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ABSTRACT

While existing spatiotemporal prediction models have shown promis-
ing performance, they often rely on the assumption of input-label
spatiotemporal consistency, and their high complexity raises con-
cerns about scalability. To enhance both efficiency and performance,
we integrate label information into the learning process and pro-
pose a spatiotemporal dynamic theory that outlines a bi-directional
learning paradigm. Building on this paradigm, we design BiST, a
lightweight yet effective Bi-directional Spatio-Temporal prediction
model. BiST incorporates two key processes: a forward spatiotem-
poral learning process and a backward correction process. The
forward process utilizes MLP layers exclusively to model input
correlations and generate base prediction. In the backward pro-
cess, we implement a spatiotemporal decoupling module, which
can learn the residual modeling deviation between input and label
representations from a decoupled perspective. After smoothing
the residual with a diffusion module, we can obtain the correction
term to correct the base predictions. This innovative design enables
BiST to achieve competitive performance while remaining light-
weight. We evaluate BiST against 26 baselines across 13 datasets,
including a large-scale dataset with ten thousand nodes and a long-
range dataset spanning 20 years. An impressive experimental result
demonstrates that BiST achieves a 8.13% improvement in perfor-
mance compared to state-of-the-art models while consuming only
1.86% of the training time and 7.36% of the memory usage.

PVLDB Reference Format:

Jiaming Ma, Binwu Wang, Pengkun Wang, Zhengyang Zhou, Xu Wang,
and Yang Wang. BiST: A Lightweight and Efficient Bi-directional Model
for Spatiotemporal Prediction. PVLDB, 18(6): 1663 - 1676, 2025.
doi:10.14778/3725688.3725697

PVLDB Artifact Availability:

Yang Wang and Binwu Wang are the corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 6 ISSN 2150-8097.
doi:10.14778/3725688.3725697

1663

The source code, data, and/or other artifacts have been made available at
https://github.com/PoorOtterBob/BiST.

1 INTRODUCTION

With significant advancements in GPS technology and sensor mon-
itoring devices, researchers have amassed extensive urban data,
characterized by both temporal and spatial attributes, collectively
referred to as spatiotemporal data. This wealth of spatiotemporal
data has fueled the growth of urban computing. Within this domain,
spatiotemporal prediction, a fundamental task, has garnered consid-
erable attention from both industry and academia. This task aims
to leverage historically observed spatiotemporal data to forecast
future values [30, 40, 73, 74, 77].

In the field of spatiotemporal prediction, the popular tool is spa-
tiotemporal graph convolutional networks, which consist of differ-
ent temporal and spatial modules for capturing temporal and spatial
correlations respectively. To improve prediction performance, re-
searchers have focused on enhancing the representation capabilities
of these modules through various advanced techniques. Currently,
Transformer-based models dominate the spatiotemporal prediction
task, such as D2STGNN [49] and STAEformer [32]. Despite their
encouraging success, there remain two limitations.

Input-label spatiotemporal deviation. Existing models typi-
cally employ a forward spatiotemporal learning process that cap-
tures spatiotemporal correlations from input data, generates label
representations, and uses these label representations for prediction.
This implicitly assumes consistency between the spatiotemporal
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Figure 1: Three cases of spatiotemporal deviation in the spa-
tial and temporal dimensions. (a) and (b) demonstrate the
spatial deviation across pairs of nodes. (c) illustrates the tem-
poral deviation within a single node.

(B



https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3725688.3725697&domain=pdf&date_stamp=2025-08-29

correlations in the input data and those in the labels. However, this
assumption is overly idealistic; spatiotemporal correlations between
input and labels may exhibit significant differences in both spatial
and temporal dimensions, which we define as spatiotemporal devi-
ation. We illustrate this concept using the Large-SD dataset [33] as
an example. Figure 1 (a) and (b) demonstrate the spatial deviation.
Specifically, similar input following different label of Figure 1 (a):
while two nodes have similar input data distributions, their subse-
quent label similarities differ significantly. Different input following
similar label of Figure 1 (b): despite two nodes having significantly
different input data, their labels exhibit similar distributions. These
node pairs are indistinguishable to the model, as the model tends to
make similar (different) predictions for nodes with similar (differ-
ent) inputs, thereby reducing prediction accuracy. In the temporal
dimension, spatiotemporal deviation manifests as sudden increases
or decreases of the data, as shown in Figure 1 (c). Although several
studies have proposed potential solutions to tackle spatiotemporal
deviations using node embedding techniques [48] or by extending
input sequence lengths [10], we contend that the limited utilization
of label information continues to hinder these models in effectively
addressing the spatiotemporal deviation problem.

Expensive computational complexity. While existing mod-
els achieve performance improvements, they also increase time
and memory complexities. Regarding time complexity, transformer-
based spatiotemporal layers exhibit quadratic growth as the number
of nodes increases [46, 49]. In terms of memory occupancy, these
models often stack multiple complex spatiotemporal layers to en-
hance their representational capabilities. Since their loss function
for regression tasks relies on the computational gradient graphs
of all nodes for backpropagation, the GPU must maintain a gradi-
ent matrix for nodes at each layer, leading to significant memory
overhead. The heavy computational burden limits the scalability of
these models on large-scale spatiotemporal data.

In this paper, we aim to advance both efficiency and performance.
Regarding performance, we break from the spatiotemporal consis-
tency assumption between input and labels followed by existing
models, explicitly incorporating label information during training
to better model spatiotemporal deviations. This design allows us to
deviate from the trend of stacking multiple spatiotemporal layers,
opting instead for lightweight MLP as the backbone. Ultimately, the
proposed model achieves competitive predictive performance while
maintaining high training efficiency and low memory utilization,
as illustrated in Figure 2.

Specifically, we propose a spatiotemporal dynamics theory that
guides a rational prediction process by incorporating label infor-
mation. This theory reveals that the final prediction should be
influenced by two components: a base prediction, derived from mod-
eling spatiotemporal correlations of the input data, and a correction
term, generated by modeling the residuals that represent spatiotem-
poral deviation between labels and input. Based on this theory,
we propose the Bi-directional Spatio-Temporal prediction model
(BiST), which includes a forward spatiotemporal learning process
and a backward residual correction process. In the forward process,
we only use MLP layers to capture time dependencies at different
granularities, generating the base prediction. To model residuals
accurately in the backward process, we introduce a spatiotemporal
decoupling residual learning module that separates spatiotemporal
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Figure 2: Model performance and efficiency comparison.
The left figure illustrates the comparative prediction per-
formance of various models on six datasets. The right figure
showcases the training time per epoch and memory usage of
each model on LargeST-SD 2019 dataset.

features into node-shared context features and node-personalized
features, effectively capturing spatiotemporal deviation between
label and input representations. After smoothing the residuals with
a diffusion operator, we decode the residuals to generate correc-
tion terms, correcting the predictions. Note that our model utilizes
high-dimensional label representations rather than actual labels for
residual modeling, enhancing its capability to represent residuals.
During the training process, the model can effectively learn the
spatiotemporal deviation, which will be beneficial for the infer-
ence phase. Evaluated on 13 spatiotemporal datasets, our model
demonstrates competitive performance while maintaining compu-
tational efficiency and low memory overhead. Our contributions
are summarized as follows:

e We develop a spatiotemporal dynamic theory that estab-
lishes a novel bi-directional spatiotemporal learning para-
digm incorporating label modeling.

Based on this theory, we design a lightweight and effec-
tive bidirectional spatiotemporal prediction model, which
includes a forward spatiotemporal learning process and a
backward residual correction process.

e We introduce a spatiotemporal residual learning module
that models the spatiotemporal deviation features between
input and label from the decoupling perspective.
Extensive experiments with 26 models on 13 datasets have
demonstrated that our model achieves competitive perfor-
mance, maintaining high efficiency and low memory usage.

2 RELATED WORK

Time series prediction. In recent years, multivariate time se-
ries forecasting has garnered significant attention due to its wide-
ranging applications in fields such as finance, healthcare, and envi-
ronmental monitoring [19, 23, 35, 43, 53, 55, 69]. Among the various
approaches, Transformer [51] has emerged as a prominent frame-
work, achieving remarkable success in sequence prediction tasks.
However, the inherent high time complexity of the Transformer ar-
chitecture has driven researchers to explore more efficient and inno-
vative methods. For instance, Preformer [6] and PatchTST [42] have



introduced patch-based strategies to improve computational effi-
ciency. Meanwhile, Reformer [6] has incorporated locality-sensitive
hashing to enhance the self-attention mechanism. Another notable
category of approaches leverages lightweight MLPs as their back-
bone [59, 71]. For example, TimeMixer [61] integrates multi-scale
temporal decoupling to boost MLP performance, while SOFTS [17]
employs a centralized strategy to model dependencies across chan-
nels. Despite these advancements, these models primarily focus on
capturing temporal dependencies and often overlook the spatial
dependencies inherent in spatiotemporal data. As a result, their
performance generally falls short compared to state-of-the-art spa-
tiotemporal forecasting models.

Spatiotemporal prediction. Spatiotemporal prediction task which
aims to use past observations to predict future values is fundamen-
tal to smart city applications [26, 57, 58, 76]. With the remarkable
success of GCN in various fields [14, 15, 52, 78], the current trends
of this field revolves around designing cutting-edge spatiotemporal
graph convolutional networks [54, 72]. For example, DCRNN [29],
introduced a novel diffusion convolution that works in conjunction
with GRU. STGCN [67] have replaced RNN with extended causal
convolutions for time pattern modeling. With the rise of Trans-
formers in the natural language and visual domains, the latest trend
is shifting towards the use of Transformers and their variants for
spatiotemporal prediction [7, 21]. For example, D2STGNN [49] and
STAEformer [32] use self-attention mechanisms from Transformers
for dynamic graph learning, combined with proposed spatiotempo-
ral embedding techniques.

Although these models significantly improve predictive perfor-
mance, they also pose challenges due to their substantial com-
putational complexity and memory overhead. Additionally, these
models adhere to the input-label consistency assumption, which
limits their ability to effectively handle inconsistent information.

