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ABSTRACT

While existing spatiotemporal predictionmodels have shown promis-

ing performance, they often rely on the assumption of input-label

spatiotemporal consistency, and their high complexity raises con-

cerns about scalability. To enhance both efficiency and performance,

we integrate label information into the learning process and pro-

pose a spatiotemporal dynamic theory that outlines a bi-directional

learning paradigm. Building on this paradigm, we design BiST, a

lightweight yet effective Bi-directional Spatio-Temporal prediction

model. BiST incorporates two key processes: a forward spatiotem-

poral learning process and a backward correction process. The

forward process utilizes MLP layers exclusively to model input

correlations and generate base prediction. In the backward pro-

cess, we implement a spatiotemporal decoupling module, which

can learn the residual modeling deviation between input and label

representations from a decoupled perspective. After smoothing

the residual with a diffusion module, we can obtain the correction

term to correct the base predictions. This innovative design enables

BiST to achieve competitive performance while remaining light-

weight. We evaluate BiST against 26 baselines across 13 datasets,

including a large-scale dataset with ten thousand nodes and a long-

range dataset spanning 20 years. An impressive experimental result

demonstrates that BiST achieves a 8.13% improvement in perfor-

mance compared to state-of-the-art models while consuming only

1.86% of the training time and 7.36% of the memory usage.
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1 INTRODUCTION

With significant advancements in GPS technology and sensor mon-

itoring devices, researchers have amassed extensive urban data,

characterized by both temporal and spatial attributes, collectively

referred to as spatiotemporal data. This wealth of spatiotemporal

data has fueled the growth of urban computing. Within this domain,

spatiotemporal prediction, a fundamental task, has garnered consid-

erable attention from both industry and academia. This task aims

to leverage historically observed spatiotemporal data to forecast

future values [30, 40, 73, 74, 77].

In the field of spatiotemporal prediction, the popular tool is spa-

tiotemporal graph convolutional networks, which consist of differ-

ent temporal and spatial modules for capturing temporal and spatial

correlations respectively. To improve prediction performance, re-

searchers have focused on enhancing the representation capabilities

of these modules through various advanced techniques. Currently,

Transformer-based models dominate the spatiotemporal prediction

task, such as D2STGNN [49] and STAEformer [32]. Despite their

encouraging success, there remain two limitations.

Input-label spatiotemporal deviation. Existing models typi-

cally employ a forward spatiotemporal learning process that cap-

tures spatiotemporal correlations from input data, generates label

representations, and uses these label representations for prediction.

This implicitly assumes consistency between the spatiotemporal
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Figure 1: Three cases of spatiotemporal deviation in the spa-

tial and temporal dimensions. (a) and (b) demonstrate the

spatial deviation across pairs of nodes. (c) illustrates the tem-

poral deviation within a single node.
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correlations in the input data and those in the labels. However, this

assumption is overly idealistic; spatiotemporal correlations between

input and labels may exhibit significant differences in both spatial

and temporal dimensions, which we define as spatiotemporal devi-

ation. We illustrate this concept using the Large-SD dataset [33] as

an example. Figure 1 (a) and (b) demonstrate the spatial deviation.

Specifically, similar input following different label of Figure 1 (a):

while two nodes have similar input data distributions, their subse-

quent label similarities differ significantly. Different input following

similar label of Figure 1 (b): despite two nodes having significantly

different input data, their labels exhibit similar distributions. These

node pairs are indistinguishable to the model, as the model tends to

make similar (different) predictions for nodes with similar (differ-

ent) inputs, thereby reducing prediction accuracy. In the temporal

dimension, spatiotemporal deviation manifests as sudden increases

or decreases of the data, as shown in Figure 1 (c). Although several

studies have proposed potential solutions to tackle spatiotemporal

deviations using node embedding techniques [48] or by extending

input sequence lengths [10], we contend that the limited utilization

of label information continues to hinder these models in effectively

addressing the spatiotemporal deviation problem.

Expensive computational complexity. While existing mod-

els achieve performance improvements, they also increase time

and memory complexities. Regarding time complexity, transformer-

based spatiotemporal layers exhibit quadratic growth as the number

of nodes increases [46, 49]. In terms of memory occupancy, these

models often stack multiple complex spatiotemporal layers to en-

hance their representational capabilities. Since their loss function

for regression tasks relies on the computational gradient graphs

of all nodes for backpropagation, the GPU must maintain a gradi-

ent matrix for nodes at each layer, leading to significant memory

overhead. The heavy computational burden limits the scalability of

these models on large-scale spatiotemporal data.

In this paper, we aim to advance both efficiency and performance.

Regarding performance, we break from the spatiotemporal consis-

tency assumption between input and labels followed by existing

models, explicitly incorporating label information during training

to better model spatiotemporal deviations. This design allows us to

deviate from the trend of stacking multiple spatiotemporal layers,

opting instead for lightweight MLP as the backbone. Ultimately, the

proposed model achieves competitive predictive performance while

maintaining high training efficiency and low memory utilization,

as illustrated in Figure 2.

Specifically, we propose a spatiotemporal dynamics theory that

guides a rational prediction process by incorporating label infor-

mation. This theory reveals that the final prediction should be

influenced by two components: a base prediction, derived frommod-

eling spatiotemporal correlations of the input data, and a correction

term, generated by modeling the residuals that represent spatiotem-

poral deviation between labels and input. Based on this theory,

we propose the Bi-directional Spatio-Temporal prediction model

(BiST), which includes a forward spatiotemporal learning process

and a backward residual correction process. In the forward process,

we only use MLP layers to capture time dependencies at different

granularities, generating the base prediction. To model residuals

accurately in the backward process, we introduce a spatiotemporal

decoupling residual learning module that separates spatiotemporal
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Figure 2: Model performance and efficiency comparison.

The left figure illustrates the comparative prediction per-

formance of various models on six datasets. The right figure

showcases the training time per epoch and memory usage of

each model on LargeST-SD 2019 dataset.

features into node-shared context features and node-personalized

features, effectively capturing spatiotemporal deviation between

label and input representations. After smoothing the residuals with

a diffusion operator, we decode the residuals to generate correc-

tion terms, correcting the predictions. Note that our model utilizes

high-dimensional label representations rather than actual labels for

residual modeling, enhancing its capability to represent residuals.

During the training process, the model can effectively learn the

spatiotemporal deviation, which will be beneficial for the infer-

ence phase. Evaluated on 13 spatiotemporal datasets, our model

demonstrates competitive performance while maintaining compu-

tational efficiency and low memory overhead. Our contributions

are summarized as follows:

• We develop a spatiotemporal dynamic theory that estab-

lishes a novel bi-directional spatiotemporal learning para-

digm incorporating label modeling.

• Based on this theory, we design a lightweight and effec-

tive bidirectional spatiotemporal prediction model, which

includes a forward spatiotemporal learning process and a

backward residual correction process.

• We introduce a spatiotemporal residual learning module

that models the spatiotemporal deviation features between

input and label from the decoupling perspective.

• Extensive experiments with 26 models on 13 datasets have

demonstrated that our model achieves competitive perfor-

mance, maintaining high efficiency and low memory usage.

2 RELATEDWORK

Time series prediction. In recent years, multivariate time se-

ries forecasting has garnered significant attention due to its wide-

ranging applications in fields such as finance, healthcare, and envi-

ronmental monitoring [19, 23, 35, 43, 53, 55, 69]. Among the various

approaches, Transformer [51] has emerged as a prominent frame-

work, achieving remarkable success in sequence prediction tasks.

However, the inherent high time complexity of the Transformer ar-

chitecture has driven researchers to explore more efficient and inno-

vative methods. For instance, Preformer [6] and PatchTST [42] have
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introduced patch-based strategies to improve computational effi-

ciency. Meanwhile, Reformer [6] has incorporated locality-sensitive

hashing to enhance the self-attention mechanism. Another notable

category of approaches leverages lightweight MLPs as their back-

bone [59, 71]. For example, TimeMixer [61] integrates multi-scale

temporal decoupling to boost MLP performance, while SOFTS [17]

employs a centralized strategy to model dependencies across chan-

nels. Despite these advancements, these models primarily focus on

capturing temporal dependencies and often overlook the spatial

dependencies inherent in spatiotemporal data. As a result, their

performance generally falls short compared to state-of-the-art spa-

tiotemporal forecasting models.

Spatiotemporal prediction. Spatiotemporal prediction taskwhich

aims to use past observations to predict future values is fundamen-

tal to smart city applications [26, 57, 58, 76]. With the remarkable

success of GCN in various fields [14, 15, 52, 78], the current trends

of this field revolves around designing cutting-edge spatiotemporal

graph convolutional networks [54, 72]. For example, DCRNN [29],

introduced a novel diffusion convolution that works in conjunction

with GRU. STGCN [67] have replaced RNN with extended causal

convolutions for time pattern modeling. With the rise of Trans-

formers in the natural language and visual domains, the latest trend

is shifting towards the use of Transformers and their variants for

spatiotemporal prediction [7, 21]. For example, D2STGNN [49] and

STAEformer [32] use self-attention mechanisms from Transformers

for dynamic graph learning, combined with proposed spatiotempo-

ral embedding techniques.

