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ABSTRACT

With increasing population of modern cities, accurate estimation of

regional passenger demands is critical to online taxicab services as

such platforms aim at a reformation of taxicab scheduling for amore

efficient order dispatching. Though great efforts have been made on

passenger demand predictions, existing works still have the follow-

ing shortcomings: i) they mostly performed based on uniform grid

partition, which results in the imbalance of demand volumes among

regions and even non-vehicle regions in such partition, ii) none

of previous demand forecasting efforts have highlighted the im-

portant mutual influences between pick-ups and drop-offs, which

are of great significance for taxicab scheduling. To this end, we

first devise a multi-kernel based clustering to achieve a taxicab-

behavior and geographic-aware sub-region partition, hence a more

balanced and compact regional division is obtained. Subsequently,

we emphasize the essential factors with regard to mutual transition

quantification in taxicab predictions, then propose a Transfer-LSTM

and an Origin-Destination-based transition matrix to respectively

capture the drop-to-pick and pick-to-drop spatiotemporal transi-

tion patterns. Hence, a novel mutual-transition-aware co-prediction

framework is devised by capturing complex spatiotemporal inter-

actions between pick-ups and drop-offs. Extensive experiments

on two real-world taxicab datasets demonstrate our co-prediction

framework is superior to state-of-the-art methods, thus providing

novel perspectives to urban human mobility understanding and

transition-based taxicab scheduling.

CCS CONCEPTS

• Information systems→ Spatial-temporal systems;Datamin-

ing.
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1 INTRODUCTION

The advanced online taxicab calling platforms including Uber[17],

CAOCAO [2] can greatly facilitate people’s urban travels. How-

ever, under the fast expansion of metropolises, some weaknesses in

these data-driven taxicab platforms become increasingly prominent,

such as overlong waiting for passengers and business missing for

drivers due to their imperfect demand predictions and irrational

order-driver matches [23, 28]. Therefore, there exists an increasing

demand to promote the prediction accuracy of both taxicab pick-ups

and drop-offs, to further improve the delivery rate of passengers’

service demands, the overall revenue of taxicab drivers as well as

the efficiency of urban travels.

Great efforts [1, 3, 8, 14, 16, 19, 21, 22, 24, 26] have been achieved

in taxicab business prediction with machine or deep learning meth-

ods. At very first, previous works focus on a single mission of

forecasting pick-up demands in a specific region. And recently,

pioneering works [4, 9, 12] further provide the citywide regional

businesses by respectively capturing both inner- and inter-region

global correlations of taxicab running with Contextualized Spatial-

Temporal Network (CSTN) [12], SpatioTemporal Encoder-Decoder

Residual Multi-Graph Convolutional network (ST-ED-RMGC) [9]

and Multi-view Localized Correlation learning (MLC-PPF) [4]. Nev-

ertheless, all these previousworks focus on the prediction of pick-up

demands, and the issue of regional taxicab drop-offs prediction is

rarely considered in previous research.

However, the awareness of drop-off events is of great signifi-

cance for taxicab scheduling. In particular, for the demand side, the

number of drop-offs in a specific region during a future time period

can directly influence the number of vacant taxicabs which are

available for scheduling to satisfy online calling taxicab demands

and the number of pick-up demands in subsequent time periods.

For the supply side, the taxicab drivers prefer to cruise for very

short distances around the last drop-off points to look for new pas-

sengers picking up, which influences the future pick-up demands

correspondingly. In a specific region, by cooperating the predicted

numbers of drop-offs and pick-ups during a future time period,

online taxicab calling platforms can accurately schedule taxicabs to

maximally satisfy taxicab service demands and reduce the number
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of vacant taxicabs as many as possible, hence achieve the cooper-

ative target of enhancing the delivery rate of passengers’ service

demands and the overall revenue of taxicab drivers. Consequently,

the co-prediction of taxicab pick-ups and drop-offs is essential for

efficient and accurate citywide taxicab scheduling.

Given the significance of predicting both the numbers of pick-up

demands and drop-off events, an ultramodern work [10] has taken

an initial step toward addressing this challenge. This work uses a

3D-ResNet and Long-Short Term Memory (LSTM) integrated net-

work to respectively capture the spatial and temporal dependencies

of both pick-ups and drop-offs by considering co-predictions as two

independent missions. However, in this paper, we have discovered

some interesting mutual transition patterns between pick-ups and

drop-offs. To be detailed, Figure 1 illustrates the spatiotemporal

running patterns of urban taxicabs during the traffic rush hours in

both morning and afternoon. First, as illustrated in Figure 1 (a) and

(b), this kind of layout-driven tidal patterns determines that the

numbers of drop-offs of different regions are impacted by the num-

bers of pick-ups of some other specific regions. Second, in Figure 1

(c) and (d), these tidal patterns also determine that the numbers of

drop-offs of different regions can likewise influence the numbers of

pick-ups of some surrounding districts, as taxicab drivers tend to

look for new passengers around the last drop-off points. Hence, in

this work, inspired by such transition correlations, we propose to

enable a mutual-transition-aware co-prediction framework, and it

will reasonably contribute to more reliable and accurate forecasting.

Moreover, recent literature [30, 31] reveals that proper spatial

division is also of significance for balanced and efficient spatiotem-

poral forecasting. Previous works have used the conventional grid-

based divisions or administrative divisions. However, in most cases,

these methods cannot adapt to the natural but irregular layout of

urban areas. For instance, grid divisions will inevitably cover the

useless car-free sub-regions of lakes, rivers and parks, which di-

rectly results in the sparsity of elements in some sub-regions, and

hence reduces the prediction accuracy. Regarding administrative

divisions, they mostly lead to too coarse-grained forecasting which

cannot support effective decision-making to fine-grained local taxi-

cab scheduling. Therefore, an effective spatial partition method is

highly demanded to simultaneously satisfy natural fine-grained

forecasting and alleviate spatial sparsity challenges by overcoming

the heterogeneous spatial layouts of geographical factors.