3 PROBLEM DEFINITION

Spatiotemporal data. Spatiotemporal data are represented as a
multivariate time series comprising multiple time-dependent vari-
ables, such as observations collected from sensors. We formulate
the multivariate time series from the time step m to the time step n
as a tensor Xy, € R(T-m+DXNXe where N denotes the number
of variables (e.g. sensors) and c indicates the number of channels.
Spatiotemporal graph. Each variable depends not only on its
past values, but also on other variables. Such dependencies are
captured by a spatiotemporal graph G = (V, &, A), where V is a
set of |V| = N nodes, each node corresponding to a sensor or air
quality monitor. The set of edges is denoted by &, and A € RN*N
represents the adjacency matrix, which can be modeled using a
predefined metric, such as the distance between nodes, or can be
adaptively learned from the data end-to-end.

Spatiotemporal prediction. Given the observed multivariate time
series X;_741:s € RTXNXC from the previous T time steps, the goal
is to learn a function f to forecast spatiotemporal data for the next
Tp time steps. This mapping can be formally defined as:

1

< Ty XNXc
Xer1:64T, = f(Xe-1414) €R? .
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Table 1: Some important notations description.

Notations ‘ Description
X, X Input data and its random variable in GMRF.
Y. Y Label data and its random variable in GMRF.
Yhase/Ycor | Base/Correction prediction.
Zin/Z1,/Zg | Input/Label/Residual representation.
ep,er,ep,es | Spatiotemporal prompt embedding.
Eq/E Personalized-feature /Context-feature embedding.

4 METHODOLOGY

We develop a spatiotemporal dynamics theory to establish a rational
paradigm for spatiotemporal prediction. Building on this theory, we
design the spatiotemporal prediction model BiST, and subsequently
provide a detailed explanation of each component within BiST. For
clear presentation, we use X (i.e., Xy_141.+) and Y to represent the
input and the corresponding label, respectively.

4.1 Spatiotemporal Dynamics Theory

Gaussian Markov Random Field (GMRF) is a widely used tool for
modeling complex dependencies among random variables in a
structured manner, particularly in spatiotemporal dynamic analy-
sis [9, 75]. In line with these studies, we also employ a GMRF model
to represent spatiotemporal data, where each spatiotemporal data
point is associated with a variable in the GMRF. Subsequently, we
analyze the dependencies between these variables. In the following
sections, spatiotemporal data points will be represented using reg-
ular font, while their corresponding random variables in the GMRF
will be denoted in italic font.

Let’s consider the corresponding variable of node u at future
time step ¢, which is denoted as Y;,, € R, there are correlations
between Y;,, and the variable of the other nodes!, which is de-

T T T 717 p(N=1)xe
e LA AN AR A - We
incorporate this correlation into the GMRF model.

Theorem 1. If we integrate the label information into GMRF, we

noted as Yy ;

can use it as a condition of the GMREF to predict the value Yt,u of
variable Y;;, with the aim of minimizing the difference from the
label Y; 4. For any future time step ¢t = {1,2, ..., Tp}, the expectation
of Yz, with respect to X and Y, ; is

E[YeulX Yra] = E[YeulX] +fru (v + A (A)yaXe cra

Base prediction Diffusion Kernel Residual
Correction
)

This equation indicates that, when incorporating label information,
the spatiotemporal prediction paradigm should consist of a base
prediction and a correction term. The detailed proof of this
proposition is provided in Section A.

The correction term consists of two elements: the diffusion kernel
and the residual. The f; 4, is a scalar coefficient calculated by:

Bru=[(1+a) (1+aA (A),)] " (3)

!To reduce the algorithm complexity, we focus solely on the spatial correlation at each
time step when modeling label features. We validate it in the experimental section 5.8.
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Figure 3: Details of the proposed model BiST. Our framework comprises a forward spatiotemporal learning process and a

backward residual correction process.

where @; is a scalar that controls the strength of residual prop-
agation, and A (A),,,, indicates the entry on u-th row and u-th
column of A (A). A (A) = Iy — A where Iy is the identity matrix
of the adjacency matrix A, and A is a normalization version of A .
(IN +arA(A))yq € RIX(N=1) js the y-th row of Iy + oz A (A) ex-
clude itself. The residual term ¢, ; represents the difference between
base prediction and label expectations:

cro =E[Y, 4

X| ~E[Y, 4] e RXIN-Dxe, ()
In fact, the base prediction is derived from modeling the correla-
tions within the input data, while the label distribution is influenced
by the autocorrelation of the labels. Consequently, the residual term
captures the discrepancies in features between the input and label.
Summary. Our theory indicates that a prediction paradigm incor-
porating label information should consist of two components: a
forward spatiotemporal learning process generating base predic-
tions and a residual correction process modeling spatiotemporal
residuals to correct predictions. Although existing models integrate
various techniques to enhance the former process, they do not
explicitly include a correction process that utilizes label features.

4.2 Overview of the proposed BiST

Based on the proposed theoretical, we develop BiST, designed to
incorporate a forward spatiotemporal learning process and a back-
ward residual correction learning process. This structure is illus-
trated in Figure 3 and is detailed in Algorithm 1.

Forward spatiotemporal learning consists of a spatiotempo-
ral learning layer and a spatiotemporal embedding prompt layer.
The former layer integrates the knowledge of the time structure
and decomposes the time series X into stable components and trend
components, which can reduce the model’s learning complexity.
The spatiotemporal embedding prompt encodes prior knowledge
to help the model achieve comprehensive spatiotemporal learning.
Through these two layers, we can obtain the input representation
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Z1y,. Finally, Zy,, is fed into the MLP layers for spatiotemporal learn-
ing and outputs label representations Zj ,, which are then inputted
into a predictor to generate base predictions Yy ,ge.

Backward residual correction consists of a residual decouple
layer and a residual diffusion layer. The former layer is used to
model inconsistencies between input representations Zy, and label
representations Zp ,, i.e., residual term Zg. Then a residual diffusion
layer uses the affinity between nodes to smooth the residual term.
Finally, the output is fed into a fully connected layer to generate

correction predictions Ycorr used to correct the base predictions
Ypase to generate a more accurate prediction Y.

4.3 Forward Spatiotemporal Learning

4.3.1 Temporal decomposition. In the time series community, re-

searchers [63, 71] decompose time series into components with
different time granularities. Inspired by these works, we also adopt
a temporal decomposition layer, which uses the padding moving
average operation AvgPool (+; k) with kernel size k to decouple the
input X € RTXNX¢ into stable patterns X; and trend patterns X:

X; = AvgPool (X; k) € RTXNx¢,
Xg =X —X; e RTNxe.

®)
(6)
Concretely, we pad the data along the temporal dimension in AvgPool
(+; k) to keep the corresponding series length after pooling. Then,

we use two MLP layers to capture the spatiotemporal dependencies

of these two components, respectively. Then, we splice the outputs
to generate the final output Xo.

Xo = MLP; (X;) + MLP; (X;) € RTXNxds, 7)

4.3.2  Spatiotemporal embedding prompt. Spatiotemporal prompt
learning aims to utilize various additional information to prompt
models to learn more comprehensive spatiotemporal patterns. Draw-
ing inspiration from existing work [70], we introduce spatiotem-
poral embedding techniques to encode spatiotemporal prior in-
formation (such as timestep-of-day and day-of-week information)



and integrate these beneficial embeddings into the model, thereby
enhancing its learning capabilities through prompting.

In the temporal dimension, we design a temporal embedding
including two embedding vectors: timestamp-of-day embedding
and day-of-week embedding to capture periodic temporal depen-
dencies. The first embedding, er € RNrxdp , encodes the time-step
position information of a day, where Nt represents the number of
sampling points in a day. For instance, in the PeMS system, with a
data sampling frequency of five minutes, Nt is equal to 288. The
second embedding, ep € RNpxdp , encodes the positions of differ-
ent days of the week. Here, Np = 7 corresponds to the number of
days in a week and dp denotes the dimension of the representa-
tions. In the spatial dimension, we employ an adaptive node-level
embedding, es € RN de’, to account for the heterogeneous data dis-
tributions between the N nodes. These parameterized embeddings
are updated end-to-end with the model.

In addition, following Transformer [51], we also integrate the
sequential information of each input data point into the input Xo.
Finally, we integrate the temporal and spatial embedding into the
model, and the output Zy, is denoted as the input representation:

®

4.3.3  Forward prediction. We employ L MLP layers for spatiotem-
poral forward learning to effectively capture the spatiotemporal
features of the input data. For the input to the I-th layer, denoted as
ZEI) € RTXNxd" , we start with ZEO) = Zin. The forward process
of this MLP layer is defined as follows:

Zin = [Xollerlleplles] € RN (ds+3xdp)

I 1 1 I 1 1 1
2" = GeLu (20w + 0P ) w1 b 420, (9)

wherel € {0,1,...,L—1} and GELU (:) is activation function. Wl(l) €

i I Dy gl 1
Rd' x4d' ),Wz(l) e R4Vxd"™) 414 biases bil) e R4 ), bélﬂ) €

R4 are learnable parameters. The final output, Zy, = ZEL) €

RT*NXdhid_js denoted as label representation. Finally, we use a
MLP layer as decoder to generate base prediction:

TpxXNX
Yhase = ZraWout + bout € R'P ‘

(10)

where Wyt € R(T*dout) X(TpX) and po € RTPXC are learnable.

4.4 Backward Residual Correction

The backward residual correction process learns spatiotemporal
deviation features of the input label, i.e., the residual term, to gen-
erate correction predictions. This process comprises two modules:
a residual learning module and a residual diffusion module.

4.4.1 Spatiotemporal residual learning. To model the residual terms
between the labels and the inputs, we use label representations
generated from the forward process instead of directly using the
labels since labels are unavailable during inference in the inference
phase. More importantly, label representations, which are high-
dimensional features of labels [28, 45], contain rich information
that allows the model to learn residual terms flexibly.

For residual learning, we design a residual decoupling module
that decomposes spatiotemporal features into contextual and per-
sonalized features. The contextual features, influenced by environ-
mental attributes, may be shared among nodes. In contrast, the

1667

latter are affected by mutation factors (such as temporary traffic
control at specific intersections), leading to inconsistencies between
node inputs and label features.

Specifically, we first initialize two parameterized embeddings
using a normal random distribution: E; € RK* to capture contex-
tual features with K virtual clusters and E4 € RN t0 learn fine-
grained node-specific features. Parameterized embeddings adap-
tively capture high-level features as the model undergoes end-to-
end updates. Then, we compute the receptive coefficient between
nodes and virtual clusters as follows:

N
Vd

where S records the affinity between each node and the virtual clus-
ters. Then we calculate the similarity between the nodes according
to the macroscopic features: W (Eq,Ek) =5xS' € [0, 1]N*N,
Here, S is the normalization version of S by softmax operation.
Finally, given current label representation Z ,, we can aggregate
the information of the neighborhood nodes and extract the context
feature representation, which is denoted as Z¢om:

ERNXK.