Although these models significantly improve predictive perfor-

mance, they also pose challenges due to their substantial com-

putational complexity and memory overhead. Additionally, these

models adhere to the input-label consistency assumption, which

limits their ability to effectively handle inconsistent information.

3 PROBLEM DEFINITION

Spatiotemporal data. Spatiotemporal data are represented as a

multivariate time series comprising multiple time-dependent vari-

ables, such as observations collected from sensors. We formulate

the multivariate time series from the time step𝑚 to the time step 𝑛

as a tensor 𝑋𝑚:𝑛 ∈ R
(𝑛−𝑚+1)×𝑁×𝑐 , where 𝑁 denotes the number

of variables (e.g. sensors) and 𝑐 indicates the number of channels.

Spatiotemporal graph. Each variable depends not only on its

past values, but also on other variables. Such dependencies are

captured by a spatiotemporal graph G = (V, E,A), whereV is a

set of |𝑉 | = 𝑁 nodes, each node corresponding to a sensor or air

quality monitor. The set of edges is denoted by E, and A ∈ R
𝑁×𝑁

represents the adjacency matrix, which can be modeled using a

predefined metric, such as the distance between nodes, or can be

adaptively learned from the data end-to-end.

Spatiotemporal prediction.Given the observed multivariate time

series 𝑋𝑡−𝑇+1:𝑡 ∈ R
𝑇×𝑁×𝑐 from the previous𝑇 time steps, the goal

is to learn a function 𝑓 to forecast spatiotemporal data for the next

𝑇𝑃 time steps. This mapping can be formally defined as:

X̂𝑡+1:𝑡+𝑇𝑝 = 𝑓 (𝑋𝑡−𝑇+1:𝑡 ) ∈ R
𝑇𝑝×𝑁×𝑐 . (1)

Table 1: Some important notations description.

Notations Description

X,𝑿 Input data and its random variable in GMRF.

Y, 𝒀 Label data and its random variable in GMRF.

Ybase/Ycor Base/Correction prediction.

ZIn/ZLa/ZR Input/Label/Residual representation.

𝒆𝑃 , 𝒆𝑇 , 𝒆𝐷 , 𝒆𝑆 Spatiotemporal prompt embedding.

𝐸𝑞/𝐸𝑘 Personalized-feature /Context-feature embedding.

4 METHODOLOGY

We develop a spatiotemporal dynamics theory to establish a rational

paradigm for spatiotemporal prediction. Building on this theory, we

design the spatiotemporal prediction model BiST, and subsequently

provide a detailed explanation of each component within BiST. For

clear presentation, we use X (i.e., 𝑋𝑡−𝑇+1:𝑡 ) and Y to represent the

input and the corresponding label, respectively.

4.1 Spatiotemporal Dynamics Theory

Gaussian Markov Random Field (GMRF) is a widely used tool for

modeling complex dependencies among random variables in a

structured manner, particularly in spatiotemporal dynamic analy-

sis [9, 75]. In line with these studies, we also employ a GMRF model

to represent spatiotemporal data, where each spatiotemporal data

point is associated with a variable in the GMRF. Subsequently, we

analyze the dependencies between these variables. In the following

sections, spatiotemporal data points will be represented using reg-

ular font, while their corresponding random variables in the GMRF

will be denoted in italic font.

Let’s consider the corresponding variable of node 𝑢 at future

time step 𝑡 , which is denoted as 𝒀𝑡,𝑢 ∈ R
𝑐 , there are correlations

between 𝒀𝑡,𝑢 and the variable of the other nodes1, which is de-

noted as 𝒀𝑡,𝑢̂ :=
[
𝒀�𝑡,1, . . . , 𝒀

�
𝑡,𝑢−1, 𝒀

�
𝑡,𝑢+1, . . . , 𝒀

�
𝑁

]�
∈ R

(𝑁−1)×𝑐 . We

incorporate this correlation into the GMRF model.

Theorem 1. If we integrate the label information into GMRF, we

can use it as a condition of the GMRF to predict the value Ŷ𝑡,𝑢 of

variable 𝒀𝑡,𝑢 with the aim of minimizing the difference from the

label Y𝑡,𝑢 . For any future time step 𝑡 = {1, 2, ...,𝑇𝑃 }, the expectation
of 𝒀𝑡,𝑢 with respect to X and Y𝑡,𝑢̂ is

E
[
𝒀𝑡,𝑢 |X,Y𝑡,𝑢̂

]
= E

[
𝒀𝑡,𝑢 |X

]
︸������︷︷������︸

Base prediction

+ 𝛽𝑡,𝑢 (I𝑁 + 𝛼𝑡A (A))𝑢,𝑢̂︸������������������������︷︷������������������������︸
Diffusion Kernel

×2 c𝑡,𝑢̂ .︸︷︷︸
Residual︸��������������������������������������︷︷��������������������������������������︸

Correction
(2)

This equation indicates that, when incorporating label information,

the spatiotemporal prediction paradigm should consist of a base

prediction and a correction term. The detailed proof of this

proposition is provided in Section A.

The correction term consists of two elements: the diffusion kernel

and the residual. The 𝛽𝑡,𝑢 is a scalar coefficient calculated by:

𝛽𝑡,𝑢 =
[(1 + 𝛼𝑡 ) (1 + 𝛼𝑡A (A)𝑢,𝑢

) ]−1
, (3)

1To reduce the algorithm complexity, we focus solely on the spatial correlation at each
time step when modeling label features. We validate it in the experimental section 5.8.
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Figure 3: Details of the proposed model BiST. Our framework comprises a forward spatiotemporal learning process and a

backward residual correction process.

where 𝛼𝑡 is a scalar that controls the strength of residual prop-

agation, and A (A)𝑢,𝑢 indicates the entry on 𝑢-th row and 𝑢-th

column of A (A). A (A) = I𝑁 − Ã where IN is the identity matrix

of the adjacency matrix A, and Ã is a normalization version of A .

(I𝑁 + 𝛼𝑡A (A))𝑢,𝑢̂ ∈ R
1×(𝑁−1) is the𝑢-th row of I𝑁 +𝛼𝑡A (A) ex-

clude itself. The residual term c𝑡,𝑢̂ represents the difference between

base prediction and label expectations:

c𝑡,𝑢̂ := E
[
𝒀𝑡,𝑢̂ |X

] − E
[
𝒀𝑡,𝑢̂

] ∈ R
1×(𝑁−1)×𝑐 . (4)

In fact, the base prediction is derived from modeling the correla-

tions within the input data, while the label distribution is influenced

by the autocorrelation of the labels. Consequently, the residual term

captures the discrepancies in features between the input and label.

Summary. Our theory indicates that a prediction paradigm incor-

porating label information should consist of two components: a

forward spatiotemporal learning process generating base predic-

tions and a residual correction process modeling spatiotemporal

residuals to correct predictions. Although existing models integrate

various techniques to enhance the former process, they do not

explicitly include a correction process that utilizes label features.

4.2 Overview of the proposed BiST

Based on the proposed theoretical, we develop BiST, designed to

incorporate a forward spatiotemporal learning process and a back-

ward residual correction learning process. This structure is illus-

trated in Figure 3 and is detailed in Algorithm 1.

Forward spatiotemporal learning consists of a spatiotempo-

ral learning layer and a spatiotemporal embedding prompt layer.

The former layer integrates the knowledge of the time structure

and decomposes the time seriesX into stable components and trend

components, which can reduce the model’s learning complexity.

The spatiotemporal embedding prompt encodes prior knowledge

to help the model achieve comprehensive spatiotemporal learning.

Through these two layers, we can obtain the input representation

ZIn. Finally, ZIn is fed into the MLP layers for spatiotemporal learn-

ing and outputs label representations ZLa, which are then inputted

into a predictor to generate base predictions Ybase.

Backward residual correction consists of a residual decouple

layer and a residual diffusion layer. The former layer is used to

model inconsistencies between input representations ZIn and label

representations ZLa, i.e., residual term ZR. Then a residual diffusion

layer uses the affinity between nodes to smooth the residual term.

Finally, the output is fed into a fully connected layer to generate

correction predictions Ycorr used to correct the base predictions

Ybase to generate a more accurate prediction Y.

4.3 Forward Spatiotemporal Learning

4.3.1 Temporal decomposition. In the time series community, re-

searchers [63, 71] decompose time series into components with

different time granularities. Inspired by these works, we also adopt

a temporal decomposition layer, which uses the padding moving

average operation AvgPool (·;𝑘) with kernel size 𝑘 to decouple the

input X ∈ R
𝑇×𝑁×𝑐 into stable patterns X𝑙 and trend patterns X𝑠 :

X𝑙 = AvgPool (X;𝑘) ∈ R
𝑇×𝑁×𝑐 , (5)

X𝑠 = X − X𝑙 ∈ R
𝑇×𝑁×𝑐 . (6)

Concretely, we pad the data along the temporal dimension inAvgPool

(·;𝑘) to keep the corresponding series length after pooling. Then,

we use two MLP layers to capture the spatiotemporal dependencies

of these two components, respectively. Then, we splice the outputs

to generate the final output X0.