In this paper, we propose a novel mobility prediction Network

of Co-prediction with Mutual-Transition awareness (CMT-Net),

for jointly predicting citywide pick-ups and drop-offs by simulta-

neously addressing the above challenges. Specifically, to alleviate

the sparsity issue and incorporate diversified factors for clustering

learning, we devise a multi-kernel𝐾-means clustering to adaptively

partition the urban area into irregular sub-regions, by leveraging all

existing GPS points and clustered pick-ups and drop-offs numbers.

The clustered existing taxicab GPS points can reasonably exclude

those car-free sub-regions and equilibrate the assigned taxicab ar-

rival numbers for each sub-region. And the multiple kernels in the

clustering method can essentially be the diversified proximity met-

ric, including both taxicab behaviors and geographical proximity,

for measuring point-wise distances. We then construct the clus-

tered sub-regions to an undirected graph based on the Euclidean

distances and taxicab trips relevance among regions. Second, to

explicitly consider both periodical taxicab demand patterns and the

particular mutual spatiotemporal transition patterns between pick-

ups and drop-offs, we propose our mutual-transition aware joint

prediction framework. In particular, to obtain diversified and seman-

tic spatial embeddings for demand forecasting, we take advantage

of the multi-head neighboring spatial embedding mechanism. To

extract the mutual transitions among pick-ups and drop-offs, we

design a Transfer-LSTM to learn the underlying transfers from

drop-ups to pick-offs with a gated filtering mechanism, and design

a multi-granularity pick-drop Origin-Destination (OD) matrix to

extract the pick-ups transferring to drop-offs. With our integrated

model, the mutual-transition information can be extracted, and the

predicted numbers of both pick-ups and drop-offs can be jointly

optimized with our dual objectives. Experiments show that our

proposal can improve the prediction accuracies of pick-ups and

drop-offs numbers by 14.12% and 13.19% (RMSE) on New York City,

6.44% and 8.28% (RMSE) on Suzhou.

The key contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first paper which

reveals the mutual transitions among taxicab pick-ups and

drop-offs, and this is also the first work which aims at jointly

predicting both pick-ups and drop-offs in a citywide range by

taking the mutual transition correlations into account with

a specifically designed mutual transition aware framework.

• We propose a multi-kernel 𝐾-means clustering, which incor-

porates a hybrid proximity measurement considering both

taxicab behaviors and geographical proximity, on district

partition instead of traditional grid partition, maintaining

the consistency of the regional volume, and alleviating the

sparsity issue caused by geographical layouts.

• A novel mutual-transition-aware model is designed to cap-

ture bilateral transfer patterns between pick-ups and drop-

offs, with a gated filter incorporated Transfer-LSTM to learn

drop-to-pick transfers and an OD-based pick-drop transition

matrix to quantify the potential pick-to-drop transitions.

The rest of this paper is organized as follows. Section 2 introduces

the preliminaries and formalizes the problem. Section 3 investigates

the proposed CMT-Net framework. Section 4 presents empirical

studies and Section 5 concludes the paper.

2 PROBLEM DEFINITION

In this section, we formally define some basic concepts as well as

the problem studied in this paper.

Definition 1 (Original trip). An original taxicab trip 𝜏 con-
tains the location and temporal information of its corresponding pick-
ups and drop-offs events, i.e., 𝜏 = {𝑝𝜏 , 𝑑𝜏 } where 𝑝𝜏 and 𝑑𝜏 correspond
to the pick-ups and drop-offs respectively. Here 𝑝𝜏 = {𝑡𝑝𝜏 , 𝑙𝑝𝜏 } where
𝑡𝑝𝜏 and 𝑙𝑝𝜏 are the time and location of the pick-ups. Accordingly,
𝑑𝜏 = {𝑡𝑑𝜏 , 𝑙𝑑𝜏 } indicates the time and location of the drop-offs.

Definition 2 (Region semantic graph). Based on the lo-
cations of all pick-ups and drop-offs, the entire urban area can be
partitioned into 𝐾 irregular sub-regions, i.e., {𝑣0, 𝑣1, · · · , 𝑣K−1} where
𝑣𝑖 (0 ≤ 𝑖 ≤ K − 1) denotes the 𝑖-th sub-region. The partitioned sub-
regions can be modeled as an undirected graph G𝑡 (V, E) where vertex
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Figure 1: Layout-driven spatiotemporal tidal running patterns and correlations of the urban taxicab in Manhattan: distribu-

tions of pick-ups at 7:00 and 18:00 are correlated with distributions of drop-offs at 18:30 of the last day and 7:30 respectively

and distributions of drop-offs at 7:30 and 18:30 are associated with distributions of pick-ups 30 minutes ago

𝑣𝑖 ∈ V(0 ≤ 𝑖 ≤ K − 1) is the 𝑖-th sub-region and edge 𝑒𝑖 𝑗 ∈ E repre-
sents the connectivity between 𝑣𝑖 and 𝑣 𝑗 . The detailed calculation of
the connectivity between sub-regions will be described by Equation 6
and 7 in Subsection 3.1, corresponding to the undirected edge between
region 𝑣𝑖 and 𝑣 𝑗 .