S (11)

Ey = Z1aWy + by € RTXNXdout

Zeom = W (Eq, Ex) X2 Ep € RTXNXdou

(12)
(13)

where X2 means matrix multiplication in the node dimension. Fi-
nally, we obtain personalized feature representation Zper as follows:

Zper =Z1a — Zcom € RTXN>dout (14)

To model the difference between input representation and label rep-
resentation, we first align Zper and Z¢om with input representation
Z1y, in their channel dimensions:

Zgee = GELU ([Zper||Zeom| Wi + b1) Wa + by € RTNXdhia_ (15)

Then we calculate the inconsistency information between two rep-
resentations: Zl()o) =Zn — Zgec, then we use MLP with L layers to
capture high-dimensional features, and the final output is denoted
as the residual representation Zp = ZgL). The forward process of
each MLP layer is as follows:

I 1 1 1 1 1 1
z = crro (7" w4 o) w0 b+ 70 )

1 1 1 I
where I € {0,1,..,L — 1}. W) e RA"x4d® () ¢ gad®xd ™),

n I
b;l) e R4d' , and bilﬂ) e R are learnable parameters.

4.4.2  Residual diffusion. We need to smooth the generated resid-
ual, as explained in Equation 2. Essentially, this smoothing kernel
aggregates the residual information between the nodes. We em-
ploy the adaptive learning method to learn this diffusion kernel.
As shown in the upper right part of Figure 3, we first randomly
initialize a learnable kernel embedding Eg € RN *dg Then, we
calculate the diffusion kernel with the adaptive learning strategy:

Ay (7() = Softmax (ReLU (7( ~ diag (7())) e [0, 11NN (17)

K = Eg x EL e RNVN, (18)



where diag (-) is diagonal operator. The final diffusion kernel K
can be computed:

K =B (IN +aAy ((i()) € RNXN, (19)
o =diag (a1, az, ... an) € (-1, )NV (20)
B =diag (B1, Bz, ... Bn) € (0, )N*N, (21)

where a and f are learnable parameters. Finally, we apply this
kernel to smooth the residual representation with J finite steps:

ZR =%/ X9 ZR € RTXNXdC.

(22)

4.4.3  Correction prediction. We use the generated residual term
as input to the decoder to produce the corrected prediction:

Yeor = ZgW, + b € RIPXNXe (23)
where W, € R(Txde)x(TpX¢) and po o € RTPXC are learnable pa-
rameters. Finally, we use the generated correction term Yo, to
correct the base prediction to produce the final prediction:

Y = Yhase + Yeor € RIPXNXC, 24
base

Algorithm 1: BiST for spatiotemporal prediction

Input: Observed input X € RTXNX¢; // No label required.
Output: Future prediction Y € RTPXNx¢

# Preprocessing;;

Xo « Xin Eq.5~7; // Temporal decomp.

Z1, < Xo,ep,er,ep,es in Eq.8; // Input representation

-

'S

# Forward spatiotemporal learning;
Z1, < Z1nin Eq.9;// Label representation learning
// Base prediction

w

o

Yhase < Z1a in Eq. 10;

=

# Backward residual correction;

Zp < Eq,Ey,Z1, in Eq.11 ~ 15; // Residual learning
Zeorr — Zp, &, B, EG in Eq. 16 ~ 22; // Diffusion
// Correction prediction

®

©

10 Yeorr < Zeorr in Eq. 23;

-

1 # Final prediction;

Y  Ypase + Yeor in Eq. 24; // Final prediction

5 EXPERIMENT

In this section, we conduct a comprehensive evaluation of the pro-
posed BiST. We will answer the following potential questions. Q.1
and Q.2. How does the model perform for short-term and long-term
prediction tasks? Q.3. What is the computational complexity and
memory usage of this model? Q.4. Is each component of the model
valid? Q.5. How do hyperparameters affect model performance?
Q.6. Can the model handle spatiotemporal deviation? Q.7. Can
modeling residual dependencies across multiple time steps bring
performance gains? Q.8. What interesting cases does BiST find?
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5.1 Experiment Setting

5.1.1 Datasets. To evaluate the effectiveness of our model, we con-
duct a comprehensive experiment across 13 spatiotemporal datasets
that covered the domains of traffic and atmospheric conditions. The
statistical details of these datasets are provided in Table 2.

Among these, we include several large-scale datasets, with two
featuring large-scale datasets—the XTraffic and CA—and one with
a very long-range dataset—the XXLTraffic dataset. The XTraf-
fic dataset [12] contains 16,972 nodes, and the CA dataset within
the LargeST dataset [33] includes 8,600 nodes. To our knowledge,
these are the two largest open-source datasets in the spatiotem-
poral domain regarding the number of nodes. We also select a
dataset with an exceptionally large temporal scale, XXLTraffic [66],
which records over 20 years of traffic data. For our experiments,
we use the accessible sub-dataset, FULL-PeMS05. Additionally, the
KnowAir [29] and LargeST datasets cover four and five years of
data, respectively.

Table 2: Statistics of the used large spatiotemporal datasets.
XXLTraffic does not provide a spatial adjacency matrix re-
sulting in missing # edges. Data Points are the multiplication
of nodes and samples. M: million (10°). B: billion (10°).

Dataset # Nodes # Edges Time period Data points
PeMS03 [50] 358 546 09/01/2018 ~ 11/30/2018 9.38M
PeMS04 [50] 307 338 01/01/2018 ~ 02/28/2018 5.22M
PeMS07 [50] 883 865 05/01/2017 ~ 08/06/2017 24.92M
PeMS08 [50] 170 276 07/01/2016 ~ 08/31/2016 3.04M
METR-LA [29] 207 1,515  03/01/2012 ~ 06/27/2012 7.09M
PeMS-Bay [29] 325 2,369  01/01/2017 ~ 06/30/2017 16.94M
KnowAir [60] 184 3,796  01/01/2015 ~ 12/31/2018 2.15M
SD [33] 716 17,319 01/01/2017 ~ 12/31/2021 0.38B
GBA [33] 2,352 61,246  01/01/2017 ~ 12/31/2021 1.24B
GLA [33] 3,834 98,703  01/01/2017 ~ 12/31/2021 2.02B
CA [33] 8,600 201,363 01/01/2017 ~ 12/31/2021 4.52B
XTraffic [12] 16,972 870,100 01/01/2023 ~ 12/31/2023 1.78B
XXLTraffic [66] 573 - 03/07/2005 ~ 03/20/2024 1.14B

5.1.2  Setting. We adopt the default code frame of LargeST in all
datasets for a fair comparison. All data sets are divided into the
training set, the validation set, and the test set in a ratio of 6:2:2
along the time axis. We adopt Adam [24] optimizer with a learning
rate 0.002 and predefined milestones decay factor of 0.5. To evaluate
the efficacy of our framework, we employ four common metrics,
including Mean Absolute Error (MAE), Mean Square Error (MSE),
Root Mean Square Error (RMSE), and Mean Absolute Percentage
Error (MAPE). The models are executed on a Nvidia A100 with
40GB memory, and the code environment is based on the PyTorch
framework using Python 3.8.3. The XXLTraffic dataset is used to
evaluate the long-term prediction performance of models. The other
datasets are used for the short-term prediction task. For each exper-
iment, we performed it five times and reported the average value
for a comprehensive comparison.

Concretely, we use 3 layers of MLP in both forward and backward
modules, i.e., L = 3. The finite steps in residual diffusion J are
set to 4. The dimensions of all embeddings are equal to 32. The
temporal decomposition kernel size k is equal to 3 in the short-term



Table 3: Short-term performance comparisons on on both the LargeST dataset, spanning a five-year period, and the XTraffic
dataset. “*” means that we reduce the hyperparameter. The length of the input time window and future prediction window are
both set to 12. The unit of MAPE is percent (%). We bold the best-performing model results in red and underline the sub-optimal
model results in blue for each dataset.