X0 = MLP1 (X𝑙 ) +MLP2 (X𝑠 ) ∈ R
𝑇×𝑁×𝑑𝑠 , (7)

4.3.2 Spatiotemporal embedding prompt. Spatiotemporal prompt

learning aims to utilize various additional information to prompt

models to learnmore comprehensive spatiotemporal patterns. Draw-

ing inspiration from existing work [70], we introduce spatiotem-

poral embedding techniques to encode spatiotemporal prior in-

formation (such as timestep-of-day and day-of-week information)
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and integrate these beneficial embeddings into the model, thereby

enhancing its learning capabilities through prompting.

In the temporal dimension, we design a temporal embedding

including two embedding vectors: timestamp-of-day embedding

and day-of-week embedding to capture periodic temporal depen-

dencies. The first embedding, 𝒆𝑇 ∈ R
𝑁𝑇 ×𝑑𝑃 , encodes the time-step

position information of a day, where 𝑁𝑇 represents the number of

sampling points in a day. For instance, in the PeMS system, with a

data sampling frequency of five minutes, 𝑁𝑇 is equal to 288. The

second embedding, 𝒆𝐷 ∈ R
𝑁𝐷×𝑑𝑃 , encodes the positions of differ-

ent days of the week. Here, 𝑁𝐷 = 7 corresponds to the number of

days in a week and 𝑑𝑃 denotes the dimension of the representa-

tions. In the spatial dimension, we employ an adaptive node-level

embedding, 𝒆𝑆 ∈ R
𝑁×𝑑𝑃 , to account for the heterogeneous data dis-

tributions between the 𝑁 nodes. These parameterized embeddings

are updated end-to-end with the model.

In addition, following Transformer [51], we also integrate the

sequential information of each input data point into the input X0.

Finally, we integrate the temporal and spatial embedding into the

model, and the output ZIn is denoted as the input representation:

ZIn = [X0‖𝒆𝑇 ‖𝒆𝐷 ‖𝒆𝑆 ] ∈ R
𝑇×𝑁×(𝑑𝑠+3∗𝑑𝑃 ) . (8)

4.3.3 Forward prediction. We employ 𝐿 MLP layers for spatiotem-

poral forward learning to effectively capture the spatiotemporal

features of the input data. For the input to the 𝑙-th layer, denoted as

Z
(𝑙 )
f

∈ R
𝑇×𝑁×𝑑 (𝑙 ) , we start with Z

(0)
f

= ZIn. The forward process

of this MLP layer is defined as follows:

Z
(𝑙+1)
f

= GELU
(
Z
(𝑙 )
f
𝑊

(𝑙 )
1 + 𝑏 (𝑙 )1

)
𝑊

(𝑙 )
2 + 𝑏 (𝑙 )2 + Z

(𝑙 )
f

, (9)

where 𝑙 ∈ {0, 1, ..., 𝐿−1} and GELU (·) is activation function.𝑊 (𝑙 )
1 ∈

R
𝑑 (𝑙 ) ×4𝑑 (𝑙 ) ,𝑊 (𝑙 )

2 ∈ R
4𝑑 (𝑙 ) ×𝑑 (𝑙+1) and biases 𝑏

(𝑙 )
1 ∈ R

4𝑑 (𝑙 ) , 𝑏
(𝑙+1)
2 ∈

R
𝑑 (𝑙+1) are learnable parameters. The final output, ZLa = Z

(𝐿)
f

∈
R
𝑇×𝑁×𝑑hid , is denoted as label representation. Finally, we use a

MLP layer as decoder to generate base prediction:

Ybase = ZLa𝑊out + 𝑏out ∈ R
𝑇𝑃 ×𝑁×𝑐 , (10)

where𝑊out ∈ R
(𝑇×𝑑out )×(𝑇𝑃 ×𝑐 ) and 𝑏out ∈ R

𝑇𝑃 ×𝑐 are learnable.

4.4 Backward Residual Correction

The backward residual correction process learns spatiotemporal

deviation features of the input label, i.e., the residual term, to gen-

erate correction predictions. This process comprises two modules:

a residual learning module and a residual diffusion module.

4.4.1 Spatiotemporal residual learning. Tomodel the residual terms

between the labels and the inputs, we use label representations

generated from the forward process instead of directly using the

labels since labels are unavailable during inference in the inference

phase. More importantly, label representations, which are high-

dimensional features of labels [28, 45], contain rich information

that allows the model to learn residual terms flexibly.

For residual learning, we design a residual decoupling module

that decomposes spatiotemporal features into contextual and per-

sonalized features. The contextual features, influenced by environ-

mental attributes, may be shared among nodes. In contrast, the

latter are affected by mutation factors (such as temporary traffic

control at specific intersections), leading to inconsistencies between

node inputs and label features.

Specifically, we first initialize two parameterized embeddings

using a normal random distribution: 𝐸𝑘 ∈ R
𝐾×𝑑 to capture contex-

tual features with 𝐾 virtual clusters and 𝐸𝑞 ∈ R
𝑁×𝑑 to learn fine-

grained node-specific features. Parameterized embeddings adap-

tively capture high-level features as the model undergoes end-to-

end updates. Then, we compute the receptive coefficient between

nodes and virtual clusters as follows:

𝑆 =
𝐸𝑞𝐸

�
𝑘√
𝑑

∈ R
𝑁×𝐾 . (11)

where 𝑆 records the affinity between each node and the virtual clus-

ters. Then we calculate the similarity between the nodes according

to the macroscopic features: W (
𝐸𝑞, 𝐸𝑘

)
= 𝑆 × 𝑆

� ∈ [0, 1]𝑁×𝑁 .

Here, 𝑆 is the normalization version of 𝑆 by softmax operation.

Finally, given current label representation ZLa, we can aggregate

the information of the neighborhood nodes and extract the context

feature representation, which is denoted as Zcom:

𝐸𝑣 = ZLa𝑊𝑣 + 𝑏𝑣 ∈ R
𝑇×𝑁×𝑑out , (12)

Zcom =W (
𝐸𝑞, 𝐸𝑘

) ×2 𝐸𝑣 ∈ R
𝑇×𝑁×𝑑out , (13)

where ×2 means matrix multiplication in the node dimension. Fi-

nally, we obtain personalized feature representation Zper as follows:

Zper = ZLa − Zcom ∈ R
𝑇×𝑁×𝑑out . (14)

To model the difference between input representation and label rep-

resentation, we first align Zper and Zcom with input representation

ZIn in their channel dimensions:

Zdec = GELU
( [
Zper‖Zcom

]
𝑊1 + 𝑏1

)
𝑊2 + 𝑏2 ∈ R

𝑇×𝑁×𝑑hid . (15)

Then we calculate the inconsistency information between two rep-

resentations: Z
(0)
b

= ZIn − Zdec, then we use MLP with 𝐿 layers to

capture high-dimensional features, and the final output is denoted

as the residual representation ZR = Z
(𝐿)
b

. The forward process of

each MLP layer is as follows:

Z
(𝑙+1)
b

= GELU
(
Z
(𝑙 )
b
𝑊

(𝑙 )
3 + 𝑏 (𝑙 )3

)
𝑊

(𝑙 )
4 + 𝑏 (𝑙 )4 + Z

(𝑙 )
b

, (16)

where 𝑙 ∈ {0, 1, ..., 𝐿 − 1}.𝑊 (𝑙 )
3 ∈ R

𝑑 (𝑙 ) ×4𝑑 (𝑙 ) ,𝑊 (𝑙 )
4 ∈ R

4𝑑 (𝑙 ) ×𝑑 (𝑙+1) ,
𝑏
(𝑙 )
3 ∈ R

4𝑑 (𝑙 ) , and 𝑏
(𝑙+1)
4 ∈ R

𝑑 (𝑙+1) are learnable parameters.

4.4.2 Residual diffusion. We need to smooth the generated resid-

ual, as explained in Equation 2. Essentially, this smoothing kernel

aggregates the residual information between the nodes. We em-

ploy the adaptive learning method to learn this diffusion kernel.

As shown in the upper right part of Figure 3, we first randomly

initialize a learnable kernel embedding 𝐸𝐺 ∈ R
𝑁×𝑑𝑔 . Then, we

calculate the diffusion kernel with the adaptive learning strategy:

A𝑑

(
K̂
)
= Softmax

(
ReLU

(
K̂ − diag

(
K̂
)))

∈ [0, 1]𝑁×𝑁 , (17)

K̂ = 𝐸𝐺 × 𝐸�𝐺 ∈ R
𝑁×𝑁 , (18)
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where diag (·) is diagonal operator. The final diffusion kernel K
can be computed:

K =𝜷
(
I𝑁 + 𝜶A𝑑

(
K̂
))
∈ R

𝑁×𝑁 , (19)

𝜶 = diag (𝛼1, 𝛼2, ..., 𝛼𝑁 ) ∈ (−1, 1)𝑁×𝑁 , (20)

𝜷 = diag (𝛽1, 𝛽2, ..., 𝛽𝑁 ) ∈ (0, 1)𝑁×𝑁 , (21)

where 𝜶 and 𝜷 are learnable parameters. Finally, we apply this

kernel to smooth the residual representation with 𝐽 finite steps:

Z̃R = K 𝐽 ×2 ZR ∈ R
𝑇×𝑁×𝑑c . (22)

4.4.3 Correction prediction. We use the generated residual term

as input to the decoder to produce the corrected prediction:

Ycor = Z̃R𝑊𝑐 + 𝑏𝑐 ∈ R
𝑇𝑃 ×𝑁×𝑐 , (23)

where𝑊𝑐 ∈ R
(𝑇×𝑑𝑐 )×(𝑇𝑃 ×𝑐 ) and 𝑏out ∈ R

𝑇𝑃 ×𝑐 are learnable pa-

rameters. Finally, we use the generated correction term Y𝑐𝑜𝑟 to

correct the base prediction to produce the final prediction:

Ŷ = Ybase + Ycor ∈ R
𝑇𝑃 ×𝑁×𝑐 . (24)

Algorithm 1: BiST for spatiotemporal prediction

Input: Observed input X ∈ R
𝑇×𝑁×𝑐 ; // No label required.

