 0.268 0.265 0.300 0.267 0.284 0.245 0.289 0.335 0.340 0.373 0.368 0.402 0.398 0.275 0.303 0.255 0.293 0.265 0.315

PJM 0.076 0.175 0.088 0.188 0.097 0.197 0.106 0.209 0.149 0.198 0.124 0.228 0.143 0.259 0.168 0.267 0.118 0.207 0.210 0.283 0.255 0.308

BE 0.358 0.225 0.374 0.241 0.394 0.270 0.403 0.264 0.436 0.294 0.523 0.336 0.731 0.412 0.500 0.333 0.502 0.288 0.384 0.230 0.426 0.258

FR 0.365 0.203 0.381 0.211 0.439 0.233 0.411 0.220 0.440 0.216 0.510 0.290 0.855 0.384 0.519 0.295 0.570 0.497 0.501 0.443 0.519 0.459

DE 0.422 0.401 0.440 0.418 0.479 0.443 0.461 0.432 0.540 0.423 0.568 0.496 0.565 0.497 0.674 0.544 0.569 0.490 0.498 0.438 0.517 0.460

AVG 0.288 0.251 0.304 0.265 0.335 0.289 0.330 0.282 0.362 0.284 0.412 0.338 0.533 0.384 0.453 0.368 0.325 0.326 0.338 0.378 0.399 0.408

where X̂ ∈ R1×𝑇 is the future endogenous series.

5 Experiments
5.1 Dataset and Experimental Settings

Datasets and Experimental Setups. To completely evaluate the
FEV capability of ExoLLM, we conduct experiments on 12 real-
world datasets. These datasets are collected from web and espe-
cially the exogenous factors retrieved from are in the formation
of language. In particular, seven well-established public long-term
datasets from different domains, and five short-term datasets in elec-
tricity price are involved in our FEV experiments. For short-term
forecasting datasets, the input length is set as 168 and prediction
length is 24. For long-term forecasting datasets, the input length is
set as 96 and prediction length varies {96, 192, 336, 720}.

Baselines. We compare ExoLLM with 10 baselines, which com-
prise the state-of-the-art forecasting methods, including LLM-based
model: LLM4TS [2], GPT4TS [67], TimeLLM [19], Transformer-
basedmodel: TimeXer [53] PatchTST [35], ITransformer [30], Cross-
former [65], Autoformer [57], CNN-based model: SCINet [28], and
Linear-based model: TiDE [6] . Among these models, TimeXer and

TiDE are advanced recent forecaster elaborated for exogenous vari-
ables.

5.2 Main Results
Long-term FEV. Long-term forecasting results are presented in

Table 3, where ExoLLM demonstrates superior performance across
different prediction length again all baselines. In contrast to the
cutting-edge LLM-based model TimeLLM, ExoLLM achieves per-
formance gains of 31.2% and 19.8% in MSE and MAE metrics. Com-
pared to the state-of-the-art (SOTA) FEV model TimeXer, ExoLLM
exhibits a relative reduction of 9.1% and 4.1% in MSE and MAE
metrics, respectively. These results highlight ExoLLM’s exceptional
FEV capability in long-term scenario.

Short-term FEV. In Table 4, ExoLLM consistentlymaintains a lead-
ing predictive performance. Compared to SOTA short-term forecast-
ing model SCINet, ExoLLM achieves significant reductions in 35.5%
MAE and 46.1% MSE respectively. Besides, ExoLLM outperforms
the FEV-designed model TimeXer in all short-term datasets.The
comprehensive experimental results underscore the FEV efficacy
of ExoLLM in short-term forecasting.
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Table 5: Results of few-shot FEV. Results are averaged from all prediction lengths.