Method Horizon 3 Horizon 6 Horizon 12 Average
MAE RMSE MAPE (%) ‘ MAE RMSE MAPE (%) ‘ MAE RMSE MAPE (%) ‘ MAE RMSE MAPE (%)
LSTM 18.64+0.34 29.27+0.58 11.52+0.81 24.88+0.57 39.15£0.64 16.62+1.24 35.93+0.98 55.44+0.73 25.17+1.39 25.27+0.71 39.44+0.62 17.10+1.28
DCRNN 18.48+0.38 29.04+0.34 11.22+0.27 24.48+0.52 38.77+0.64 16.16%0.29 35.52+0.83 55.18+0.92 25.07+0.42 25.02+0.57 38.95+0.71 16.65+0.33
STGCN 18.95+0.92 29.04£0.22 12.84+0.48 21.76+1.46 35.08+0.12 14.50+0.22 26.74+0.21 43.04£0.45 18.06+0.54 21.80£0.06 34.37+0.36 14.79+1.30
GWNet 16.84+0.48 26.64+1.08 11.05+0.59 20.67+1.03 33.46+1.19 13.67+0.64 26.32+1.38 42.65+1.33 17.45+0.80 20.85+1.14 32.97£1.12 13.99+0.79
STNorm 16.44+0.29 25.91+0.44 11.12+0.28 20.30+0.55 32.88+0.63 13.860.54 25.53+0.62 41.09£0.99 17.63+1.01 20.88+0.84 32.73£0.67 13.71+0.69
STID 17.22+0.39 28.10+0.37 10.79+1.02 21.07+0.47 34.89+0.56 14.23+1.41 27.02£0.76 44.18+1.03 18.25+1.46 20.79£0.55 34.34£0.73 14.21+1.36
LarST 17.14+0.25 27.55%0.19 11.47+0.27 22.57+0.72 34.30+0.20 14.58+1.37 27.65+1.12 43.36+0.19 18.32+1.36 22.27+0.13 34.55£1.06 15.19+0.45
STGODE 16.77+0.72 27.93+0.54 11.75+0.86 22.88+1.21 35.94+0.69 14.94+1.26 26.73+1.32 45.91£0.84 18.69+1.38 21.13£1.08 34.03+0.95 14.98+1.17
ASTGCN 18.61+1.23 29.11£1.24 14.09+1.26 25.05£1.96 39.09+1.33 17.80+1.96 33.63+2.31 50.42£3.09 25.27£2.53 25.55£2.16 39.12£2.07 18.12+1.73
2 AGCRN 16.63+0.25 26.98+1.13 11.09+0.43 20.43£0.76 32.95+1.31 13.85+0.51 25.27+1.39 40.26%1.53 17.09+0.63 20.66+0.79 32.81£1.28 13.81+0.58
DSTAGNN 18.47+1.26 28.93+1.28 11.14%1.23 24.77£1.55 38.82+1.49 16.45+1.39 35.52%1.66 55.23£2.19 24.94+1.54 24.79£1.52 39.24£1.72 16.89+1.46
STAEformer 17.11£0.29 26.76+0.55 12.42+0.61 20.78+0.98 33.31£0.81 13.91£0.93 26.12£1.37 41.55%1.50 18.15+1.34 21.02£0.95 33.41£0.99 14.71£1.12
STTN 16.91£0.31 27.66%0.35 11.35%0.22 22.50+0.33 35.70£0.39 14.540.34 26.58+0.87 45.78+0.88 18.45+0.60 20.73£0.52 33.67+0.51 14.78+0.43
DGCRN 16.17£0.26 26.72£0.46 11.13£0.23 20.00£0.49 31.99£0.44 12.74%0.23 25.08+0.54 40.08+0.65 17.49+0.57 19.93+0.48 32.02£0.55 13.19+0.48
DDGCRN 16.28+0.48 26.63£0.65 10.31£0.39 19.920.54 32.01£0.84 12.98+0.41 25.07£0.75 39.94£1.06 17.63+0.47 19.99+0.68 32.08+0.82 13.17+0.42
D2STGNN 15.99+0.43 26.55+0.33 10.17+0.23 19.87+0.79 31.77+0.42 12.72+0.31 24.98+0.98 39.91+0.55 17.37£0.76 19.92+0.85 31.9940.51 13.09+0.45
Ours 15.06+0.32  24.96+0.28 10.12+0.15 18.39+0.3¢  30.73+0.39  12.39+0.26 | 23.81+0.52  38.73%0.62 15.92+0.38 18.30+0.37  30.44+0.42 12.37+0.31
LSTM 17.37+0.34 28.25+0.74 10.78+0.22 23.45+1.04 38.12+1.13 15.52+0.56 34.32+1.41 52.92£1.75 22.64+0.62 23.86+1.23 38.01£1.46 15.64+0.44
DCRNN 17.21+0.25 27.86+0.65 10.39+0.49 23.09+0.31 37.85+0.87 15.10+0.55 33.90+0.76 52.77+1.02 22.33+0.67 23.68+0.45 37.56£0.91 15.33+0.53
STGCN 19.45+0.72 30.38+1.06 13.92£1.22 24.64%0.75 38.86+1.23 17.14+1.37 30.98+1.11 46.87+1.47 20.49£1.89 24.84+0.84 37.68+1.27 16.59+1.48
GWNet 17.79+0.36 28.05+0.97 10.54+0.27 22.91£0.81 35.7241.13 13.58+0.41 29.32+1.23 44.81+1.27 18.32+0.66 23.03+1.04 35.36£1.19 13.91+0.48
STNorm 17.44+0.39 27.79+0.31 11.23+0.33 23.05+0.62 36.42+0.41 14.71+0.64 30.85+0.72 46.15+1.43 20.98+0.92 23.25£0.23 35.49£0.94 15.56+0.68
STID 17.34%0.15 28.65+0.27 11.39+0.21 22.82+0.96 36.34+0.71 14.76+0.89 29.82£1.08 46.14+1.32 20.12£1.30 22.97£0.75 36.24£0.92 14.47+0.82
LarST 18.39+0.39 30.26+0.42 11.630.26 23.85%0.49 39.32+1.03 15.17+0.72 31.47+1.54 46.83+2.85 21.22£0.91 23.91£1.05 36.92+1.47 15.36+0.83
STGODE 17.39£0.54 28.71£0.26 11.50£0.19 22.69£1.11 36.24£1.42 14.73£0.48 30.55%1.49 47.67+1.88 20.63+1.04 23.38£1.26 36.16£1.64 14.78+0.76
« ASTGCN 17.77+1.26 29.55%1.25 11.48+0.71 25.54+2.15 40.05+2.36 16.54+1.05 37.7242.98 57.68+2.91 24.92+1.48 26.28+2.37 41.14£2.38 17.35+1.24
% AGCRN 18.020.64 28.78+0.99 11.66%0.95 22.73£1.16 37.02£1.65 14.36+1.19 29.65+1.48 45.49£1.85 20.03+1.38 23.12£1.11 36.24£1.67 15.09+1.20
DSTAGNN 17.69+1.42 29.47£1.56 11.40£1.45 25.51£1.45 40.06%1.65 16.38+1.78 37.57£1.59 57.64+2.43 24.83+2.65 26.36+1.44 41.15+1.83 17.44+1.62
STAEformer 18.41£0.45 29.02£0.34 12.22+0.14 23.68+0.52 36.81£1.35 15.07£0.24 31.03£0.75 46.09£0.17 20.89+0.27 23.57£0.68 36.06+1.48 15.58+0.19
STTN 17.35£0.17 28.61£0.35 11.11£0.22 22.22+0.29 35.92+0.44 14.36£0.25 30.28+0.64 47.46%0.84 20.22£0.52 23.14£0.58 35.92£0.57 14.62+0.43
DGCRN 17.26£0.28  29.18£0.36  10.57%0.25 | 23.08£0.57  37.89£039  14.74£0.53 | 29.84:0.73  46.72£0.57  18.65£0.62 | 23.05:0.62  36.58+0.44  13.93+0.47
DDGCRN 17.48£0.23  29.34x0.30  10.82£0.54 | 23.12£0.56  37.87£0.47  14.75:0.59 | 29.76:0.64  46.93:0.52  18.52£0.68 | 22.9430.67  36.36+0.41  13.94x0.61
D*STGNN 17.23+0.46 29.11£0.59 10.52+0.27 22.75£0.73 37.73+0.88 14.48+0.33 29.55+1.13 46.69+1.08 18.38+0.43 22.65+0.86 36.36+0.73 13.92+0.37
Ours 15.42:0.12  26.02:0.38  9.88:0.17 | 20.41x0.37 33.59+0.69 12.86x0.29 | 26.77+0.85 42.59:1.05 17.68%0.58 | 20.30+0.53 33.26+0.83 13.120.34
LSTM 18.04+0.19 29.62+0.26 11.43+0.33 25.19+1.38 41.3242.73 17.07+1.29 36.17+2.48 56.29+3.12 25.72£2.15 25.36+1.44 41.18+2.49 17.22+1.74
DCRNN 17.78+0.57 29.37£0.36 11.33+0.60 24.60+1.45 41.18+1.35 16.71+1.51 35.95+2.24 56.00+2.38 25.39+2.67 24.87+1.60 41.08+1.35 16.89+1.65
STGCN 20.14+1.12 30.73+0.53 13.93+0.88 24.93+1.27 37.96+1.07 17.29+1.38 31.62+1.89 49.2242.19 22.07+1.88 24.86+1.66 38.37£1.06 16.93+1.08
GWNet 17.45%0.46 28.39+0.78 11.98+0.35 23.25%0.54 35.85+1.34 15.92+0.99 30.92+1.38 47.40%1.69 21.35£1.16 22.73+0.84 35.72£1.47 15.89+0.63
STNorm 18.14%0.23 28.52+0.52 11.64%0.24 22.77£0.37 36.65£1.09 14.61£0.65 29.92£0.75 45.74%1.68 19.97+1.49 22.65+0.63 36.18+1.14 15.23+0.89
STID 18.01£0.11 28.94+0.47 12.150.17 23.56%0.78 37.53£0.76 16.22+0.63 31.61£1.41 49.27+1.01 21.99£0.66 23.95£0.65 37.85£0.75 16.34+0.44
LarST 19.31%0.52 29.67+0.89 12.73£0.71 23.78+0.88 37.68+1.08 16.95+1.11 32.43£1.34 50.54+1.41 21.76£1.36 24.34£1.02 37.26£1.20 16.67+1.16
STGODE 18.390.53 28.96+1.04 12.88+0.69 23.85£1.13 37.57£1.62 17.29+1.04 32.09£1.25 50.61£2.76 21.91£2.18 23.84+0.91 37.51£1.43 16.81+1.61
< ASTGCN 20.14£0.94 32.28+1.06 15.89+1.47 28.23+2.04 44.56%2.48 19.94+1.42 40.78+2.94 61.65%3.57 32.71£2.71 28.53+2.37 44.42+2.43 21.81£3.24
5 AGCRN 17.24+0.35 28.01+0.30 11.38+0.15 22.21+0.79 35.71+0.74 14.15£0.35 29.21+1.23 45.67+0.81 19.59+0.57 22.34+0.88 35.38+0.69 14.43+0.37
DSTAGNN 20.04+1.28 32.12+1.25 15.73£1.26 28.22+2.14 44.41+1.32 19.90+1.56 35.79+2.23 51.58+2.57 32.84+1.82 28.41+1.63 44.24+2.29 21.77+1.44
STAEformer* 18.87+0.71 29.92+0.69 11.38+0.23 24.25+0.92 37.15+0.77 14.99+0.51 30.55+1.37 45.70+0.95 20.42+1.14 23.73+1.03 36.58+0.85 15.35£0.78
STTN* 19.05+0.43 29.88+0.28 12.45+0.38 24.65+0.60 37.46+0.32 16.94+0.61 31.68+0.87 50.51£0.55 21.50+0.92 23.42+0.73 37.07+0.42 16.33£0.65
DGCRN* 19.15+0.39 30.65+0.51 12.11£0.23 25.60+0.47 39.94+1.28 15.92+0.67 34.31+1.56 50.16+1.49 22.36+1.29 25.80+0.62 39.58+1.07 15.73£0.52
DDGCRN* 19.52+0.59 30.83+0.68 12.31+0.24 25.55%0.71 39.94£1.25 15.83+0.64 34.41£1.38 50.13£2.17 22.08+1.57 25.91£0.87 39.50£1.26 15.95+0.75
D?STGNN* 19.560.93 30.86+0.91 12.39+0.28 25.83+1.01 40.09+1.01 16.09+1.04 34.51£1.69 50.35+1.88 22.37+1.54 26.16£1.35 39.66+1.14 15.96+1.10
Ours 16.20+0.15  26.91+0.29  10.46+0.18 | 20.3830.48  33.64+0.78  12.72+0.43 | 26.67+0.86 42.92+1.05 17.81+0.52 | 20.36+0.58 33.48+0.62  13.22%0.39
LST™M 17.07+£0.98 27.96%1.18 11.960.44 23.43+1.34 38.23+1.48 16.22+0.72 33.8342.29 53.52£2.13 25.55£0.92 23.74£1.73 38.15£1.45 17.38+0.87
DCRNN 16.95+0.64 27.59+1.42 11.69£0.39 23.18+1.50 37.86+1.47 15.73+0.56 33.66%1.54 53.15£2.23 25.08+1.34 23.38+1.28 37.66+1.30 16.91+0.62
STGCN 18.49+1.08 30.24+1.32 13.69+0.26 22.71£1.15 36.84+1.35 16.97+0.35 28.72£1.31 46.25+1.42 21.25£0.48 22.58+1.19 36.29+1.38 16.88+0.32
GWNet 16.22+0.43 26.53+0.37 11.76%0.28 20.69+0.75 33.67£0.46 14.32+0.37 27.48+1.14 42.84%0.59 20.79£0.41 20.52£0.82 33.94£0.48 15.34+0.37
STNorm 15.98+0.29 26.65+0.48 12.13+0.40 21.06+0.38 34.06+0.71 15.23£0.53 27.25+0.54 42.82+0.86 20.29+0.61 21.04+0.39 32.96+0.54 15.24+0.49
STID 16.21£0.32 26.97£0.72 11.75+0.48 21.49£0.36 34.61£1.19 15.180.66 28.05+0.59 44.89£1.25 20.64+0.81 21.62+0.46 34.63+0.91 15.64+0.68
LarST 16.26+0.21 27.10+0.95 11.68+0.29 21.49£0.42 34.24+1.03 14.95+0.43 27.78+0.83 44.36%1.08 20.71£0.75 21.09+0.54 34.01£1.02 15.42+0.56
S STGODE 18.33+£0.34 29.39+1.01 12.89+0.82 24.21+1.29 37.63+1.24 17.31£1.27 32.38+1.36 50.88+1.48 21.61£1.76 24.42+1.07 37.58+1.41 16.99+1.25
ASTGCN* 18.77£1.29 29.63+1.03 15.85+1.14 25.97+2.15 42.29+1.32 17.16+1.81 38.93+2.49 56.92+1.82 28.67+2.17 27.33+1.69 42.59£1.63 19.77£1.75
AGCRN* 16.82+0.44 28.43+0.44 12.47+0.28 21.42+0.64 34.96+0.80 15.77+0.68 28.12+0.72 44.07+1.31 21.54+0.77 21.36%0.58 34.79+1.15 15.94+0.44
DSTAGNN* 17.70+0.81 28.81+0.37 13.17£0.67 22.51+1.47 36.77+0.52 16.83+1.46 29.55+1.65 45.59+1.17 22.92+1.49 22.64+0.99 36.18+0.87 16.87+1.15
STAEformer*  17.87+0.24 29.01£0.83 13.29+0.35 22.89+0.98 37.15%1.32 17.08+0.79 29.97+1.78 45.96+1.41 23.36+1.21 22.89+1.25 36.51+1.24 17.334£0.98
Ours 15.38+0.32  25.53+0.22 10.88+0.17 19.93+0.36  32.75+0.42 13.92+0.31 26.86+0.59  41.97+0.73 19.63+0.42 19.95+0.42  32.67+0.53  14.21+0.24
LSTM 11.10+0.64 21.47+0.28 16.25+0.26 15.31+0.48 28.82+1.31 22.77+1.52 21.97£1.31 40.75+1.54 30.11£2.37 15.56+0.59 29.14£1.24 22.13£1.42
DCRNN 10.99+0.25 21.14+0.32 15.93+0.37 14.83+0.39 28.62+1.64 22.66%1.37 21.53£1.42 40.62+2.29 29.79£1.59 15.10+0.63 28.97+1.21 22.02£1.03
STGCN 13.67+0.19 25.20+0.65 19.02+0.45 15.28+0.55 28.11£0.72 19.94+0.56 17.98+0.93 33.54+0.84 22.59£0.92 15.27+0.66 28.49£0.72 20.41£0.76
GWNet* 11.79+0.20 21.89+0.29 16.24+0.25 15.93+0.36 29.57+0.89 22.82+0.36 22.37+0.45 40.59+1.74 32.42+1.39 16.06+0.37 29.85£1.13 23.52£0.92
;EU STNorm 9.84+0.39 18.71+0.53 16.30£0.29 11.62+0.41 22.19+0.71 18.12+0.43 14.26+0.54 27.08+1.03 22.54+0.86 11.57+0.43 22.11£0.87 18.44+0.89
[g STID 10.05+0.33 19.04£0.78 15.14£0.16 12.02+0.49 22.77£1.15 17.32+0.21 14.42+0.86 28.25+1.54 21.36+0.39 11.71+0.74 22.81£0.98 17.54+0.24
=< LarST 10.94+0.24 19.86%0.75 17.14%0.42 12.35+1.13 23.48+1.01 18.84+1.19 16.68+1.25 31.85£1.65 23.36£1.27 12.69+0.82 24.54£1.06 18.77+0.74
STGODE* 11.13£0.88 20.69£0.37 19.92+0.97 13.15£1.05 24.57£1.04 23.67£1.33 16.93+1.46 32.02£1.06 30.46%1.64 13.37£1.15 24.92£1.32 24.44£1.41
Ours 8.87+0.11 17.62+0.22  13.83+0.26 | 10.48+0.24  20.79+0.38  16.12+0.34 | 12.77+0.46  25.45+0.55 19.88+0.47 | 10.45+0.35 20.74+0.47  16.21+0.38
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prediction, 5 in the KnowAir dataset, and 25 in long-term prediction.
The number of virtual nodes K is set to 8 in SD, 24 in GBA, 32 in
GLA, 64 in CA, 128 in XTraffic, and 3 in KnowAir and XXLTraffic.