Output: Future prediction Ŷ ∈ R
𝑇𝑃 ×𝑁×𝑐

1 # Preprocessing;

2 X0 ← X in Eq. 5 ∼ 7; // Temporal decomp.

3 ZIn ← X0, 𝒆𝑃 , 𝒆𝑇 , 𝒆𝐷 , 𝒆𝑆 in Eq. 8; // Input representation

4 # Forward spatiotemporal learning;

5 ZLa ← ZIn in Eq. 9; // Label representation learning

6 𝒀base ← ZLa in Eq. 10; // Base prediction

7 # Backward residual correction;

8 ZR ← 𝐸𝑞, 𝐸𝑘 ,ZLa in Eq. 11 ∼ 15; // Residual learning

9 Z̃corr ← ZR,𝜶 , 𝜷, 𝐸𝐺 in Eq. 16 ∼ 22; // Diffusion

10 Ycorr ← Z̃corr in Eq. 23; // Correction prediction

11 # Final prediction;

12 Ŷ← Ybase + Ycor in Eq. 24; // Final prediction

5 EXPERIMENT

In this section, we conduct a comprehensive evaluation of the pro-

posed BiST. We will answer the following potential questions. Q.1

andQ.2. How does themodel perform for short-term and long-term

prediction tasks? Q.3. What is the computational complexity and

memory usage of this model? Q.4. Is each component of the model

valid? Q.5. How do hyperparameters affect model performance?

Q.6. Can the model handle spatiotemporal deviation? Q.7. Can

modeling residual dependencies across multiple time steps bring

performance gains? Q.8. What interesting cases does BiST find?

5.1 Experiment Setting

5.1.1 Datasets. To evaluate the effectiveness of our model, we con-

duct a comprehensive experiment across 13 spatiotemporal datasets

that covered the domains of traffic and atmospheric conditions. The

statistical details of these datasets are provided in Table 2.

Among these, we include several large-scale datasets, with two

featuring large-scale datasets—the XTraffic and CA—and one with

a very long-range dataset—the XXLTraffic dataset. The XTraf-

fic dataset [12] contains 16,972 nodes, and the CA dataset within

the LargeST dataset [33] includes 8,600 nodes. To our knowledge,

these are the two largest open-source datasets in the spatiotem-

poral domain regarding the number of nodes. We also select a

dataset with an exceptionally large temporal scale, XXLTraffic [66],

which records over 20 years of traffic data. For our experiments,

we use the accessible sub-dataset, FULL-PeMS05. Additionally, the

KnowAir [29] and LargeST datasets cover four and five years of

data, respectively.

Table 2: Statistics of the used large spatiotemporal datasets.

XXLTraffic does not provide a spatial adjacency matrix re-

sulting in missing # edges. Data Points are the multiplication

of nodes and samples. M: million (106). B: billion (109).

Dataset # Nodes # Edges Time period Data points

PeMS03 [50] 358 546 09/01/2018 ∼ 11/30/2018 9.38M

PeMS04 [50] 307 338 01/01/2018 ∼ 02/28/2018 5.22M

PeMS07 [50] 883 865 05/01/2017 ∼ 08/06/2017 24.92M

PeMS08 [50] 170 276 07/01/2016 ∼ 08/31/2016 3.04M

METR-LA [29] 207 1,515 03/01/2012 ∼ 06/27/2012 7.09M

PeMS-Bay [29] 325 2,369 01/01/2017 ∼ 06/30/2017 16.94M

KnowAir [60] 184 3,796 01/01/2015 ∼ 12/31/2018 2.15M

SD [33] 716 17,319 01/01/2017 ∼ 12/31/2021 0.38B

GBA [33] 2,352 61,246 01/01/2017 ∼ 12/31/2021 1.24B

GLA [33] 3,834 98,703 01/01/2017 ∼ 12/31/2021 2.02B

CA [33] 8,600 201,363 01/01/2017 ∼ 12/31/2021 4.52B

XTraffic [12] 16,972 870,100 01/01/2023 ∼ 12/31/2023 1.78B

XXLTraffic [66] 573 - 03/07/2005 ∼ 03/20/2024 1.14B

5.1.2 Setting. We adopt the default code frame of LargeST in all

datasets for a fair comparison. All data sets are divided into the

training set, the validation set, and the test set in a ratio of 6:2:2

along the time axis. We adopt Adam [24] optimizer with a learning

rate 0.002 and predefined milestones decay factor of 0.5. To evaluate
the efficacy of our framework, we employ four common metrics,

including Mean Absolute Error (MAE), Mean Square Error (MSE),

Root Mean Square Error (RMSE), and Mean Absolute Percentage

Error (MAPE). The models are executed on a Nvidia A100 with

40GB memory, and the code environment is based on the PyTorch

framework using Python 3.8.3. The XXLTraffic dataset is used to

evaluate the long-term prediction performance of models. The other

datasets are used for the short-term prediction task. For each exper-

iment, we performed it five times and reported the average value

for a comprehensive comparison.

Concretely, we use 3 layers ofMLP in both forward and backward

modules, i.e., 𝐿 = 3. The finite steps in residual diffusion 𝐽 are

set to 4. The dimensions of all embeddings are equal to 32. The

temporal decomposition kernel size 𝑘 is equal to 3 in the short-term
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Table 3: Short-term performance comparisons on on both the LargeST dataset, spanning a five-year period, and the XTraffic

dataset. “*” means that we reduce the hyperparameter. The length of the input time window and future prediction window are

both set to 12. The unit of MAPE is percent (%). We bold the best-performing model results in red and underline the sub-optimal

model results in blue for each dataset.

Method
Horizon 3 Horizon 6 Horizon 12 Average

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

SD

LSTM 18.64±0.34 29.27±0.58 11.52±0.81 24.88±0.57 39.15±0.64 16.62±1.24 35.93±0.98 55.44±0.73 25.17±1.39 25.27±0.71 39.44±0.62 17.10±1.28

DCRNN 18.48±0.38 29.04±0.34 11.22±0.27 24.48±0.52 38.77±0.64 16.16±0.29 35.52±0.83 55.18±0.92 25.07±0.42 25.02±0.57 38.95±0.71 16.65±0.33

STGCN 18.95±0.92 29.04±0.22 12.84±0.48 21.76±1.46 35.08±0.12 14.50±0.22 26.74±0.21 43.04±0.45 18.06±0.54 21.80±0.06 34.37±0.36 14.79±1.30

GWNet 16.84±0.48 26.64±1.08 11.05±0.59 20.67±1.03 33.46±1.19 13.67±0.64 26.32±1.38 42.65±1.33 17.45±0.80 20.85±1.14 32.97±1.12 13.99±0.79

STNorm 16.44±0.29 25.91±0.44 11.12±0.28 20.30±0.55 32.88±0.63 13.86±0.54 25.53±0.62 41.09±0.99 17.63±1.01 20.88±0.84 32.73±0.67 13.71±0.69

STID 17.22±0.39 28.10±0.37 10.79±1.02 21.07±0.47 34.89±0.56 14.23±1.41 27.02±0.76 44.18±1.03 18.25±1.46 20.79±0.55 34.34±0.73 14.21±1.36

LarST 17.14±0.25 27.55±0.19 11.47±0.27 22.57±0.72 34.30±0.20 14.58±1.37 27.65±1.12 43.36±0.19 18.32±1.36 22.27±0.13 34.55±1.06 15.19±0.45

STGODE 16.77±0.72 27.93±0.54 11.75±0.86 22.88±1.21 35.94±0.69 14.94±1.26 26.73±1.32 45.91±0.84 18.69±1.38 21.13±1.08 34.03±0.95 14.98±1.17

ASTGCN 18.61±1.23 29.11±1.24 14.09±1.26 25.05±1.96 39.09±1.33 17.80±1.96 33.63±2.31 50.42±3.09 25.27±2.53 25.55±2.16 39.12±2.07 18.12±1.73

AGCRN 16.63±0.25 26.98±1.13 11.09±0.43 20.43±0.76 32.95±1.31 13.85±0.51 25.27±1.39 40.26±1.53 17.09±0.63 20.66±0.79 32.81±1.28 13.81±0.58

DSTAGNN 18.47±1.26 28.93±1.28 11.14±1.23 24.77±1.55 38.82±1.49 16.45±1.39 35.52±1.66 55.23±2.19 24.94±1.54 24.79±1.52 39.24±1.72 16.89±1.46