Definition 3 (Regional pick-ups and drop-offs). Given
a sub-region 𝑣𝑖 , the pick-ups P𝑣𝑖𝑡 and drop-offs D𝑣𝑖

𝑡 within this sub-
region during time interval ∆ after time 𝑡 can be defined as

P𝑣𝑖𝑡 = {𝑝𝜏
��𝑡𝑝𝜏 ∈ [𝑡, 𝑡 + ∆) ∩ 𝑙𝑝𝜏 ∈ 𝑣𝑖

}
D𝑣𝑖
𝑡 = {𝑑𝜏

��𝑡𝑑𝜏 ∈ [𝑡, 𝑡 + ∆) ∩ 𝑙𝑑𝜏 ∈ 𝑣𝑖
} (1)

and the historical pick-ups set P𝑣𝑖𝑡 and drop-offs set D𝑣𝑖𝑡 of sub-region
𝑣𝑖 since time 𝑡 can be denotes as

P𝑣𝑖𝑡 =

{
P𝑣𝑖
𝑡−(𝑚−1)∆

,P𝑣𝑖
𝑡−(𝑚−2)∆

, · · · ,P𝑣𝑖𝑡
}

D𝑣𝑖𝑡 =

{
D𝑣𝑖
𝑡−(𝑚−1)∆

,D𝑣𝑖
𝑡−(𝑚−2)∆

, · · · ,D𝑣𝑖
𝑡

} (2)

where𝑚 is the number of historical time intervals.

Definition 4 (pick-ups and drop-offs co-predictions).

Given region division {𝑣0, 𝑣1, · · · , 𝑣K−1} and the historical pick-ups
and drop-offs of all sub-regions, i.e.,

{
P𝑣0

𝑡 , · · · , P
𝑣𝐾−1

𝑡

}
and

{
D𝑣0

𝑡 , · · · ,D
𝑣𝐾−1

𝑡

}
,

the target is to predict
��P𝑣𝑖
𝑡+∆

�� and ��D𝑣𝑖
𝑡+∆

�� for any region 𝑣𝑖 (0 ≤ 𝑖 ≤
K − 1).

3 PROPOSED CMT-NET FRAMEWORK

In this section, we first propose a clustered-based sub-region parti-

tion, and then present the detailed mutual-transition-aware pick-

ups and drop-offs co-prediction framework, CMT-Net.

3.1 Cluster-based Sub-region Partition and

Semantic Graph Construction

Plenty of spatiotemporal learning frameworks usually employ the

traditional grid division methods for region partition, however, the

regular grids will bring car-free sub-regions such as lake, river,

and park, which will break the natural shape of urban areas and

consequently increase the data sparsity issue in grid-based spa-

tial distributions, and pose great challenges into fully capturing

semantically correlations among adjacent sub-regions. In order

to solve the above problems, we propose a multi-kernel 𝐾-means

clustering to aggregate the spatial taxicab points (located in dif-

ferent latitude or longitude), which takes the role of partitioning

the whole urban area into different irregular but semantically cor-

related sub-regions. We first aggregate all point locations into 𝑁

tiny regular grids with small enough side length 𝑟 , and we consider

pick-up and drop-off patterns as well as the geographical proximity

for clustering. Hence, for each tiny grid, we construct the feature

vector 𝑒𝑖 = {𝑁𝑢𝑚𝑠𝑃 , 𝑁𝑢𝑚𝑠𝐷 , 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒} ∈ 𝑅𝑑𝑠 , where

𝑑𝑠 = 4 (4-dimensional spatial feature). 𝑁𝑢𝑚𝑠𝑃 , 𝑁𝑢𝑚𝑠𝐷 represent

the total number of pick-ups and drop-offs in the whole training

set, respectively. We use 𝐸 = {𝑒0, 𝑒1, . . . . . . , 𝑒𝑁−1} to represent the
citywide feature set. The kernel function can be expressed as:

𝐾 (𝑒𝑖 , 𝑒 𝑗 ) = 𝜙𝛾 (𝑒𝑖 )
𝑇𝜙𝛾 (𝑒 𝑗 ) =

𝑑𝑠∑
𝑛=1

𝛾2

𝑛K𝑛(𝑒𝑖 , 𝑒 𝑗 ) (3)

whereK(𝑒𝑖 , 𝑒 𝑗 ) represents the kernel of Gaussian distance between

𝑒𝑖 and 𝑒 𝑗 , 𝜙𝛾 (𝑒𝑖 ) = [𝛾1𝜙1(𝑒𝑖 )
𝑇 , ..., 𝛾𝑑𝑠𝜙𝑑𝑠 (𝑒𝑖 )

𝑇
]
𝑇
, and 𝛾𝑖 is the 𝑖-th

base kernel. 𝜙𝑖 (·) maps 𝑒𝑖 onto the 𝑖-th reproducing kernel Hilbert

space. As result, we can get a kernel matrix K𝛾 that calculated by
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applying K(·,·) to 𝐸. We have the following objective [13]:

𝑚𝑖𝑛
𝑉 ,𝛾

𝑡𝑟 (K𝛾 (𝐼𝑁 −𝑉𝑇𝑉 )) (4)

where 𝑉 ∈ 𝑅𝑁×𝐾
is the clustering matrix, and satisfies 𝑉𝑇𝑉 = 𝐼𝐾 .

The identity matrices 𝐼𝑁 and 𝐼𝐾 are of size 𝑁 and 𝐾 , where 𝐾 is the

number of clusters. We alternately optimize the clustering results𝑉

and kernel basis 𝛾 and finally reach the semantic regional partition.

With the above clustering, we can obtain the semantic partition

of sub-regions {𝑣0, 𝑣1, · · · , 𝑣K−1}. In particular, our multi-kernel

based clustering partition can be deemed as multi-dimensional

proximity learning considering both geographical locations and the

clustered pick-ups and drop-offs numbers, which can be interpreted

as the summarized taxicab demand preferences and urban traveling

patterns in the dataset. Hence, the clustering-based partition can

naturally exclude the car-free regions like lakes and parks, which

alleviates the spatial sparsity issues in grid-based partitions. We will

evaluate the effectiveness of our proposed clustering mechanism

in experiments.

Given that, we can further construct the 𝐾-node semantic graph.

Specifically, our semantic graph is a static graph, and the semantic

adjacency matrix A can be calculated by:

A =


𝛼00 · · · 𝛼

0(𝐾−1)

.

.

.

.
.
.

.

.

.