5.1.3 Baselines. We compare two types of model: spatiotempo-
ral models and time series models excelling at long-term predic-
tions. Spatiotemporal models include DCRNN [29], STGCN [67],
GWNet [64], STNorm [5], STID [47], LarST [56], STGODE [8], AST-
GCN [16], AGCRN [1], DSTAGNN [25], STAEformer [32], STTN
[65], DGCRN [27], DDGCRN [62] and D’STGNN [49]. Time se-
ries models contain DLinear [71], Mamba [13], Autoformer [63],
iTransformer [34], DSformer [68], TimeMixer [61], SparseTSF [31],
UMixer [39], CATS [36], SOFTS [17] and CrossGNN [20].

5.2 Short-term Prediction Performance
Comparison (Q.1)

We set both the input and prediction windows to 12 to evaluate the
short-term prediction performance of each model.

As shown in Table 3 and Table 4, BiST consistently demonstrates
superior performance across all forecasting horizons on these large-
scale spatiotemporal datasets, highlighting the effectiveness of our
model in handling numerous spatiotemporal data. Conversely, HL
exhibits the poorest performance, probably due to the volatility
of temporal data. Despite LSTM being a classical recurrent neural
network for sequence data and its lack of spatial influence learn-
ing, which is critical in spatiotemporal modeling, and surprisingly
remains highly competitive in short-term predictions when sub-
stantial amounts of data are available. STGCN and GWNet, the
pioneering works that integrate GNN with gated TCN, achieve
promising performance even compared to many recent works, such
as ASTGCN. STGODE improves model accuracy by solving contin-
uous layers of GNN as a replacement. AGCRN replaces the fully
connected layer in GRU [3] with an adaptive diffusion matrix from
GWNet. STID employs learnable node embeddings to character-
ize the spatiotemporal structure, assisting MLP in learning, and
showing good result stability on datasets with large spatial scale.
STAEformer modifies the MLP structure in STID to a vanilla Trans-
former [51] architecture for temporal and spatial dimensions, but
its quadratic complexity concerning the number of nodes limits its
scalability to larger datasets. D2STGNN models temporal and spa-
tial dependencies with dynamic spatial topology and a decoupled
spatiotemporal framework, performing better on smaller datasets,
while STNorm enhances spatiotemporal learning through special-
ized normalization techniques, performing well on larger datasets.

Nevertheless, our model achieves dominant short-term forecast
performance. In Table 3, BiST achieves a relative improvement of
over 5% in most metrics. In about 20% of the metrics, BiST exhibites
similar or even more than 10% relative improvement, with the
maximum relative improvement reaching 12.28%.

5.3 Long-term Prediction Performance
Comparison (Q.2)

We evaluate the long-term prediction performance of the models on

the XXLTraffic dataset, which spans a very long period. To assess

its ability to handle different temporal granularities, we aggregated
the data into hourly and daily time scales. We compare our model
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against advanced spatiotemporal graph prediction models (such
as STID and STAEformer) as well as long-term time series models.
The official paper reports metrics on standardized data, and for
intuitive comparison, we maintain this setup.

As shown in Table 5, for data with smaller temporal granularity,
the STID model gains advantages by accurately modeling complex
spatiotemporal correlations. However, for daily frequency data,
long-series time models, such as SOFTS and TimeMixer, demon-
strate superior prediction performance. This is primarily because
daily data often exhibit strong periodicity, making the accurate
modeling of these patterns essential, an area where these time
series prediction models excel. For instance, Autoformer employs
decomposition techniques alongside an autocorrelation mechanism,
effectively capturing periodic patterns. Its performance surpasses
that of the latest iTransformer, which utilizes attention and feedfor-
ward networks applied to the inverted dimension. Similarly, SOFTS
adopts a centralized strategy to model dependencies among differ-
ent variable channels, thereby achieving enhanced performance.

Our model demonstrates leading performance across various
time scales in long-term forecasting, attributed to its effective utiliza-
tion of spatial information and the implementation of its temporal
decoupling module. We achieve a maximum relative improvement
of 12.74%, with most metrics reflecting gains of more than 5%.

5.4 Model Efficiency Analysis (Q.3)

We compare the complexity of our proposed model with several ad-
vanced spatiotemporal prediction models. Using the GBA, CA, and
XTraffic datasets as examples, we report the total training time, per-
epoch training time, inference time, and memory usage, as shown
in Table 6 and Figure 4. We can observe that STGCN and GWNet ex-
hibit higher efficiency due to their utilization of TCN as a temporal
module, enabling efficiency improvements through parallel strate-
gies. While models from the Transformer family, D2STGNN, and
STAEformer demonstrate good predictive performance, the Trans-
former models consume significant computational time, leading to
lower operational efficiency.