STAEformer 17.11±0.29 26.76±0.55 12.42±0.61 20.78±0.98 33.31±0.81 13.91±0.93 26.12±1.37 41.55±1.50 18.15±1.34 21.02±0.95 33.41±0.99 14.71±1.12

STTN 16.91±0.31 27.66±0.35 11.35±0.22 22.50±0.33 35.70±0.39 14.54±0.34 26.58±0.87 45.78±0.88 18.45±0.60 20.73±0.52 33.67±0.51 14.78±0.43

DGCRN 16.17±0.26 26.72±0.46 11.13±0.23 20.00±0.49 31.99±0.44 12.74±0.23 25.08±0.54 40.08±0.65 17.49±0.57 19.93±0.48 32.02±0.55 13.19±0.48

DDGCRN 16.28±0.48 26.63±0.65 10.31±0.39 19.92±0.54 32.01±0.84 12.98±0.41 25.07±0.75 39.94±1.06 17.63±0.47 19.99±0.68 32.08±0.82 13.17±0.42

D2STGNN 15.99±0.43 26.55±0.33 10.17±0.23 19.87±0.79 31.77±0.42 12.72±0.31 24.98±0.98 39.91±0.55 17.37±0.76 19.92±0.85 31.99±0.51 13.09±0.45

Ours 15.06±0.32 24.96±0.28 10.12±0.15 18.39±0.34 30.73±0.39 12.39±0.26 23.81±0.52 38.73±0.62 15.92±0.38 18.30±0.37 30.44±0.42 12.37±0.31

G
B
A

LSTM 17.37±0.34 28.25±0.74 10.78±0.22 23.45±1.04 38.12±1.13 15.52±0.56 34.32±1.41 52.92±1.75 22.64±0.62 23.86±1.23 38.01±1.46 15.64±0.44

DCRNN 17.21±0.25 27.86±0.65 10.39±0.49 23.09±0.31 37.85±0.87 15.10±0.55 33.90±0.76 52.77±1.02 22.33±0.67 23.68±0.45 37.56±0.91 15.33±0.53

STGCN 19.45±0.72 30.38±1.06 13.92±1.22 24.64±0.75 38.86±1.23 17.14±1.37 30.98±1.11 46.87±1.47 20.49±1.89 24.84±0.84 37.68±1.27 16.59±1.48

GWNet 17.79±0.36 28.05±0.97 10.54±0.27 22.91±0.81 35.72±1.13 13.58±0.41 29.32±1.23 44.81±1.27 18.32±0.66 23.03±1.04 35.36±1.19 13.91±0.48

STNorm 17.44±0.39 27.79±0.31 11.23±0.33 23.05±0.62 36.42±0.41 14.71±0.64 30.85±0.72 46.15±1.43 20.98±0.92 23.25±0.23 35.49±0.94 15.56±0.68

STID 17.34±0.15 28.65±0.27 11.39±0.21 22.82±0.96 36.34±0.71 14.76±0.89 29.82±1.08 46.14±1.32 20.12±1.30 22.97±0.75 36.24±0.92 14.47±0.82

LarST 18.39±0.39 30.26±0.42 11.63±0.26 23.85±0.49 39.32±1.03 15.17±0.72 31.47±1.54 46.83±2.85 21.22±0.91 23.91±1.05 36.92±1.47 15.36±0.83

STGODE 17.39±0.54 28.71±0.26 11.50±0.19 22.69±1.11 36.24±1.42 14.73±0.48 30.55±1.49 47.67±1.88 20.63±1.04 23.38±1.26 36.16±1.64 14.78±0.76

ASTGCN 17.77±1.26 29.55±1.25 11.48±0.71 25.54±2.15 40.05±2.36 16.54±1.05 37.72±2.98 57.68±2.91 24.92±1.48 26.28±2.37 41.14±2.38 17.35±1.24

AGCRN 18.02±0.64 28.78±0.99 11.66±0.95 22.73±1.16 37.02±1.65 14.36±1.19 29.65±1.48 45.49±1.85 20.03±1.38 23.12±1.11 36.24±1.67 15.09±1.20

DSTAGNN 17.69±1.42 29.47±1.56 11.40±1.45 25.51±1.45 40.06±1.65 16.38±1.78 37.57±1.59 57.64±2.43 24.83±2.65 26.36±1.44 41.15±1.83 17.44±1.62

STAEformer 18.41±0.45 29.02±0.34 12.22±0.14 23.68±0.52 36.81±1.35 15.07±0.24 31.03±0.75 46.09±0.17 20.89±0.27 23.57±0.68 36.06±1.48 15.58±0.19

STTN 17.35±0.17 28.61±0.35 11.11±0.22 22.22±0.29 35.92±0.44 14.36±0.25 30.28±0.64 47.46±0.84 20.22±0.52 23.14±0.58 35.92±0.57 14.62±0.43

DGCRN 17.26±0.28 29.18±0.36 10.57±0.25 23.08±0.57 37.89±0.39 14.74±0.53 29.84±0.73 46.72±0.57 18.65±0.62 23.05±0.62 36.58±0.44 13.93±0.47

DDGCRN 17.48±0.23 29.34±0.30 10.82±0.54 23.12±0.56 37.87±0.47 14.75±0.59 29.76±0.64 46.93±0.52 18.52±0.68 22.94±0.67 36.36±0.41 13.94±0.61

D2STGNN 17.23±0.46 29.11±0.59 10.52±0.27 22.75±0.73 37.73±0.88 14.48±0.33 29.55±1.13 46.69±1.08 18.38±0.43 22.65±0.86 36.36±0.73 13.92±0.37

Ours 15.42±0.12 26.02±0.38 9.88±0.17 20.41±0.37 33.59±0.69 12.86±0.29 26.77±0.85 42.59±1.05 17.68±0.58 20.30±0.53 33.26±0.83 13.12±0.34

G
L
A

LSTM 18.04±0.19 29.62±0.26 11.43±0.33 25.19±1.38 41.32±2.73 17.07±1.29 36.17±2.48 56.29±3.12 25.72±2.15 25.36±1.44 41.18±2.49 17.22±1.74

DCRNN 17.78±0.57 29.37±0.36 11.33±0.60 24.60±1.45 41.18±1.35 16.71±1.51 35.95±2.24 56.00±2.38 25.39±2.67 24.87±1.60 41.08±1.35 16.89±1.65

STGCN 20.14±1.12 30.73±0.53 13.93±0.88 24.93±1.27 37.96±1.07 17.29±1.38 31.62±1.89 49.22±2.19 22.07±1.88 24.86±1.66 38.37±1.06 16.93±1.08

GWNet 17.45±0.46 28.39±0.78 11.98±0.35 23.25±0.54 35.85±1.34 15.92±0.99 30.92±1.38 47.40±1.69 21.35±1.16 22.73±0.84 35.72±1.47 15.89±0.63

STNorm 18.14±0.23 28.52±0.52 11.64±0.24 22.77±0.37 36.65±1.09 14.61±0.65 29.92±0.75 45.74±1.68 19.97±1.49 22.65±0.63 36.18±1.14 15.23±0.89

STID 18.01±0.11 28.94±0.47 12.15±0.17 23.56±0.78 37.53±0.76 16.22±0.63 31.61±1.41 49.27±1.01 21.99±0.66 23.95±0.65 37.85±0.75 16.34±0.44

LarST 19.31±0.52 29.67±0.89 12.73±0.71 23.78±0.88 37.68±1.08 16.95±1.11 32.43±1.34 50.54±1.41 21.76±1.36 24.34±1.02 37.26±1.20 16.67±1.16

STGODE 18.39±0.53 28.96±1.04 12.88±0.69 23.85±1.13 37.57±1.62 17.29±1.04 32.09±1.25 50.61±2.76 21.91±2.18 23.84±0.91 37.51±1.43 16.81±1.61

ASTGCN 20.14±0.94 32.28±1.06 15.89±1.47 28.23±2.04 44.56±2.48 19.94±1.42 40.78±2.94 61.65±3.57 32.71±2.71 28.53±2.37 44.42±2.43 21.81±3.24

AGCRN 17.24±0.35 28.01±0.30 11.38±0.15 22.21±0.79 35.71±0.74 14.15±0.35 29.21±1.23 45.67±0.81 19.59±0.57 22.34±0.88 35.38±0.69 14.43±0.37

DSTAGNN 20.04±1.28 32.12±1.25 15.73±1.26 28.22±2.14 44.41±1.32 19.90±1.56 35.79±2.23 51.58±2.57 32.84±1.82 28.41±1.63 44.24±2.29 21.77±1.44

STAEformer* 18.87±0.71 29.92±0.69 11.38±0.23 24.25±0.92 37.15±0.77 14.99±0.51 30.55±1.37 45.70±0.95 20.42±1.14 23.73±1.03 36.58±0.85 15.35±0.78

STTN* 19.05±0.43 29.88±0.28 12.45±0.38 24.65±0.60 37.46±0.32 16.94±0.61 31.68±0.87 50.51±0.55 21.50±0.92 23.42±0.73 37.07±0.42 16.33±0.65