𝛼
(𝐾−1)0

· · · 𝛼
(𝐾−1)(𝐾−1)

 (5)

where 𝛼𝑖 𝑗 (0 ≤ 𝑖, 𝑗 ≤ 𝐾 − 1) indicates the undirected semantic

connection between sub-region 𝑣𝑖 and 𝑣 𝑗 and can be calculated by

𝛼𝑖 𝑗 =


1, if 𝜌𝑖 𝑗 ≥ 0.5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

and here we have

𝜌𝑖 𝑗 =

𝛿𝑚𝑎𝑥 − 𝛿𝑖 𝑗
2(𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)

+

𝑐𝑖 𝑗 − 𝑐𝑚𝑖𝑛
2(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)

(7)

Notice here 𝛿𝑚𝑎𝑥 and 𝛿𝑚𝑖𝑛 indicate the maximum and minimum

Euclidean distances between every sub-region pair, 𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛
correspond to the maximum and minimum taxicab transition vol-

umes between two sub-regions respectively. Specifically, 𝛿𝑖 𝑗 equals

to the Euclidean distance between 𝑣𝑖 and 𝑣 𝑗 , and 𝑐𝑖 𝑗 is the to-

tal number of taxicab trips that start from one region and end

at another in all historical periods. Given Equation 7, we have

𝜌𝑖 𝑗 ∈ [0, 1] (0 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1), and we define that there exist an

undirected semantic edge from 𝑣𝑖 to 𝑣 𝑗 if and only if 𝜌𝑖 𝑗 ≥ 0.5.

3.2 CMT-Net for Pick-up and Drop-off

Co-Prediction

In this subsection, we introduce the detailed architecture and de-

sign of CMT-Net. It is known that the traffics can be determined

by a self-periodical and tendency-aware prediction, as well as the

mutual transitions, where the latter is especially studied in this

paper. Hence, we design two LSTM-based sequence learning to ex-

tract the self-temporal patterns and two mutual-transition modules

to explicitly capture transitions between pick-ups and drop-offs.

The predictions of pick-ups and drop-offs are both considered as

Figure 2: Framework overview of CMT-Net

the main tasks of this multi-task learning framework. The overall

solution is demonstrated in Figure 2.

3.2.1 Neighboring spatial embedding. The spatial contexts and cor-
relations of regional pick-ups or drop-offs are essential for the

co-predictions. To incorporate such spatial and semantic contexts,

we here design a novel neighboring spatial embedding mecha-

nism to extract the neighboring correlations of pick-ups and drop-

offs. By incorporating with the semantic graph, this neighboring

spatial embedding mechanism can significantly enlarge its hori-

zon to involve more effective correlations. Specifically, regarding

a specific region 𝑣𝑖 , for time 𝑡 to 𝑡 − (𝑚 − 1)∆, we employ the

Graph Attention Networks (GATs) [18] to calculate the pick-ups or

drop-offs correlations between region 𝑣𝑖 and 𝑣𝑖 ’s neighboring re-

gions within the corresponding semantic graphs G𝑡−𝑘∆
(V, E)(𝑘 ∈

{0, 1, · · · , (𝑚 − 1)}) of the𝑚 previous time points. Given time 𝑡 −
𝑘∆(𝑘 ∈ {0, 1, · · · , (𝑚 − 1)}) and region 𝑣𝑖 , assuming 𝑣 𝑗 is directly

connected to 𝑣𝑖 in G𝑡−𝑘∆
(V, E), the attention coefficient between

𝑣𝑖 and 𝑣 𝑗 can be calculated by

𝜒𝑡−𝑘∆
(𝑣𝑖 , 𝑣 𝑗 ) = 𝛾1𝜔𝑣𝑖F

𝑣𝑖
𝑡−𝑘∆

+ 𝛾2𝜔𝑣𝑗F
𝑣𝑗

𝑡−𝑘∆
(8)

where F 𝑣
𝑡−𝑘∆

is the feature set of region 𝑣 which includes P𝑣
𝑡−𝑘∆

or D𝑣
𝑡−𝑘∆

, average speed of region 𝑣 during time interval [𝑡 − (𝑘 +

1)∆, 𝑡 − 𝑘∆), and average travel time of all taxi businesses in F 𝑣
𝑡−𝑘∆

.

Here, 𝜔𝑣 ∈ R1×F𝑣
𝑡−𝑘∆ is a learnable transformation to transform the

inputted feature set of region 𝑣 to a one-dimension embedded fea-

ture, and parameters 𝛾1 and 𝛾2 are optimized by a single-layer feed

forward neural network. Next, the calculated attention coefficient

can be regularized by

X𝑡−𝑘∆
(𝑣𝑖 , 𝑣 𝑗 ) = Softmax[𝜒𝑡−𝑘∆

(𝑣𝑖 , 𝑣 𝑗 )]

=

exp[𝜒𝑡−𝑘∆(𝑣𝑖 ,𝑣𝑗 )]∑
𝑣𝑙 ∈𝑁𝑡−𝑘∆

(𝑣𝑖 )

exp[𝜒𝑡−𝑘∆(𝑣𝑖 ,𝑣𝑙 )]

(9)

where𝑁𝑡−𝑘∆
(𝑣 𝑗 ) indicates all the neighbors of region 𝑣𝑖 inG𝑡−𝑘∆

(V, E).

And the spatial representation of 𝑣𝑖 can be denoted by

𝐻
𝑣𝑖
𝑡−𝑘∆

= 𝜎
©­« 1

𝐵

𝐵∑
𝑏=1

∑
𝑣𝑗 ∈𝑁𝑡−𝑘∆(𝑣𝑖 )

X
𝑏
𝑡−𝑘∆

(𝑣𝑖 , 𝑣 𝑗 )𝜔
𝑏
𝑣𝑗
F 𝑣𝑗

𝑡−𝑘∆

ª®¬ (10)
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where 𝜎 corresponds to the LeakyReLU activation function [11],

and 𝐵 corresponds to the number of attention heads. Notice that we

here employ the Multi-Head mechanism to obtain different types

of spatial attention by calculating multiple attention coefficients

in parallel. Hence, we can obtain the neighborhood-aware spatial

embeddings for subsequent prediction tasks, where contextual and

surrounding information is involved.