Regarding memory utilization, these models tend to stack neural
network layers to enhance representational capacity. During the
forward learning process, devices need to maintain an embedding
vector for each node. When backpropagating errors, the regression
loss function necessitates maintaining the computation cache for
the entire graph, resulting in a substantial memory burden.

In contrast, our proposed model is based on lightweight MLP
architecture, reducing time consumption. Furthermore, our model
comprises only forward and backward modules, thereby reducing
memory usage.

5.5 Ablation Study (Q.4)

We conduct an ablation study to explore the effectiveness of each
component in BiST. "w/o tems" removes the temporal decoupling
Technology, and "w/o tememb" and "w/o Noe" mean that we remove
the temporal and node embeddings respectively. "w/o prompt"
eliminates the spatiotemporal embedding prompt, "w/o back" uses
only the base predictions from the forward process as the final
prediction, omitting subsequent decoupling and residual correction
modules, "w/o dec" means that we use two-layer MLP layers to



Table 4: Short-term performance comparisons on six traditional spatiotemporal datasets. The length of the input time window
and the future prediction window is set to 12 for all datasets except KnowAir, where the length of both windows is 24. The
performance reported is computed by averaging over all predicted time steps. The unit of MAPE is percent (%).

Dataset PeMS03 PeMS04 I PeMS07 I PeMS08 METR-LA I KnowAir

Method MAE ~ RMSE  MAPE [ MAE  RMSE  MAPE | MAE  RMSE MAPE | MAE  RMSE MAPE | MAE RMSE MAPE [ MAE  RMSE  MAPE
LSTM 21.18:0.28 35.07£0.16 23.32£0.18[27.140.15 41.81+0.34 18.3420.06[30.08+038 45.94£1.31 13.24+0.24]22.21£0.29 34.01£0.25 14.320.12[3.55£0.11 7.1320.04 10.19£0.13[24.39£0.73 35.24+044 55.35£3.02
DCRNN  18.15£0.14 30.32£0.51 18.81£0.18|21.24+0.13 33.46+0.13 14.2630.24|25.24+0.08 38.64+0.56 11.73£0.11/16.890.32 26.39+0.06 10.98+0.043.15:0.02 6.24+0.01 8.590.05 | 22.03+0.82 32.66+1.01 55.16+2.26
STGCN  17.39£0.11 28.87+0.33 17.11£0.12|20.03+0.11 31.760.59 13.23:0.15|21.64+0.07 34.85+0.46 13.98£0.22| 15.64+0.36 25.16+0.07 10.370.09|3.11:0.02 6.25:0.04 8.62:0.08 | 22.49+0.85 31.830.59 52.16+2.32
GWNet  16.85£0.18 27.58£0.17 16.11+0.07 | 19.03+0.12 30.450.56 13.1920.16|21.51£0.15 34.35+0.24 10.11+0.03| 18.020.53 27.86+0.02 9.36+0.02|3.03:0.02 6.04x0.03 8.2130.04 |22.45+0.84 31.59+0.72 53.17+2.48
STNorm  15.42£0.17 25.82+0.26 14.67+0.04|19.48+0.14 32.360.36 12.24:0.25|20.490.02 34.82+0.52 8.58+0.05 | 15.57+0.52 24.95+0.06 10.05£0.03(3.1420.01 6.41£0.02 8.720.07 |23.02+0.81 32.850.59 52.77+2.85
STID 15.18+0.12 25.96+0.11 16.24+0.04 18.59+0.12 30.25£0.11 12.42£0.13|19.5420.02 32.8620.24 8.29£0.03 |14.23+0.44 23.44%0.08 9.290.08|3.200.03 6.570.01 9.16x0.01 |21.9620.75 30.51+0.43 49.95:1.41
STGODE  16.39£0.14 27.940.15 16.79+0.09|20.99+0.05 32.79+0.35 13.570.14|22.99£0.04 37.59+0.63 10.23£0.11/16.71£0.42 25.88+0.02 10.59+0.083.12:0.01 6.270.04 8.97+0.13|21.46+0.78 31.51+0.59 48.47+1.95
ASTGCN  17.92£0.26 29.46+0.24 19.18+0.06 | 22.99+0.12 35.030.34 16.59+0.23|28.06+0.15 42.66+1.21 13.82£0.29| 18.64+0.34 28.18+0.14 12.88+0.12|5.0420.02 10.61+0.13 9.53+0.02 | 22.96+0.58 32.62+0.81 53.54+2.92
AGCRN  16.03£0.09 28.56+0.42 15.75+0.14|19.69+0.05 32.25+0.14 12.92:0.13|20.83+0.03 34.72x0.73 8.910.06 | 15.670.29 25.08+0.08 10.26+0.08|3.14:0.03 6.38+0.03 8.82+0.13 |23.88+0.86 32.94+0.44 59.03+1.40
DSTAGNN  15.81£0.05 27.27+0.12 15.62£0.04|19.2420.06 31.410.19 12.89+0.17|21.43£0.15 34.5420.21 9.04+0.04 | 15.58+0.39 24.77+0.02 9.87+0.01|3.17:0.04 6.37+0.03 8.61x0.13|22.93+0.92 32.91+0.44 55.81x2.61
STAEformer 15.51+0.08 27.45+0.22 15.23£0.18|18.13+0.09 30.01£0.11 11.9420.16(19.62+0.15 33.4420.84 8.20+0.04 |13.98+0.26 23.98+0.07 9.13+0.02|3.02:0.04 6.07+0.03 8.340.05 |22.79+0.58 32.27+0.55 48.91+2.18
STTN 15.850.15 28.13+0.28 15.26+0.09 [ 18.83£0.13 30.940.39 12.31+0.07 |20.13+0.13 34.210.22 8.45:0.07 | 14.79+0.52 25.08+0.08 9.370.01|3.13£0.03 6.170.03 8.59+0.04 |23.950.64 33.52+0.45 60.12+1.74
DGCRN  15.71%0.12 27.46+0.27 15.12£0.15|19.68+0.13 31.470.44 13.570.24|20.84+0.19 34.1320.46 9.51%0.08 | 15.11£0.48 24.1130.06 9.96+0.06 |3.11:0.03 6.22+0.04 8.67+0.05 | 22.47+0.62 32.49+0.67 54.78+1.89
DDGCRN  14.76+0.21 25.11+0.37 14.33+0.06| 18.46+0.11 30.53£0.56 12.25+0.14|19.74+0.18 33.03+0.22 8.43+0.09|14.48+0.11 23.76+0.02 9.82£0.02 |3.04£0.02 6.07+0.04 8.49+0.03 |21.54£0.96 31.07+0.92 51.77+2.11
D?STGNN _ 14.61£0.07 25.05+0.26 14.39+0.11|18.55+0.08 30.75+0.19 12.07+0.08|19.80+0.08 33.08+0.72 8.41+0.09 | 14.42+0.43 23.82+0.07 9.35+0.02|3.0120.03 6.05:0.02 8.4130.04|21.49+0.55 30.42+0.61 49.542.69
Ours 14.330.05 24.29+0.16 14.19+0.07]17.95+0.09 29.56+0.12 11.93+0.12[19.23+0.03 32.59+0.15 8.08+0.0513.78+0.16 23.32+0.05 8.94:0.03[2.97+0.01 6.02+0.02 8.14+0.03|20.27+0.5129.75+0.54 47.29+1.41

Table 5: Average long-term prediction performance on XXL-
Traffic dataset. "Hourly" and "daily" are the sampling fre-
quencies used in practice. The length of the input window is
96 with prediction window lengths of {96, 192, 336}.

Horizon 96 Horizon 192 Horizon 336
XXLTraffic MSE MAE | MSE MAE | MSE MAE
STID 0.046+0.002 0.124:0.004] 0.052£0.002 0.131£0.002 | 0.055+0.005 0.141=0.004
STAEformer 0.046+0.001 0.130£0.004 | 0.053£0.005 0.133+0.005 | 0.059+0.005 0.1530.004
Dlinear 0.054+0.005 0.187+0.014 | 0.062£0.001 0.169+0.002 | 0.061+0.003 0.171+0.004
Mamba 0.045£0.002 0.16140.003 | 0.056£0.005 0.154+0.002 | 0.054+0.002 0.152+0.006
Autoformer  0.055+0.005 0.215+0.011 | 0.074£0.004 0.211£0.015 | 0.077+0.009 0.216+0.014
. iTransformer 0.083£0.008 0.255+0.0120.102+0.005 0.244+0.013 |0.10140.014 0.253+0.013
E DSformer  0.067+0.007 0.158+0.004 | 0.0730.004 0.159+0.001 | 0.071+0.004 0.1560.003
2 TimeMixer  0.0640.007 0.156+0.0040.07420.003 0.170£0.010 | 0.074%0.005 0.1710.001
SparseTSF  0.114+0.009 0.192+0.007 | 0.099+0.009 0.173+0.001 | 0.099+0.012 0.174+0.008
Umixer 0.082+0.008 0.181+0.009 | 0.074+0.002 0.162+0.007 | 0.072+0.009 0.170+0.006
CATS 0.056+0.003 0.139+0.008 | 0.060+0.004 0.141+0.003 | 0.062+0.007 0.143+0.009
SOFTS 0.068+0.001 0.165+0.003 | 0.078+0.002 0.175+0.008 | 0.087+0.002 0.187+0.005
CrossGNN  0.111+0.007 0.206+0.016 | 0.097+0.006 0.191+0.002 | 0.098+0.008 0.197+0.006
Ours 0.041+0.002 0.114+0.003|0.046+0.004 0.121+0.003(0.051+0.005 0.127+0.004
STID 0.178+0.004 0.259+0.003] 0.217£0.003 0.306£0.002 | 0.251+0.003 0.332+0.004
STAEformer 0.1840.006 0.274+0.003 | 0.221£0.006 0.317+0.004 | 0.275£0.002 0.359+0.005
Dlinear 0.166+0.003 0.238+0.005 | 0.209+0.003 0.282+0.002 | 0.242+0.003 0.298+0.004
Mamba 0.177£0.012 0.254+0.011|0.238+0.013 0.314+0.014 | 0.293+0.013 0.327+0.013
Autoformer  0.177+0.006 0.259+0.002 | 0.2220.009 0.275+0.003 | 0.249+0.004 0.307+0.014
iTransformer 0.176+0.004 0.255+0.003 | 0.232+0.002 0.303+0.011 | 0.2560.003 0.309+0.012
ZDSformer  0.1760.009 0.250£0.004| 0.224£0.003 0.282£0.007 | 0.252£0.003 0.2960.003
A TimeMixer 0.158+0.003 0.232+0.004 | 0.204+0.004 0.275+0.001 | 0.236+0.001 0.296+0.005
SparseTSF  0.165+0.009 0.239+0.006 | 0.210£0.008 0.279+0.006 | 0.246+0.002 0.294+0.007
Umixer 0.165+0.004 0.240+0.002 | 0.211£0.005 0.283+0.009 | 0.240+0.002 0.296+0.004
CATS 0.175+0.005 0.246+0.008 | 0.251£0.013 0.317+0.015 | 0.275+0.012 0.334+0.015
SOFTS 0.156£0.002 0.214+0.001 | 0.204+0.011 0.259+0.005 | 0.242+0.008 0.296+0.002
CrossGNN  0.163+0.005 0.235+0.008 | 0.207+0.001 0.276+0.009 | 0.243+0.008 0.295+0.008
Ours 0.147+0.004 0.207+0.010/0.178+0.005 0.245+0.009]0.224+0.003 0.283+0.004

Table 6: Efficiency comparison of all models when achieving
optimal performance on SD dataset.