DGCRN* 19.15±0.39 30.65±0.51 12.11±0.23 25.60±0.47 39.94±1.28 15.92±0.67 34.31±1.56 50.16±1.49 22.36±1.29 25.80±0.62 39.58±1.07 15.73±0.52

DDGCRN* 19.52±0.59 30.83±0.68 12.31±0.24 25.55±0.71 39.94±1.25 15.83±0.64 34.41±1.38 50.13±2.17 22.08±1.57 25.91±0.87 39.50±1.26 15.95±0.75

D2STGNN* 19.56±0.93 30.86±0.91 12.39±0.28 25.83±1.01 40.09±1.01 16.09±1.04 34.51±1.69 50.35±1.88 22.37±1.54 26.16±1.35 39.66±1.14 15.96±1.10

Ours 16.20±0.15 26.91±0.29 10.46±0.18 20.38±0.48 33.64±0.78 12.72±0.43 26.67±0.86 42.92±1.05 17.81±0.52 20.36±0.58 33.48±0.62 13.22±0.39

C
A

LSTM 17.07±0.98 27.96±1.18 11.96±0.44 23.43±1.34 38.23±1.48 16.22±0.72 33.83±2.29 53.52±2.13 25.55±0.92 23.74±1.73 38.15±1.45 17.38±0.87

DCRNN 16.95±0.64 27.59±1.42 11.69±0.39 23.18±1.50 37.86±1.47 15.73±0.56 33.66±1.54 53.15±2.23 25.08±1.34 23.38±1.28 37.66±1.30 16.91±0.62

STGCN 18.49±1.08 30.24±1.32 13.69±0.26 22.71±1.15 36.84±1.35 16.97±0.35 28.72±1.31 46.25±1.42 21.25±0.48 22.58±1.19 36.29±1.38 16.88±0.32

GWNet 16.22±0.43 26.53±0.37 11.76±0.28 20.69±0.75 33.67±0.46 14.32±0.37 27.48±1.14 42.84±0.59 20.79±0.41 20.52±0.82 33.94±0.48 15.34±0.37

STNorm 15.98±0.29 26.65±0.48 12.13±0.40 21.06±0.38 34.06±0.71 15.23±0.53 27.25±0.54 42.82±0.86 20.29±0.61 21.04±0.39 32.96±0.54 15.24±0.49

STID 16.21±0.32 26.97±0.72 11.75±0.48 21.49±0.36 34.61±1.19 15.18±0.66 28.05±0.59 44.89±1.25 20.64±0.81 21.62±0.46 34.63±0.91 15.64±0.68

LarST 16.26±0.21 27.10±0.95 11.68±0.29 21.49±0.42 34.24±1.03 14.95±0.43 27.78±0.83 44.36±1.08 20.71±0.75 21.09±0.54 34.01±1.02 15.42±0.56

STGODE 18.33±0.34 29.39±1.01 12.89±0.82 24.21±1.29 37.63±1.24 17.31±1.27 32.38±1.36 50.88±1.48 21.61±1.76 24.42±1.07 37.58±1.41 16.99±1.25

ASTGCN* 18.77±1.29 29.63±1.03 15.85±1.14 25.97±2.15 42.29±1.32 17.16±1.81 38.93±2.49 56.92±1.82 28.67±2.17 27.33±1.69 42.59±1.63 19.77±1.75

AGCRN* 16.82±0.44 28.43±0.44 12.47±0.28 21.42±0.64 34.96±0.80 15.77±0.68 28.12±0.72 44.07±1.31 21.54±0.77 21.36±0.58 34.79±1.15 15.94±0.44

DSTAGNN* 17.70±0.81 28.81±0.37 13.17±0.67 22.51±1.47 36.77±0.52 16.83±1.46 29.55±1.65 45.59±1.17 22.92±1.49 22.64±0.99 36.18±0.87 16.87±1.15

STAEformer* 17.87±0.24 29.01±0.83 13.29±0.35 22.89±0.98 37.15±1.32 17.08±0.79 29.97±1.78 45.96±1.41 23.36±1.21 22.89±1.25 36.51±1.24 17.33±0.98

Ours 15.38±0.32 25.53±0.22 10.88±0.17 19.93±0.36 32.75±0.42 13.92±0.31 26.86±0.59 41.97±0.73 19.63±0.42 19.95±0.42 32.67±0.53 14.21±0.24

X
T
ra
ffi
c

LSTM 11.10±0.64 21.47±0.28 16.25±0.26 15.31±0.48 28.82±1.31 22.77±1.52 21.97±1.31 40.75±1.54 30.11±2.37 15.56±0.59 29.14±1.24 22.13±1.42

DCRNN 10.99±0.25 21.14±0.32 15.93±0.37 14.83±0.39 28.62±1.64 22.66±1.37 21.53±1.42 40.62±2.29 29.79±1.59 15.10±0.63 28.97±1.21 22.02±1.03

STGCN 13.67±0.19 25.20±0.65 19.02±0.45 15.28±0.55 28.11±0.72 19.94±0.56 17.98±0.93 33.54±0.84 22.59±0.92 15.27±0.66 28.49±0.72 20.41±0.76

GWNet* 11.79±0.20 21.89±0.29 16.24±0.25 15.93±0.36 29.57±0.89 22.82±0.36 22.37±0.45 40.59±1.74 32.42±1.39 16.06±0.37 29.85±1.13 23.52±0.92

STNorm 9.84±0.39 18.71±0.53 16.30±0.29 11.62±0.41 22.19±0.71 18.12±0.43 14.26±0.54 27.08±1.03 22.54±0.86 11.57±0.43 22.11±0.87 18.44±0.89

STID 10.05±0.33 19.04±0.78 15.14±0.16 12.02±0.49 22.77±1.15 17.32±0.21 14.42±0.86 28.25±1.54 21.36±0.39 11.71±0.74 22.81±0.98 17.54±0.24

LarST 10.94±0.24 19.86±0.75 17.14±0.42 12.35±1.13 23.48±1.01 18.84±1.19 16.68±1.25 31.85±1.65 23.36±1.27 12.69±0.82 24.54±1.06 18.77±0.74

STGODE* 11.13±0.88 20.69±0.37 19.92±0.97 13.15±1.05 24.57±1.04 23.67±1.33 16.93±1.46 32.02±1.06 30.46±1.64 13.37±1.15 24.92±1.32 24.44±1.41

Ours 8.87±0.11 17.62±0.22 13.83±0.26 10.48±0.24 20.79±0.38 16.12±0.34 12.77±0.46 25.45±0.55 19.88±0.47 10.45±0.35 20.74±0.47 16.21±0.38
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prediction, 5 in the KnowAir dataset, and 25 in long-term prediction.

The number of virtual nodes 𝐾 is set to 8 in SD, 24 in GBA, 32 in

GLA, 64 in CA, 128 in XTraffic, and 3 in KnowAir and XXLTraffic.

5.1.3 Baselines. We compare two types of model: spatiotempo-

ral models and time series models excelling at long-term predic-

tions. Spatiotemporal models include DCRNN [29], STGCN [67],

GWNet [64], STNorm [5], STID [47], LarST [56], STGODE [8], AST-

GCN [16], AGCRN [1], DSTAGNN [25], STAEformer [32], STTN

[65], DGCRN [27], DDGCRN [62] and D2STGNN [49]. Time se-

ries models contain DLinear [71], Mamba [13], Autoformer [63],

iTransformer [34], DSformer [68], TimeMixer [61], SparseTSF [31],

UMixer [39], CATS [36], SOFTS [17] and CrossGNN [20].

5.2 Short-term Prediction Performance
Comparison (Q.1)

We set both the input and prediction windows to 12 to evaluate the

short-term prediction performance of each model.

As shown in Table 3 and Table 4, BiST consistently demonstrates

superior performance across all forecasting horizons on these large-

scale spatiotemporal datasets, highlighting the effectiveness of our

model in handling numerous spatiotemporal data. Conversely, HL

exhibits the poorest performance, probably due to the volatility

of temporal data. Despite LSTM being a classical recurrent neural

network for sequence data and its lack of spatial influence learn-

ing, which is critical in spatiotemporal modeling, and surprisingly

remains highly competitive in short-term predictions when sub-

stantial amounts of data are available. STGCN and GWNet, the

pioneering works that integrate GNN with gated TCN, achieve

promising performance even compared to many recent works, such

as ASTGCN. STGODE improves model accuracy by solving contin-

uous layers of GNN as a replacement. AGCRN replaces the fully

connected layer in GRU [3] with an adaptive diffusion matrix from

GWNet. STID employs learnable node embeddings to character-

ize the spatiotemporal structure, assisting MLP in learning, and

showing good result stability on datasets with large spatial scale.

STAEformer modifies the MLP structure in STID to a vanilla Trans-

former [51] architecture for temporal and spatial dimensions, but

its quadratic complexity concerning the number of nodes limits its

scalability to larger datasets. D2STGNN models temporal and spa-

tial dependencies with dynamic spatial topology and a decoupled

spatiotemporal framework, performing better on smaller datasets,

while STNorm enhances spatiotemporal learning through special-

ized normalization techniques, performing well on larger datasets.

Nevertheless, our model achieves dominant short-term forecast

performance. In Table 3, BiST achieves a relative improvement of

over 5% in most metrics. In about 20% of the metrics, BiST exhibites

similar or even more than 10% relative improvement, with the

maximum relative improvement reaching 12.28%.