3.2.2 Transfer-LSTM based pick-up prediction. As discussed above,

pick-up prediction can be divided into self-tendency learning and

drop-to-pick transitions. Since LSTM has been demonstrated its

powerful capabilities to handle time series problems, therefore, in

this subsection, we are going to propose a novel Transfer-LSTM

module to cooperatively learn these two critical elements for final

predictions. To be detailed, for region 𝑣𝑖 during time 𝑡 − (𝑚 − 1)∆

to 𝑡 , we first take the historical pick-ups

[
𝐻𝑝

𝑣𝑖
𝑡−(𝑚−1)∆

, · · · , 𝐻𝑝𝑣𝑖𝑡
]
,

as the input of our Transfer-LSTM, to learn the self-periodic and

tendency-aware correlations (Line 1-4 in Eq.11). Then we inves-

tigate how the drop-offs influence future pick-ups by proposing

a gated filter mechanism. Intuitively, drivers tend to look for pas-

sengers around the location of the last drop-offs, so the transition

from drop-offs to pick-ups for a taxicab is mainly concentrated in

the nearby areas of the last drop-offs. To this end, we also embed

all drop-offs information as

[
𝐻𝑑

𝑣𝑖
𝑡−(𝑚−1)∆

, · · · , 𝐻𝑑𝑣𝑖𝑡
]
can with previ-

ous proposed neighboring spatial embedding mechanism. Since the

total pick-ups of one sub-region are composed of self-periodical ten-

dencies and the additional transitions, here we especially design a

transfer-gate 𝑧𝑡 to explicitly capture the additional drop-off to pick-

up transitions by taking previous drop-offs 𝐻𝑑
𝑣𝑖
𝑡−1

as an additional

input to Transfer-LSTM (Line 1 in Eq.11). Then the tanh(𝐻𝑑
𝑣𝑖
𝑡−1

)

will multiply with hidden drop-pick transfer-state transfer-gate 𝑧𝑡
to obtain the final transition quantification by joint optimization.

The modified drop-pick transfer-gate can be rewritten as below,

𝑧𝑡 = 𝜎(𝑈𝑧ℎ𝑡−1 +𝑊𝑧𝐻𝑑
𝑣𝑖
𝑡−1

+ 𝑏𝑧 )

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡 + 𝑧𝑡 ⊙ tanh(𝐻𝑑
𝑣𝑖
𝑡−1

)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡 )

(11)

where {𝑓𝑡 , 𝑖𝑡 , 𝑧𝑡 , 𝑜𝑡 } are forget-gate, input-gate, transfer-gate, and
output-gate respectively, and other parameters are all learnable. The

modified hidden state ℎ𝑡 will be transferred into the next time step.

Meanwhile, the output of Transfer-LSTM indicates the future pick-

ups, i.e.,
�P𝑣𝑖
𝑡+∆

. In summary, 𝑧𝑡 can effectively capture the spatial

transfer patterns in two ways. First, we incorporate historical drop-

off information with an additional gate. Second, we also add the

learned transfer information to the final prediction of future pick-

ups in cooperative optimization, which takes full advantage of the

spatial correlation from drop-offs to pick-ups.

3.2.3 Multi-granularity transition based drop-off prediction. Even
though drop-offs are all transitioned from pick-ups, some drop-offs

will experience a long-term running from their pick-up points. To

this end, for achieving short-term drop-offs forecasting, we still

disentangle the self-tendency and volumes transitioned from nearby

pick-ups. We will elaborate the transition pattern extraction since

most drop-offs are contributed by the nearby pick-ups. Given all

historical regional pick-ups and drop-offs, regarding time interval

[𝑡, 𝑡 + ∆), the transition matrix from pick-ups to drop-offs can be

easily defined as

𝑀𝑡 =


𝛽𝑡

00
· · · 𝛽𝑡

0(𝐾−1)

.

.

.

.
.
.

.

.

.

𝛽𝑡
(𝐾−1)0

· · · 𝛽𝑡
(𝐾−1)(𝐾−1)

 (12)

where element 𝛽𝑖 𝑗 represents the ratio of the business number from

𝑣𝑖 to 𝑣 𝑗 to the total number of the business that start from 𝑣𝑖 and

can be calculated as

𝛽𝑡𝑖 𝑗 =

��{𝜏 |𝑡𝑝𝜏 ∈ [𝑡, 𝑡 + ∆) ∩ 𝑙𝑝𝜏 ∈ 𝑣𝑖∩𝑙𝑑𝜏 ∈ 𝑣 𝑗
}��∑(𝐾−1)

𝑘=0

��{𝜏 |𝑡𝑝𝜏 ∈ [𝑡, 𝑡 + ∆) ∩ 𝑙𝑝𝜏 ∈ 𝑣𝑖∩𝑙𝑑𝜏 ∈ 𝑣𝑘
}�� (13)

Obviously, matrix𝑀𝑡 represents the transition ratio from pick-

ups to drop-offs of all clustered region pairs during interval [𝑡, 𝑡 +∆).

Given these matrices with regard to all historical time intervals,

to predict the transition matrix from pick-ups to drop-offs during

interval [𝑡 + ∆, 𝑡 + 2∆) from a multi-granularity perspective for a

comprehensive prediction, we first extract three different matrix

sequences from all historical matrices for exploiting the closeness,

periodicity, and tendency
1
of the transition matrices from pick-

ups to drop-offs. By taking the average value of each individual

sequence, we then generate three matrices M̂𝑐
, M̂𝑝

, and M̂𝑡
, cor-

respondingly. Finally, we predict the multi-granularity transition

matrix from pick-ups to drop-offs during interval [𝑡 + ∆, 𝑡 + 2∆) by

calculating a weighted sum of these three matrices, i.e.,�𝑀𝑡+∆ = Π
𝑐 ⊙ M̂𝑐

+ Π
𝑝 ⊙ M̂𝑝

+ Π
𝑡 ⊙ M̂𝑡

(14)

where Π
𝑐
, Π
𝑝
, and Π

𝑡
are all learnable matrices, and ⊙ corresponds

to the Hadamard product.