SD Performance Training Inference Total Memory .
Batch Size
Method (MAE) (s/epoch) (s) (hour) (MB)
STGCN [64] 21.80+0.06 133.3 31.8 2.8 3,452 64
GWNet [64] 20.85+1.14 321.9 45.5 10.5 7,978 64
STNorm [5] 20.88+0.84 97.9 20.1 2.43 3,762 64
STGODE [38] 21.1341.08  498.0 81.1 81 18,948 64
ASTGCN [16] 25.55%2.16 493.8 84.9 11.9 8,984 64
AGCRN [1] 20.66£0.79 380.8 53.7 10.8 8,116 64
STAEformer [32] 21.02+0.95 242.7 26.6 4.6 40,822 55
D?STGNN [49] 19.92+0.85 2,320.5 324.7 42.8 40,270 31
Ours 18.30£0.37 796 1505 08 2,965 64
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Figure 4: Efficiency comparison of optimal performance on
CA and XTraffic datasets.

replace the spatiotemporal decoupling residual learning module,
and "w/o adp" removes adaptive diffusion kernel learning and uses
an identity matrix.

As shown in Table 7, results demonstrate that each component
of the model is effective. The ‘w/o prompt’ variant exhibits lower
prediction performance, indicating that integrating various prior
knowledge enhances prediction accuracy. The ‘w/o back’ variant
performs poorest, highlighting the importance of the backward
correction process. The ‘w/o dec’ variant shows higher prediction
errors, suggesting that decomposing spatiotemporal features into
personalized and contextual features benefits inconsistent infor-
mation modeling. The suboptimal prediction performance of "w/o
prompt" validates that embedding prior knowledge can better guide
model learning. In summary, ablation experiments on three datasets
demonstrate that each of the involved components is effective.

5.6 Hyperparameter Sensitivity Analysis (Q.5)

In this section, we will analyze the impact of four key hyperparam-
eters in the SD dataset. The results are shown in Figure 5.

Residual diffusion layers J. When ] is equal to 4 in Equation 22,
BiST achieves the best performance. A small number of residual
propagation layers may not fully capture the residual information,
while a large number of propagation steps can lead to oversmooth-
ing commonly seen in GNNs, resulting in performance degradation.



Table 7: Ablation experiments on three datasets.

Method ‘ Ours ‘ w/o tems w/o tememb w/o Noe w/oprompt w/oback w/odec  w/oadp
MAE | 18.30+0.37 | 19.30£0.41  20.39+0.54 20.39+0.42 20.40+£0.73 20.71+0.97 19.590.56 19.53+0.89
2 RMSE | 30.44+0.42 | 31.1340.78  32.73£0.59 33.07+0.51 34.4241.19 34.11+1.65 32.16:0.76 31.22+0.71
MAPE | 12.37£0.31 | 12.42+0.29  13.79+0.42 13.45+0.43 13.80+0.42 13.42+0.46 12.84+0.47 13.09+0.58
MAE |[19.95+0.42]20.06+0.36  20.610.44 20.52+0.51 20.64%0.48 20.86+0.46 20.48+0.69 20.40+0.43
5 RMSE | 32.67+0.53 | 32.99+1.08 33.24+0.75 33.8120.73 34.04+1.34 34.04x0.70 33.46+0.99 33.30+1.57
MAPE | 14.21£0.24 | 15.61£0.52  14.58+0.34 14.61£0.33 14.63+0.79 14.76+0.13 14.24+0.38 14.32£0.26
& MAE [20.27+0.51|20.81£0.38 20.560.73 21.02+0.61 2131x0.92 21.4620.63 20.71x0.97 20.510.46
% RMSE | 29.75+0.54 | 30.08+0.52  30.19+0.79  30.48+0.54 30.74+0.42 30.86+0.39 31.07+0.51 29.85+0.48
5 MAPE | 47.29+1.41|59.4432.68 51.4932.16 57.48+1.69 62.85:3.16 63.14£376 57.292.34 57.2422.41
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Figure 5: Hyperparameter sensitivity experiment.

Virtual cluster numbers K. A moderate number of virtual nodes,
which corresponds to the core numbers, can effectively capture
global spatiotemporal information. On the other hand, an excessive
number of virtual nodes increases complexity without performance
improvement and may even absorb excessive environmental noise,
leading to performance decline.

Temporal decomposition kernel size k. Smaller kernel sizes
exhibit similar and good stability in feature extraction. However,
as the size increases, performance rapidly deteriorates due to the
loss of local temporal information.

The number of MLP layers L. When we use 3 MLP layers for
spatiotemporal learning (in Equation 9) and residual modeling (in
Equation 16), BiST can achieve optimal prediction performance.
This is because, with fewer layers, the model may fail to capture
complex spatiotemporal correlations, leading to underfitting. Con-
versely, with too many layers, the increased model complexity can
make learning more difficult, often resulting in overfitting.

5.7 Spatiotemporal Deviation Modeling (Q.6)

We evaluate the effectiveness of the model in handling spatiotempo-
ral inconsistencies. Using the SD dataset as an example, we calculate
the percentage change between the average values of the input data
and the label data. We study two scenarios: a sudden increase and
a sharp decrease in label data.

As shown in Table 8 and Figure 6, relative to existing state-of-
the-art spatiotemporal prediction models, BiST can more effectively
handle spatiotemporal inconsistent data. While STID claims to use
the node embedding method to handle such data, existing models
only involve a forward spatiotemporal learning process without
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utilizing label information, and hence they are unable to effectively
deal with complex inconsistencies. In contrast, BiST includes a
backward process that leverages label information to help the model
better eliminate such disparities.

Table 8: Performance comparisons under severe cases on SD
datasets. "Surge" refers to the growth multiple of the mean
value of future data, while "Plummet" signifies the percent-
age decrease in the mean value of future data. "x": multiple.

1X ~ 10x 10X ~ 100x 100X ~ 1000x
Surge MAE RMSE MAE RMSE MAE RMSE
STGCN 7.82+0.18  20.61+0.32 | 13.75£0.25 26.36+0.28 | 18.19+0.11 36.45+0.47
STID 5.84+0.09 15.69+0.11 | 12.75£0.13 27.83£0.17 | 13.69+0.06 26.05+0.24
STAEformer 7.59+0.11 15.97+0.32 | 15.12+0.19 28.53+0.22 | 12.66+0.29 20.41+0.21
D?STGNN  5.68+0.05 15.88+0.15 | 10.81+0.11 21.86+0.29 | 16.03£0.07 26.99+0.35
Ours 5.33+0.07 14.50+0.14(10.41£0.12 20.29+0.23 |11.53+0.14 18.67+0.18
25% ~ 50% 50% ~ 75% 75% ~ 100%
Plummet MAE RMSE MAE RMSE MAE RMSE
STGCN 13.51+£0.25 27.86+0.37 | 18.45£0.24 28.49+0.39 | 23.84+0.48 36.43+0.48
STID 14.81+0.16 30.28+0.13 | 21.28+0.17 33.27+0.20 | 23.14£0.39 35.97+0.31
STAEformer 13.77+0.64 28.47+1.28 | 18.02+0.28 27.55+0.36 | 23.95+0.56 37.46+0.34
D?STGNN  14.89+0.38 27.12+0.16 | 17.16+0.33 26.34+0.21 | 21.9820.51 34.56%0.71
Ours 12.9940.18 26.04+0.24|16.75+0.32 25.32+0.26|21.29+0.45 33.24+0.52
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Figure 6: Prediction case visualization. The above figure illus-
trates the predictive performance of the model in the event
of a surge of data, while the lower figure depicts the model’s
performance in the context of a sudden decline in data flow.

5.8 Modeling Multi-step Temporal Dependency
for Residual Learning (Q.7)

After obtaining the residual representation Zg, we employ two
methods: LSTM and Transformer, to explicitly model dependencies
between different time steps in Zg. These variants are defined as
Ours-LSTM and Ours-Transformer. As shown in Table 9, the results
demonstrate that these alternative variants exhibit inferior perfor-
mance compared to our model. The potential reason is that com-
plex backward residual modeling networks might overly emphasize
residuals while diminishing the effectiveness of spatiotemporal
feature learning, reducing its effectiveness.



Table 9: Ablation experiment on modeling time step length.

Dataset Avg. Ours Ours-LSTM  Ours-Transformer
MAE  18.30+0.37  19.52£0.35 19.63+0.42
SD RMSE  30.44+0.42  31.84+0.43 32.22+0.54
MAPE 12.37+0.31  12.73+0.23 12.64+0.25
MAE  19.95%0.42  20.41£0.49
CA  RMSE 3267:0.53 33185043  Oupof-Memory
MAPE  14.21+0.24  14.48+0.38
MAE  20.27+0.51  20.34+0.52 21.48+0.54
KnowAir RMSE  29.75:0.54  29.95%0.56 32.48+0.56
MAPE 47.29+1.41 48.12+1.53 52.47+1.51

5.9 Case Study (Q.8)

5.9.1 Interpreting BiST prediction. The SHAP (SHapley Additive
exPlanations) value [37, 38] represents a comprehensive measure of
the importance of data features. It quantifies the average contribu-
tion of each feature to the predicted output, taking into account all
possible combinations of feature perturbations. Following the STL
decomposition [4], our BiST can be seen as a generalized additive
model (GAM) [18],

Y =Y+ Yerr, (25)
= Ypase + Ycor + Yerr, (26)
=% (MLPy (X;) + MLP (X)) + Ycor + Yerr. (27)

where X; and Xg represent the stable patterns and trend patterns
of the time series in the forward spatiotemporal learning process,
respectively. By averaging across all nodes, we calculate the SHAP
values of the four components at 3 kinds of horizon steps. As shown
in Figure 7, the application of SHAP values in BiST for spatiotem-
poral data reveals that stable temporal patterns play a crucial role
in both short-term predictions (as illustrated in subplot (a)) and
long-term predictions (as illustrated in subplot (b)). However, the
influence of trend patterns gradually diminishes as the prediction
horizon increases.