5.3 Long-term Prediction Performance
Comparison (Q.2)

We evaluate the long-term prediction performance of the models on

the XXLTraffic dataset, which spans a very long period. To assess

its ability to handle different temporal granularities, we aggregated

the data into hourly and daily time scales. We compare our model

against advanced spatiotemporal graph prediction models (such

as STID and STAEformer) as well as long-term time series models.

The official paper reports metrics on standardized data, and for

intuitive comparison, we maintain this setup.

As shown in Table 5, for data with smaller temporal granularity,

the STID model gains advantages by accurately modeling complex

spatiotemporal correlations. However, for daily frequency data,

long-series time models, such as SOFTS and TimeMixer, demon-

strate superior prediction performance. This is primarily because

daily data often exhibit strong periodicity, making the accurate

modeling of these patterns essential, an area where these time

series prediction models excel. For instance, Autoformer employs

decomposition techniques alongside an autocorrelation mechanism,

effectively capturing periodic patterns. Its performance surpasses

that of the latest iTransformer, which utilizes attention and feedfor-

ward networks applied to the inverted dimension. Similarly, SOFTS

adopts a centralized strategy to model dependencies among differ-

ent variable channels, thereby achieving enhanced performance.

Our model demonstrates leading performance across various

time scales in long-term forecasting, attributed to its effective utiliza-

tion of spatial information and the implementation of its temporal

decoupling module. We achieve a maximum relative improvement

of 12.74%, with most metrics reflecting gains of more than 5%.

5.4 Model Efficiency Analysis (Q.3)

We compare the complexity of our proposed model with several ad-

vanced spatiotemporal prediction models. Using the GBA, CA, and

XTraffic datasets as examples, we report the total training time, per-

epoch training time, inference time, and memory usage, as shown

in Table 6 and Figure 4. We can observe that STGCN and GWNet ex-

hibit higher efficiency due to their utilization of TCN as a temporal

module, enabling efficiency improvements through parallel strate-

gies. While models from the Transformer family, D2STGNN, and

STAEformer demonstrate good predictive performance, the Trans-

former models consume significant computational time, leading to

lower operational efficiency.

Regarding memory utilization, these models tend to stack neural

network layers to enhance representational capacity. During the

forward learning process, devices need to maintain an embedding

vector for each node. When backpropagating errors, the regression

loss function necessitates maintaining the computation cache for

the entire graph, resulting in a substantial memory burden.

In contrast, our proposed model is based on lightweight MLP

architecture, reducing time consumption. Furthermore, our model

comprises only forward and backward modules, thereby reducing

memory usage.

5.5 Ablation Study (Q.4)

We conduct an ablation study to explore the effectiveness of each

component in BiST. "w/o tems" removes the temporal decoupling

Technology, and "w/o tememb" and "w/o Noe" mean that we remove

the temporal and node embeddings respectively. "w/o prompt"

eliminates the spatiotemporal embedding prompt, "w/o back" uses

only the base predictions from the forward process as the final

prediction, omitting subsequent decoupling and residual correction

modules, "w/o dec" means that we use two-layer MLP layers to
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Table 4: Short-term performance comparisons on six traditional spatiotemporal datasets. The length of the input time window

and the future prediction window is set to 12 for all datasets except KnowAir, where the length of both windows is 24. The

performance reported is computed by averaging over all predicted time steps. The unit of MAPE is percent (%).

Dataset PeMS03 PeMS04 PeMS07 PeMS08 METR-LA KnowAir

Method MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

LSTM 21.18±0.28 35.07±0.16 23.32±0.18 27.14±0.15 41.81±0.34 18.34±0.06 30.08±0.38 45.94±1.31 13.24±0.24 22.21±0.29 34.01±0.25 14.32±0.12 3.55±0.11 7.13±0.04 10.19±0.13 24.39±0.73 35.24±0.44 55.35±3.02

DCRNN 18.15±0.14 30.32±0.51 18.81±0.18 21.24±0.13 33.46±0.13 14.26±0.24 25.24±0.08 38.64±0.56 11.73±0.11 16.89±0.32 26.39±0.06 10.98±0.04 3.15±0.02 6.24±0.01 8.59±0.05 22.03±0.82 32.66±1.01 55.16±2.26

STGCN 17.39±0.11 28.87±0.33 17.11±0.12 20.03±0.11 31.76±0.59 13.23±0.15 21.64±0.07 34.85±0.46 13.98±0.22 15.64±0.36 25.16±0.07 10.37±0.09 3.11±0.02 6.25±0.04 8.62±0.08 22.49±0.85 31.83±0.59 52.16±2.32

GWNet 16.85±0.18 27.58±0.17 16.11±0.07 19.03±0.12 30.45±0.56 13.19±0.16 21.51±0.15 34.35±0.24 10.11±0.03 18.02±0.53 27.86±0.02 9.36±0.02 3.03±0.02 6.04±0.03 8.21±0.04 22.45±0.84 31.59±0.72 53.17±2.48

STNorm 15.42±0.17 25.82±0.26 14.67±0.04 19.48±0.14 32.36±0.36 12.24±0.25 20.49±0.02 34.82±0.52 8.58±0.05 15.57±0.52 24.95±0.06 10.05±0.03 3.14±0.01 6.41±0.02 8.72±0.07 23.02±0.81 32.85±0.59 52.77±2.85

STID 15.18±0.12 25.96±0.11 16.24±0.04 18.59±0.12 30.25±0.11 12.42±0.13 19.54±0.02 32.86±0.24 8.29±0.03 14.23±0.44 23.44±0.08 9.29±0.08 3.20±0.03 6.57±0.01 9.16±0.01 21.96±0.75 30.51±0.43 49.95±1.41

STGODE 16.39±0.14 27.94±0.15 16.79±0.09 20.99±0.05 32.79±0.35 13.57±0.14 22.99±0.04 37.59±0.63 10.23±0.11 16.71±0.42 25.88±0.02 10.59±0.08 3.12±0.01 6.27±0.04 8.97±0.13 21.46±0.78 31.51±0.59 48.47±1.95

ASTGCN 17.92±0.26 29.46±0.24 19.18±0.06 22.99±0.12 35.03±0.34 16.59±0.23 28.06±0.15 42.66±1.21 13.82±0.29 18.64±0.34 28.18±0.14 12.88±0.12 5.04±0.02 10.61±0.13 9.53±0.02 22.96±0.58 32.62±0.81 53.54±2.92

AGCRN 16.03±0.09 28.56±0.42 15.75±0.14 19.69±0.05 32.25±0.14 12.92±0.13 20.83±0.03 34.72±0.73 8.91±0.06 15.67±0.29 25.08±0.08 10.26±0.08 3.14±0.03 6.38±0.03 8.82±0.13 23.88±0.86 32.94±0.44 59.03±1.40

DSTAGNN 15.81±0.05 27.27±0.12 15.62±0.04 19.24±0.06 31.41±0.19 12.89±0.17 21.43±0.15 34.54±0.21 9.04±0.04 15.58±0.39 24.77±0.02 9.87±0.01 3.17±0.04 6.37±0.03 8.61±0.13 22.93±0.92 32.91±0.44 55.81±2.61

STAEformer 15.51±0.08 27.45±0.22 15.23±0.18 18.13±0.09 30.01±0.11 11.94±0.16 19.62±0.15 33.44±0.84 8.29±0.04 13.98±0.26 23.98±0.07 9.13±0.02 3.02±0.04 6.07±0.03 8.34±0.05 22.79±0.58 32.27±0.55 48.91±2.18

STTN 15.85±0.15 28.13±0.28 15.26±0.09 18.83±0.13 30.94±0.39 12.31±0.07 20.13±0.13 34.21±0.22 8.45±0.07 14.79±0.52 25.08±0.08 9.37±0.01 3.13±0.03 6.17±0.03 8.59±0.04 23.95±0.64 33.52±0.45 60.12±1.74

DGCRN 15.71±0.12 27.46±0.27 15.12±0.15 19.68±0.13 31.47±0.44 13.57±0.24 20.84±0.19 34.13±0.46 9.51±0.08 15.11±0.48 24.11±0.06 9.96±0.06 3.11±0.03 6.22±0.04 8.67±0.05 22.47±0.62 32.49±0.67 54.78±1.89

DDGCRN 14.76±0.21 25.11±0.37 14.33±0.06 18.46±0.11 30.53±0.56 12.25±0.14 19.74±0.18 33.03±0.22 8.43±0.09 14.48±0.11 23.76±0.02 9.82±0.02 3.04±0.02 6.07±0.04 8.49±0.03 21.54±0.96 31.07±0.92 51.77±2.11

D2STGNN 14.61±0.07 25.05±0.26 14.39±0.11 18.55±0.08 30.75±0.19 12.07±0.08 19.80±0.08 33.08±0.72 8.41±0.09 14.42±0.43 23.82±0.07 9.35±0.02 3.01±0.03 6.05±0.02 8.41±0.04 21.49±0.55 30.42±0.61 49.54±2.69

Ours 14.33±0.0524.29±0.1614.19±0.07 17.95±0.0929.56±0.1211.93±0.12 19.23±0.0332.59±0.15 8.08±0.05 13.78±0.1623.32±0.05 8.94±0.03 2.97±0.01 6.02±0.02 8.14±0.03 20.27±0.5129.75±0.5447.29±1.41

Table 5: Average long-term prediction performance on XXL-

Traffic dataset. "Hourly" and "daily" are the sampling fre-

quencies used in practice. The length of the input window is

96 with prediction window lengths of {96, 192, 336}.