With the predicted multi-granularity transition patterns �𝑀𝑡+∆,

and the predicted future pick-ups of region 𝑣𝑖 during [𝑡 + ∆, 𝑡 + 2∆)�P𝑣𝑖
𝑡+∆

, we are able to calculate the main contributor of drop-offs,

transition-inferred future drop-offs
�
Λ
𝑣𝑖
𝑡+∆

by�
Λ
𝑣𝑖
𝑡+∆

=
�P𝑣𝑖
𝑡+∆

· �𝑀𝑡+∆ (15)

Finally, the future drop-offs should introduce the previous drop-

offs as the periodicity and tendency-aware components for fusion

learning. Hence, we denote the spatiotemporal representations of

historical drop-offs during the interval 𝛿 after time 𝑡 as 𝛿
𝑣𝑖
𝑡 , then

the drop-offs can be predicted by�D𝑣𝑖
𝑡+∆

= FC

(
Concat

(�
Λ
𝑣𝑖
𝑡+∆

, 𝛿
𝑣𝑖
𝑡

))
(16)

where function FC represents a fully connected layer and Concat

corresponds to the concatenation operation.

3.2.4 Loss function. Finally, we present the joint losses to opti-

mize the co-prediction tasks. The loss function for training our

Co-prediction with Mutual Transition framework can be defined as

𝐿𝑜𝑠𝑠(Ξ) =

1

𝐾

𝐾−1∑
𝑖=0

[(�P𝑣𝑖
𝑡+∆

− P𝑣𝑖
𝑡+∆

)
2

+

(�D𝑣𝑖
𝑡+∆

− D𝑣𝑖
𝑡+∆

)
2

]
(17)

1
The sequence for exploiting the closeness is composed by the last 𝜆𝑐 time interval

before 𝑡 , the sequence for exploiting the periodicity consists of the same intervals as

[𝑡, 𝑡 + ∆) during the previous 𝜆𝑝 days, and the sequence for exploiting the tendency

is formed by the same intervals as [𝑡, 𝑡 + ∆) in the same day of a week during the

previous 𝜆𝑑 weeks.
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where Ξ is the combined learnable parameter set of the proposed

network, and we use Adam optimizer to optimize our proposed

multi-task learning network in this paper.

Until now, we can achieve the final results of joint predictions of

both future pick-ups
�P𝑣𝑖
𝑡+∆

and drop-offs
�D𝑣𝑖
𝑡+∆

at 𝑡 + ∆ interval. Ac-

tually, we especially design a Transfer-LSTM and multi-granularity

transition matrix to realize the intuitions of mutual transitions and

jointly optimize with above dual learning objectives.

4 EXPERIMENTS

4.1 Datasets

In this section, we conduct extensive experiments on two real-

world taxicab datasets collected fromNYC and Suzhou. The detailed

information about these two datasets is as follows.

Table 1: Data statistics and implementation details

Taxicab data MI, NYC SIP, Suzhou

Data type Taxi business records Taxi trajectories

Time span 01/01/2015-06/30/2015 01/01/2017-03/31/2017

Length of time interval 30 minutes 30 minutes

Number 𝐾 of cluster regions 30 60

Grid division of city 3 × 10 12 × 5

(1) NYC Taxicab business dataset. This dataset includes all

the taxicab business records of NYC from Jan. 1, 2015 to Jun. 30,

2015, and each business record contains taxi trip duration as well

as the time points, longitudes, and latitudes information of both

pick-ups and drop-offs.

(2) Suzhou Taxicab trajectory dataset. This dataset consists

of the trajectory information of all taxicabs in Suzhou from Jan.

1, 2017 to Mar. 31, 2017. Each piece of the trajectory of a taxicab

includes the detailed monitored GPS information of this taxicab

with an interval of 20 seconds. And the time and location of pick-ups

and drop-offs of this taxicab are also contained in the corresponding

piece of record.

4.2 Implementation Details

As taxicabs are mostly concentrated on most developed sub-regions,

we select Manhattan Island (MI) and Suzhou Industrial Park (SIP) in

NYC and Suzhou as the experimental areas respectively. The data

statistics and implementation details are demonstrated in Table 1.

We grid the urban area with pick-up and drop-off point locations

with squares 𝑟 = 100 meters, where the tiny grid is small enough

and has little influence on performance variations. We are only

expected to adjust the number of clustering 𝐾 to achieve our se-

mantic graph. Here, unless specified, we set the 𝐾 = 30, 𝐾 = 60 in

MI and SIP datasets, respectively according to the following experi-

ments. For fairness, we carefully conduct experiments to achieve

an equilibration regarding divisions in both grid-based methods

and our clustering method, which maintains a comparative region

size. To be specific, for CNN-based baselines, we divide MI and SIP

into 3 × 10 and 12 × 5 uniform grids respectively to make sure each

region in these two grids is about 1.3km × 1.3km approximately.

And we set 𝐾 of the clustering algorithm as 30 and 60 respectively

for MI and SIP, which usually cover approximately 1.7 km
2
. We set

4 attention heads in our GAT for both datasets and optimize it with

experiments.

For temporal division and aggregation, for both datasets, we

slice the temporal information into slots of 30 minutes, and 𝜆𝑐 ,

𝜆𝑝 , and 𝜆𝑑 of the three different matrix sequences for exploiting

the closeness, periodicity, and tendency are all set to 3, following

the common practice in the field of traffic forecasting [5–7, 29].