Models ExoLLM TimeXer ITrans. PatchTST Cross. TiDE SCINet Auto. GPT4TS TimeLLM LLM4TS

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.084 0.230 0.094 0.248 0.091 0.251 0.153 0.344 0.346 0.506 0.126 0.312 0.533 0.288 0.159 0.316 0.095 0.242 0.101 0.251 0.140 0.342

ETTh2 0.253 0.403 0.279 0.435 0.290 0.439 0.401 0.546 1.501 1.080 0.327 0.478 1.681 0.500 0.352 0.475 0.278 0.425 0.298 0.439 0.364 0.512

ETTm1 0.057 0.181 0.062 0.194 0.062 0.190 0.124 0.290 0.475 0.601 0.094 0.256 0.115 0.224 0.102 0.255 0.062 0.190 0.062 0.190 0.109 0.273

ETTm2 0.144 0.291 0.156 0.310 0.163 0.306 0.253 0.410 1.187 0.882 0.209 0.365 0.869 0.389 0.204 0.360 0.155 0.301 0.158 0.306 0.231 0.388

Table 6: Results of zero-shot FEV. Results are averaged from all prediction lengths.

Models ExoLLM TimeXer ITrans. PatchTST Cross. TiDE SCINet Auto. GPT4TS TimeLLM LLM4TS

Source Target MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 ETTh2 0.204 0.359 0.228 0.390 0.221 0.395 0.380 0.544 0.875 0.796 0.308 0.490 1.309 0.453 0.384 0.497 0.232 0.381 0.248 0.394 0.344 0.538

ETTh2 ETTh1 0.074 0.212 0.082 0.228 0.085 0.230 0.118 0.287 0.429 0.562 0.096 0.251 0.489 0.262 0.103 0.250 0.082 0.223 0.087 0.230 0.107 0.269

ETTm1 ETTm2 0.162 0.309 0.177 0.332 0.178 0.324 0.353 0.495 1.348 1.025 0.267 0.437 0.328 0.382 0.299 0.438 0.178 0.324 0.176 0.324 0.310 0.466

ETTm2 ETTm1 0.054 0.176 0.058 0.187 0.061 0.185 0.094 0.248 0.455 0.538 0.078 0.220 0.326 0.236 0.075 0.217 0.058 0.182 0.059 0.185 0.086 0.234

Few-shot FEV. In few-shot learning, only 10% of the training data
are utilized, and the outcomes are presented in Table 5. Quantita-
tively, ExoLLM achieves an average 8.9% reduction in MSE and 4.5%
reduction in MAE compared to the top-performing GPT4TS.

Zero-shot FEV. This task is to evaluate how effectively a model
can perform on target dataset when it has been trained on source
dataset, and the results are presented in Table 6. ExoLLM outper-
forms all SOTA models, achieving a performance improvement of
over 5% compared to other models in zero-shot FEV. This demon-
strates ExoLLM’s powerful FEV generalization capabilities with
pre-trained knowledge.

5.3 Ablation Study
We conduct comprehensive ablation studies by systematically re-
moving each key module from the ExoLLM framework and evalu-
ating its performance across six distinct datasets. This allows us to
assess the individual contributions of each component to the over-
all effectiveness of the model. w/o MGP removes Multi-grained
Prompt (MGP).w/oMTI removes Meta-task Instruction (MTI).w/o
DT2A removes Dual TS-text Attention (DT2Attention) for feature
space alignment. w/o TPT replaces Temporal-property Preserved
Tokenizer (TPT), which could preserve temporal properties for each
token, with a linear layerr. We analyze the results shown in Table 7.
The obervations are listed as follows: Obs.1) Removing MGP and
MTI results in the most significant decrease in prediction metrics,
emphasizing their strong ability in activating LLM in FEV. Obs.2)
DT2Attention also significantly improves the model performance,
demonstrating the importance of featrure space alignment. Obs.3)
TST constantly promotes the forecasting accuracy, suggesting that
reserving temporal properties in each token is needed.

Table 7: Ablation of each module on ECL, Weather, ETTh1,
Traffic, PJM and NP.

Dataset ECL Weather ETTh1 Traffic PJM NP

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ExoLLM 0.330 0.404 0.001 0.027 0.069 0.205 0.145 0.220 0.076 0.175 0.216 0.234