In short-term prediction, the slight increase in the "error" compo-
nent stems from growing inconsistencies between input data and
label information as prediction steps advance, making prediction
more complex and potentially leading to decreased model accuracy.
Consequently, the backward correction module plays an increas-
ingly significant role by modeling inconsistent features to adjust
baseline predictions. In long-term prediction, the contribution of
the correction term remains substantial and cannot be overlooked.

5.9.2  Prompt embedding visualizations. In this section, we extract
the trained embedding vectors from BiST for visualization to evalu-
ate their effectiveness. As shown in Figure 8, we demonstrate the
spatiotemporal prompt embeddings, the learnable embeddings of
nodes and virtual nodes in the residual decomposition layer, as well
as the receptive fields of virtual nodes and their visual position in
real-world scenarios on SD dataset.

Temporal prompt embedding. Figure 8 (a) displays the visualiza-
tion results of temporal prompt embedding e and ep. We observed
that the prompts are precisely aggregated into 7 clusters with clear
boundaries based on the day of the week. Moreover, the parts repre-
senting the time of day within each cluster exhibit distinct patterns,
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Figure 7: The SHAP values of decomposed components of
BiST in SD dataset and (Daily) XXLTraffic dataset.

aggregating into smaller groups, demonstrating that the temporal
prompts can provide clear temporal side information.

Node embedding visualization. Using SD dataset, we first extract
the hierarchical receptive field S in the Equation 11. We select
nodes with higher correlation in each cluster, which are denoted
as ‘representative nodes’. The feature of these nodes are close to
those of clusters. The remaining nodes are called ‘normal nodes’.
Figure 8 (b) presents the node embedding visualization of these
nodes eg, which indicates that the node embeddings are clustered,
effectively learning hierarchical information. At the same time, our
method successfully extracts shared features as the representative
nodes are positioned near the center of each cluster. We further
illustrate the distribution of these nodes in the real-world road
network, as shown in Figure 8 (c).

Personalized-feature and context-feature embeddings. Fig-
ure 8 (d) visualizes the personalized-feature E4 and context-featur
embeddings Ey. The context features which are shared among the
nodes exhibit a clustered distribution, while the personalized fea-
tures of each node show a strip-like distribution.

© Normal nodes
o Representative nodes

0 LD EZ o

ED T3
(a) Temporal prompt embedding.

Personalized-feature embedding
« Context-feature embedding embedding

Normal nodes
© + Representative nodes

Si76 175 174 173 172 -l o170 1069
¢) Distribution of Nodes in road network locations.

o -
(d)P featy

Figure 8: Visualization of various embeddings.

6 CONCLUSION

This paper presents a lightweight spatiotemporal prediction model
based on MLP, achieving competitive predictive performance while
maintaining low computational complexity and memory usage.
The model effectively addresses inconsistencies between the label



and the input information, thereby enhancing the overall perfor-
mance. We propose a novel spatiotemporal decoupling module for
capturing residuals, which decomposes spatiotemporal features
into node-shared contextual features and node-specific features.
Across more than a dozen datasets, we demonstrate the model’s
competitive accuracy, high training efficiency, and minimal memory
overhead.
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A MATHEMATICAL PROOFS

In this section, we provide the proof of Theorem 1. Leveraging the
framework of Gaussian Markov random fields [44], our proof un-
folds by initially demonstrating the soundness of the foundational
prediction term through the conditional distribution. Subsequently,
we advance this groundwork by introducing supplementary condi-
tional constraints to substantiate the veracity of Theorem 1.
Proof of Theorem 1 By the definition of Gaussian Markov ran-
dom fields (GMRF) [11], we can define the multivariate Gaussian
distribution of probability density function corresponding to the
joint spatiotemporal variable T = [X,Y] € R(ZI+TP)xNxc,

—-N(T:

2

fr(T) = (271')7%’) det (I‘_l)% exp (—% vec (T) T T'vec (T)),
(28)

where T' = 571 € RIT+TR)NIXI(T+TP)N] g the precision matrix,
i.e., the inverse of covariance matrix X. I' represents the depen-
dency between (T + Tp) X N variables in GMRF, and vec (-) is the
vectorization operator of tensor. Here I reflects the dependence of
variables in the GMRF, which can be computed as

I'=(W®Iy)+diag (h) @ A (A), (29)

where W € R(T+TP)x(T+Ip) gatisfying the symmetric positive def-
inite and 0 € RT+Tp satisfying the entry positive are the pseudo
parameters of the standard GMRF model. Detailed explanation of
these parameters suggests a reference to [22]. diag (-) is the diago-
nalization operator and ® is the Kronecker product.

Spatiotemporal variables can be assumed as a multivariate Gauss-
ian distribution, i.e., vec (T) ~ N(0,T~1). Without loss of gener-
ality, we divide the node set of the spatiotemporal graph into two
disjoint unions to simplify subsequent calculations: V = V;UVa, i.e.,
Vi N'Vz = 0. Recall the conditional distribution of Y corresponding
to the input X with its variable X, we can get

YIX~ N (E[YIX] T ). (30)

where I;IY e RIPN)X(TpN) jndicates the dependencies between
the variables contained in label Y. Hence the conditional distribu-
tion of Y; y; respect to Y, y;, and X for the disjoint union V; U V3 of
node set V and arbitrary t = {1,2,...,Tp} is

Yiv, X, Yy,

N (E [YerIX] + T3 Teviw, Xz (B [Yer1X] - Yeu,).

(1)

).

-1
L'viv,
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where Y, y, = [Y;':u,: | Yu e V,~]T for i = {1,2}. Hence the above
expectation equation is,
E [Yl’,Vl |X’ Yt,Vz]
=E [V, X]

+T 0y Teviv, (B [Yew IX] = Yey,),

=E Yy, 1X] + (In + r A (A));,IIV1 (IN +ar A (A))y,v, X2 €1y,

(32)

where a; = and X2 means the multiplication operation of

the second dimension of two matrices. The term (Iy + &t A (A))y, v,
indicates the submatrix consisting of rows corresponding to entries
in Vi and columns corresponding to entries in V3 for Iy + ;A (A),
which illustrates the dynamics of residual propagation in this con-
text. Based on the expansion of Neumann series [41], the above

equation can expand as follows,
E Yoy X, Yoy, | =E [V, X]

o . k (33)
+(1—y) Z (YtAvl,vl) (IN + ar A (A))v, v, X2 €13
k=0

where y; = o /(1 + ;). AVI,VI indicates the submatrix consisting
of rows and columns corresponding to entries in V; for A. It must be
noted, however, that the results of the closed form are independent
of the node disjoint union partition chosen, as determined by the
equivariance of the GMRF [2]. Hence, the case we considered in
the Theorem 1 is just a special example in the proof when V; = {u}
and V; = V\ {u}. Proof of completion.(J

B ADDITIONAL EXPERIMENTS

In the study of LargeST [33], the authors employed 2019 data as
a case study to compare the predictive performance of different
models. To enable a straightforward comparison, we also report the
average performance metrics across 12 time steps from the 2019
data. As illustrated in Table 10, BiST consistently outperforms all
baseline models across the four datasets, with 75% of the perfor-
mance metrics showing a relative improvement of over 5%. This
further validates the superiority of the BiST model in handling
large-scale spatiotemporal data.

Table 10: Short-term performance comparisons in LargeST
(2019). The unit of MAPE is percent (%).

Dataset

Method
STGCN
GWNET

SD 2019

RMSE___ MAPE
33.8420.25 13.9620.12
29674021 11.69+0.19

GBA 2019
MAE ___ RMSE___ MAPE
23.92+0.33 39.41£0.45 18.5420.21
20924031 33.47£0.48 17.96£0.29

GLA 2019
RMSE

CA 2019
RMSE ___ MAPE
25 36.25%0.82 16.640.27
22 34.05£0.71 17.63£0.21

MAE
19.89%0.5

MAE
22.66+0.47 38
21324036 33
223240.22 35.73£0.57 17.09£0.19|22.1120.
20.93+0.18 35.31£0.38 17.65£0.05|20.77:
28|21.9440.37 35.97+0.84 18.5240.26
32[26.89%0.98 41.76+2.26 24.23+1.17
2151£0.27 34.38£0.87 17.01£0.33
24232118 37.29%1.15 20.49£0.95
21.79+0.56 35.12£1.30 17.07+0.27

MAPE | MAE

14.1820.14]21.6:
13.26£0.12 2

STNorm
STID
STGODE

13.42£0.69|20.24£0.25 33512078 14.75+0.36
13.35£0.13|19.21£0.19 31.69+0.18 15.1940.07
13.75£0.22|21.05£0.26 36.85£0.45 17.0240.28

16852112
2039036 34.73£1.17 12.7420.25

31.56£0.31 12.16£0.18
0.14 32.05£0.37 12.52
19.3440.68 34.29+1.19 13.6
ASTGCN  23.5541.83 39.452331 165
AGCRN  18.42+0.38 32.62+0.47 13.3620.29)
DSTAGNN 21.8720.56 30.911.54 12.98=1.19
STAEformer 18.96+0.42 31.79+0.78 13.23:0.31
DGCRN  18.07+0.24 30.19+0.48 12.1420.23|21.47+0.46 33.99+0.42 17.15+0.31
D?STGNN _ 17.810.21 29.72£0.49 11.740.36|20.92+0.25 33.98+0.46 15.08+0.13
Ours 16.19£0.1727.72+0.3310.59£0.1219.3120.1532.39+0.3114.43£0.07]

Out of Memory

Out of Memory

19.14+0.1231.810.2911.33£0.07]17.5820.1831.010.2212.7920.09
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