Notice that such settings may be related to the results of inference

accuracy but is orthogonal to the generalities of our proposals

with fair comparisons. For each round of evaluations, we split all

datasets with ratio 6:2:2 into training sets, validation sets and test

sets. Regarding the efficiency of offline training and online inference,

our method can be trained within half an hour and infer the new

sample within several seconds, which can sufficiently support the

real-time taxicab demand forecasting.

4.3 Baselines and Evaluation Metrics

4.3.1 Baselines. We evaluate the performance of our CMT-Net by

comparing it with the following baseline models. To be fair, all base-

lines listed here are employed the proposed cluster-based methods

for urban division. Moreover, all baselines are implemented in a

joint-prediction manner. Noted that the quantitative co-prediction

verification will be included in the ablation study part.

(1) Historical Average (HA). HA predicts both the pick-ups and

drop-offs demands of each region during a specific time interval

with the average pick-ups and drop-offs demands of the correspond-

ing region during all the same intervals in history.

(2) Autoregressive Integrated Moving Average (ARIMA) model.

It combines moving average with autoregression to predict future

values in time series.

(3) Long Short-Term Memory (LSTM). LSTM is a specially de-

signed RNN for additionally involving long-term dependence in

future predictions.

(4) Deep Spatio-Temporal Residual Networks (ST-ResNet) [27].

It is a deep learning model for predicting traffic flows considering

both spatial and temporal correlations of traffic flows.

(5) Convolutional LSTM (ConvLSTM) [20]. It combines CNN

with LSTM into one integrated model, which can also capture both

spatial and temporal correlations in predictions.

(6) DeepMulti-View Spatial-Temporal Network (DMVST-Net) [24].

It combines spatial, temporal and semantic views.

(7) Co-prediction method based on Spatio-Temporal neural Net-

work (CoST-Net) [25]. It predicts the multiple demands of taxicab

and sharing bike simultaneously. To be fair, we only conduct the

task of forecasting taxi demand.

(8) Spatial-Temporal Synchronous Graph Convolutional Net-

works (STSGCN) [15]. It is a spatiotemporal synchronous model

for traffic prediction based on the graph convolutions.

4.3.2 Evaluation metrics. We use two classic metrics, Rooted Mean

Square Error (RMSE) and Mean Average Percentage Error (MAPE),

to evaluate the performances of our spatiotemporal regression

model and other baselines.

4.4 Evaluation Results and Analysis

4.4.1 Effect analysis of cluster-based partition. To investigate the

effects of our multi-kernel clustering partition in CMT-Net, we
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Figure 3: Heatmaps of average numbers of pick-ups and

drop-offs events with different region divisions

first analyze the distributions of pick-up and drop-off points on

MI dataset based on grid division and cluster-based partition, and

demonstrate the results as heatmaps in Figure 3. Regarding the

grid division, it exhibits a large dispersion on averaged regional

numbers of both pick-ups and drop-offs during one interval, where

the central Manhattan region attracts almost 5 times of the vol-

umes as marginal regions, which are with barely few pick-ups and

drop-offs events (Figure 3 (a) and (c)). The reasons may lie in that

most marginal regions in uniform grid division are principally cov-

ered with surfaces of water, while the central regions are usually

experiencing heavy traffics and frequent human mobility due to

their specific functionalities. Thus, the imbalanced data distribution

and sparsity issues impose great challenges to forecasting tasks.

In contrast, our cluster-based partition shows that the numbers

of both pick-ups and drop-offs among different regions are more

equilibrated in Figure 3 (b) and (d). Moreover, the divided regions

can reveal more rational shapes since those car-free areas like sea,

river, lake, and park have been excluded.

Figure 4: Overall city events and STD of events within re-

gions during different intervals

We also evaluate the superiority of our multi-kernel clustering

method in a quantitive manner. Here, we present the Standard

Deviations (STD) of the numbers of interval-level pick-ups and drop-

offs among different regions in Figure 4. As shown, the STD curves

of both pick-ups and drop-offs in the cluster partition are more

smooth than the corresponding curves in the uniform grid division.

This indicates that the regional numbers of pick-ups and drop-

offs are more equilibrated in the cluster partition which benefits

the deep learning process and enhance the accuracy of prediction

missions. In particular, the STDs of regional pick-ups and drop-offs

in the grid division are 273.58 and 260.57 respectively, while those

in the cluster partition are 108.58 and 93.72. Hence, our framework

effectively decreases the STDs by 60.31% and 64.03% respectively,

and facilitates the equilibration and learning mechanism. Further,

the following results of the best baseline CoST-Net with pure grid

division, which also has the equilibrated region size with ours,

are inferior to ours (decreases by 14.11% and 10.92% on RMSE of

MI), indicating the advantage in training and predictions of our

cluster-based region partition considering both taxicab behavior

and geographic proximity.

Based on the above, we can conclude that our cluster-based

partition can gains benefits of the human mobility clustering and

volumes balances in each cluster for easy training with this geo-

graphic and taxicab behavior awareness mechanism.