w/o MGP 0.359 0.413 0.003 0.037 0.083 0.239 0.152 0.227 0.110 0.185 0.238 0.281

w/o MTI 0.354 0.418 0.003 0.035 0.096 0.209 0.153 0.222 0.099 0.187 0.238 0.277

w/o DT2A 0.348 0.418 0.002 0.034 0.074 0.212 0.157 0.226 0.090 0.176 0.235 0.262

w/o TPT 0.332 0.405 0.002 0.031 0.079 0.210 0.152 0.223 0.086 0.182 0.225 0.241

5.4 Exogenous Scale Analysis
Real-world time series often encounter challenges such as the ab-
sence of crucial exogenous data. In this section, we employ random
masking to simulate these scenarios and further investigate the
forecasting performance. As illustrated in Figure 4 (a) and (b), We
vary prompt number from 0 to 16 and report the MSE and MAE
results on ETTh1 and ETTh2. For instance, when the number of
prompts in Figure 4 is 16, we respectively remove prompt of Natural
Attribute, Trend, Period, Stability, and Noise Intensity, and report
the average results. We observe that the performance improve-
ment is positive to the prompt size, indicating that more prompts
extracting more auxiliary information from LLM. As shown in
Figure 4 (c) and (d), we vary exogenous variable number in
{0%, 25%, 50%, 75%, 100%} and find that more exogenous variables
improve the model performance, indicating that ExoLLM is able
to sufficiently understand complex and evolving environment. To
further identify which prompts and exogenous variables are most
important, we individually remove each exogenous prompt and
variable, and results are in Table 9 and Table 8. For ETTh1, the
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Figure 4: The MAE (left Y-axis) and MSE results (right Y-axis) of ExoLLM on ETTh, Traffic and Weather. (a) and (b) display
the performance on different prompt number. (c) and (d) demonstrates the performance on different number of exogenous
variables.

critical exogenous prompt is Trend, and the most important exoge-
nous variable is HUFT. This result aligns with intuition, as trend
information often plays a pivotal role in long-term forecasting, and
HUFT captures crucial temporal dynamics. It further demonstrates
ExoLLM’s ability to effectively leverage exogenous knowledge, en-
hancing prediction accuracy by identifying and utilizing the most
relevant external factors.

Table 8: Results of removing different type of MGP.

w/o Attribute w/o Trend w/o Period w/o Stability w/o Noise

MSE 0.071 0.071 0.076 0.070 0.070

MAE 0.206 0.206 0.210 0.207 0.206

Table 9: Results of removing different exogenous variables.

w/o HUFT w/o HULL w/o MUFL w/o MULL w/o LUFL w/o LULL

MSE 0.074 0.070 0.072 0.071 0.072 0.072

MAE 0.212 0.207 0.206 0.206 0.206 0.207

5.5 Case Study

Figure 5: Case study of causal attention on different tokens.

Figure 5 illustrates the attention map of ETTh2 (comprising 6
exogenous variables and 1 endogenous variable) during causal LLM
encoding. Here, tokens 0 through 7 represent the inputs to the LLM:
token 0 denotes the MTI, tokens 1 through 6 represent the token
sequence for the exogenous variables, and token 7 represents the
endogenous variable. These tokens are arranged in a fixed sequence,
forming an input structure akin to a sentence. Encoding through
a LLM allows the endogenous variable token to be enriched with
open-world knowledge conveyed through language, thereby en-
hancing prediction accuracy. The case study on the ETTh2 dataset
demonstrates that: (1) Meta-task Instruction receive extensive atten-
tion for each variable, demonstrating that the guidance we design
perfectly activates the LLM’s ability to transition from NLP to FEV.
(2) ExoLLM is able to distinguish between exogenous variables that
exhibit strong association with the endogenous variable, resulting
in a more focused and interpretable attention map.

6 Conclusion
To align with the evolving needs of web-related technologies, which
require handling external influences from dynamic and shifting en-
vironments, we propose an LLM-based approach, ExoLLM, for time
series forecasting with exogenous variables (FEV). By incorporat-
ing Meta-task Instruction, Multi-grained Prompt, and Dual TS-Text
Attention, ExoLLM enables large language models (LLMs) to excel
in multiple forecasting scenarios, including long-term, short-term,
few-shot, and zero-shot tasks. This framework introduces a novel
paradigm that taps into the textualized knowledge embedded in
LLMs to enhance the understanding of structural time-series data.
It allows ExoLLM to interpret temporal dynamics in a way that
is enriched by the contextual, text-like representation of the data,
thereby improving its forecasting accuracy and robustness. The
versatility of ExoLLM also opens new possibilities for structural and
tabular data learning across various domains, driving innovations
in real-world applications central to the web ecosystem.
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