Table 2: Performance comparisons on MI and SIP datasets

MI

Methods

RMSE MAPE

pick-ups drop-offs pick-ups drop-offs

HA 99.40 100.05 0.3595 0.3686

ARIMA 58.05 62.15 0.2416 0.2805

LSTM 47.24 48.19 0.1879 0.1951

ConvLSTM 44.04 45.90 0.1740 0.1847

ST-Resnet 43.90 44.83 0.1707 0.1759

DMVST-Net 42.87 43.67 0.1621 0.1702

STSGCN 42.73 42.36 0.1653 0.1742

CoST-Net 39.34 40.31 0.1570 0.1639

CMT-Net 33.79 36.73 0.1343 0.1448

SIP

Methods

RMSE MAPE

pick-ups drop-offs pick-ups drop-offs

HA 29.30 30.59 0.3683 0.3732

ARIMA 24.55 27.48 0.2567 0.2631

LSTM 21.48 22.26 0.1901 0.1965

ConvLSTM 17.84 19.38 0.1816 0.1839

ST-Resnet 15.45 16.52 0.1724 0.1782

DMVST-Net 14.78 15.67 0.1695 0.1715

STSGCN 14.13 15.27 0.1679 0.1696

CoST-Net 13.98 14.85 0.1629 0.1657

CMT-Net 13.08 13.62 0.1503 0.1598

4.4.2 The performances of CMT-Net. The performances of our pro-

posed approach and all alternative baselines on real-world datasets

of both NYC and Suzhou are demonstrated in Table 2. As can be

easily observed, in both NYC and Suzhou, the proposed CMT-Net

outperforms all alternative solutions in terms of the RMSE and

MAPE of both pick-ups and drop-offs demand predictions, and this

directly and powerfully verifies the validity of our proposed method

on pick-ups and drop-offs co-prediction. Specifically, in MI, com-

pared with the state-of-the-art solution, our proposed framework

can reduce the RMSE and MAPE by 14.11% and 19.58% respectively

in predicting future pick-ups demands and by 13.19% and 14.92%

respectively in predicting future drop-off events.

Furthermore, the performances of ARIMA and LSTM are rel-

atively poor since these two models are both time series predic-

tion models and cannot extract any spatial characteristics. Regard-

ing ConvLSTM and ST-ResNet, these two methods extract limited
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Table 3: Performances of ablative variants on MI dataset

Methods

RMSE MAPE

pick-ups drop-offs pick-ups drop-offs

CMT-Net-Single 37.21 39.46 0.1546 0.1613

CMT-Net-RMT 36.65 39.12 0.1499 0.1598

CMT-Net-RPDT 35.91 38.77 0.1472 0.1581

CMT-Net-RDPT 35.27 37.17 0.1454 0.1552

CMT-Net 33.79 36.73 0.1343 0.1448

spatial correlations with traditional CNN, consequently contribut-

ing to better performances when compared to time series-based

models. Besides considering spatiotemporal correlations with tra-

ditional methods, both DMVST-Net and CoST-Net involve inter-

region semantic similarities, and hence they achieve better perfor-

mances than the baselines mentioned above. STSGCN employs the

spatiotemporal synchronization mechanism to capture complex

local spatiotemporal correlations, thus its performance is close

to DMVST-Net and CoST-Net. However, these baselines all ig-

nore the mutual transfer information among taxicab pick-ups and

drop-offs. Regarding our proposed CMT-Net, and compared with

other spatiotemporal models, the improvement can be attributed

to the unique insight on explicitly reconstructing mutual transi-

tions among pick-ups and drop-offs. We will further investigate

our conjecture in the following parts.

4.4.3 Ablation Study. We perform ablation studies in this subsec-

tion, and the ablative variants are as follows, i.e.,

(1) CMT-Net-Single. This variant removes the joint optimization

mechanism and respectively optimize the pick-ups and drop-offs

predictions, which aims to verify the necessity of our joint co-

prediction intuition.

(2) CMT-Net-RMT. This variant doesn’t include any transition

information, and the transition patterns are replaced with the

distance-aware geographical adjacent matrices.

(3) CMT-Net-RPDT. The multi-granularity transition matrix ex-

tracted from pick-ups to drop-offs is singly removed, but this vari-

ant considers the latent transition from drop-offs to pick-ups in

Transfer-LSTM.

(4) CMT-Net-RDPT. The drop-pick transition in Transfer-LSTM

is removed, but this variant contains the multi-granularity transi-

tion matrix from pick-ups to drop-offs.

As demonstrated in Table 3, we first verify the necessity of co-

predictions by observing 10.12% and 7.43% increases of RMSEs in

pick-ups and drop-offs single-task testing. After then, both two

transition mechanisms can individually enhance the performances

of CMT-Net. Specifically, in MI, the mutual transition aware mech-

anism can reduce the RMSE and MAPE by 7.80% and 10.41% respec-

tively in predicting future pick-up demands, thanks to the drop-pick

Transfer-gate. Analogously, RMSE and MAPE are reduced by 6.11%

and 9.39% respectively in predicting future drop-offs events due to

the well-learned multi-granularity pick-drop transition matrix.

4.4.4 Hyperparameter Study. There are two hyperparameters in

our framework that need further careful analysis, i.e., the number

of clustering 𝐾 for graph construction, and the number of multiple

heads 𝐵 in spatial aggregation.

Figure 5: Performance on different parameter settings

The performance variations on two datasets are characterized

in Figure 5. According to our comprehensive results, we obtain the

optimal settings of 𝐾 = 30 and 𝐾 = 60 on MI and SIP, and 𝐵 = 4 on

both datasets.

5 CONCLUSION

In this paper, we propose a mutual-transition-aware learning frame-

work, CMT-Net, to address the challenge of taxicab pick-ups and

drop-offs co-prediction. We first employ multi-kernel𝐾-means clus-

tering to realize the compact region division. Next, we construct

the cluster partitioned sub-regions to a semantic graph based on

the geographical proximity and taxicab behavior relevance among

regions. We further extract mutual spatiotemporal transition pat-

terns with a transfer-gated LSTM and multi-granularity transition

matrix for drop-pick and pick-drop transitions, respectively. Per-

formance evaluations on two real-world datasets and the ablation

studies both powerfully demonstrate the effectiveness of our pro-

posal. Therefore, our work provides a brand-new solution to tackle

the taxicab pick-ups and drop-offs event co-prediction in a mutual

transition learning perspective, which consequently enhances the

service qualities of online taxicab calling platforms, and improves

understanding of the interactions between human mobility and

social economics. Regarding future work, we are going to optimize

the vacant taxicab scheduling by co-predictions and the drop-pick

transition-aware mechanism, and also we are intended to inves-

tigate more general flow transition quantification tasks such as

inter-migration of people and animals for nature discovery.
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