XXLTraffic
Horizon 96 Horizon 192 Horizon 336

MSE MAE MSE MAE MSE MAE

H
o
u
rl
y

STID 0.046±0.002 0.124±0.004 0.052±0.002 0.131±0.002 0.055±0.005 0.141±0.004

STAEformer 0.046±0.001 0.130±0.004 0.053±0.005 0.133±0.005 0.059±0.005 0.153±0.004

Dlinear 0.054±0.005 0.187±0.014 0.062±0.001 0.169±0.002 0.061±0.003 0.171±0.004

Mamba 0.045±0.002 0.161±0.003 0.056±0.005 0.154±0.002 0.054±0.002 0.152±0.006

Autoformer 0.055±0.005 0.215±0.011 0.074±0.004 0.211±0.015 0.077±0.009 0.216±0.014

iTransformer 0.083±0.008 0.255±0.012 0.102±0.005 0.244±0.013 0.101±0.014 0.253±0.013

DSformer 0.067±0.007 0.158±0.004 0.073±0.004 0.159±0.001 0.071±0.004 0.156±0.003

TimeMixer 0.064±0.007 0.156±0.004 0.074±0.003 0.170±0.010 0.074±0.005 0.171±0.001

SparseTSF 0.114±0.009 0.192±0.007 0.099±0.009 0.173±0.001 0.099±0.012 0.174±0.008

Umixer 0.082±0.008 0.181±0.009 0.074±0.002 0.162±0.007 0.072±0.009 0.170±0.006

CATS 0.056±0.003 0.139±0.008 0.060±0.004 0.141±0.003 0.062±0.007 0.143±0.009

SOFTS 0.068±0.001 0.165±0.003 0.078±0.002 0.175±0.008 0.087±0.002 0.187±0.005

CrossGNN 0.111±0.007 0.206±0.016 0.097±0.006 0.191±0.002 0.098±0.008 0.197±0.006

Ours 0.041±0.002 0.114±0.003 0.046±0.004 0.121±0.003 0.051±0.005 0.127±0.004

D
ai
ly

STID 0.178±0.004 0.259±0.003 0.217±0.003 0.306±0.002 0.251±0.003 0.332±0.004

STAEformer 0.184±0.006 0.274±0.003 0.221±0.006 0.317±0.004 0.275±0.002 0.359±0.005

Dlinear 0.166±0.003 0.238±0.005 0.209±0.003 0.282±0.002 0.242±0.003 0.298±0.004

Mamba 0.177±0.012 0.254±0.011 0.238±0.013 0.314±0.014 0.293±0.013 0.327±0.013

Autoformer 0.177±0.006 0.259±0.002 0.222±0.009 0.275±0.003 0.249±0.004 0.307±0.014

iTransformer 0.176±0.004 0.255±0.003 0.232±0.002 0.303±0.011 0.256±0.003 0.309±0.012

DSformer 0.176±0.009 0.250±0.004 0.224±0.003 0.282±0.007 0.252±0.003 0.296±0.003

TimeMixer 0.158±0.003 0.232±0.004 0.204±0.004 0.275±0.001 0.236±0.001 0.296±0.005

SparseTSF 0.165±0.009 0.239±0.006 0.210±0.008 0.279±0.006 0.246±0.002 0.294±0.007

Umixer 0.165±0.004 0.240±0.002 0.211±0.005 0.283±0.009 0.240±0.002 0.296±0.004

CATS 0.175±0.005 0.246±0.008 0.251±0.013 0.317±0.015 0.275±0.012 0.334±0.015

SOFTS 0.156±0.002 0.214±0.001 0.204±0.011 0.259±0.005 0.242±0.008 0.296±0.002

CrossGNN 0.163±0.005 0.235±0.008 0.207±0.001 0.276±0.009 0.243±0.008 0.295±0.008

Ours 0.147±0.004 0.207±0.010 0.178±0.005 0.245±0.009 0.224±0.003 0.288±0.004

Table 6: Efficiency comparison of all models when achieving

optimal performance on SD dataset.

SD Performance Training Inference Total Memory
Batch Size

Method (MAE) (s/epoch) (s) (hour) (MB)

STGCN [64] 21.80±0.06 133.3 31.8 2.8 3,452 64

GWNet [64] 20.85±1.14 321.9 45.5 10.5 7,978 64

STNorm [5] 20.88±0.84 97.9 20.1 2.43 3,762 64

STGODE [8] 21.13±1.08 498.0 81.1 8.1 18,948 64

ASTGCN [16] 25.55±2.16 493.8 84.9 11.9 8,984 64

AGCRN [1] 20.66±0.79 380.8 53.7 10.8 8,116 64

STAEformer [32] 21.02±0.95 242.7 26.6 4.6 40,822 55

D2STGNN [49] 19.92±0.85 2,320.5 324.7 42.8 40,270 31

Ours 18.30±0.37 79.6 15.05 0.8 2,965 64
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Figure 4: Efficiency comparison of optimal performance on

CA and XTraffic datasets.

replace the spatiotemporal decoupling residual learning module,

and "w/o adp" removes adaptive diffusion kernel learning and uses

an identity matrix.

As shown in Table 7, results demonstrate that each component

of the model is effective. The ‘w/o prompt’ variant exhibits lower

prediction performance, indicating that integrating various prior

knowledge enhances prediction accuracy. The ‘w/o back’ variant

performs poorest, highlighting the importance of the backward

correction process. The ‘w/o dec’ variant shows higher prediction

errors, suggesting that decomposing spatiotemporal features into

personalized and contextual features benefits inconsistent infor-

mation modeling. The suboptimal prediction performance of "w/o

prompt" validates that embedding prior knowledge can better guide

model learning. In summary, ablation experiments on three datasets

demonstrate that each of the involved components is effective.

5.6 Hyperparameter Sensitivity Analysis (Q.5)

In this section, we will analyze the impact of four key hyperparam-

eters in the SD dataset. The results are shown in Figure 5.

Residual diffusion layers 𝐽 . When 𝐽 is equal to 4 in Equation 22,

BiST achieves the best performance. A small number of residual

propagation layers may not fully capture the residual information,

while a large number of propagation steps can lead to oversmooth-

ing commonly seen in GNNs, resulting in performance degradation.
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Table 7: Ablation experiments on three datasets.

Method Ours w/o tems w/o tememb w/o Noe w/o prompt w/o back w/o dec w/o adp

SD

MAE 18.30±0.37 19.30±0.41 20.39±0.54 20.39±0.42 20.40±0.73 20.71±0.97 19.59±0.56 19.53±0.89

RMSE 30.44±0.42 31.13±0.78 32.73±0.59 33.07±0.51 34.42±1.19 34.11±1.65 32.16±0.76 31.22±0.71

MAPE 12.37±0.31 12.42±0.29 13.79±0.42 13.45±0.43 13.80±0.42 13.42±0.46 12.84±0.47 13.09±0.58

C
A

MAE 19.95±0.42 20.06±0.36 20.61±0.44 20.52±0.51 20.64±0.48 20.86±0.46 20.48±0.69 20.40±0.43

RMSE 32.67±0.53 32.99±1.08 33.24±0.75 33.81±0.73 34.04±1.34 34.04±0.70 33.46±0.99 33.30±1.57

MAPE 14.21±0.24 15.61±0.52 14.58±0.34 14.61±0.33 14.63±0.79 14.76±0.13 14.24±0.38 14.32±0.26

K
n
o
w
A
ir MAE 20.27±0.51 20.81±0.38 20.56±0.73 21.02±0.61 21.31±0.92 21.46±0.63 20.71±0.97 20.51±0.46

RMSE 29.75±0.54 30.08±0.52 30.19±0.79 30.48±0.54 30.74±0.42 30.86±0.39 31.07±0.51 29.85±0.48

MAPE 47.29±1.41 59.44±2.68 51.49±2.16 57.48±1.69 62.85±3.16 63.14±3.76 57.29±2.34 57.24±2.41
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Figure 5: Hyperparameter sensitivity experiment.

Virtual cluster numbers 𝐾 . A moderate number of virtual nodes,

which corresponds to the core numbers, can effectively capture

global spatiotemporal information. On the other hand, an excessive

number of virtual nodes increases complexity without performance

improvement and may even absorb excessive environmental noise,

leading to performance decline.

Temporal decomposition kernel size 𝑘 . Smaller kernel sizes

exhibit similar and good stability in feature extraction. However,

as the size increases, performance rapidly deteriorates due to the

loss of local temporal information.

The number of MLP layers 𝐿. When we use 3 MLP layers for

spatiotemporal learning (in Equation 9) and residual modeling (in

Equation 16), BiST can achieve optimal prediction performance.

This is because, with fewer layers, the model may fail to capture

complex spatiotemporal correlations, leading to underfitting. Con-

versely, with too many layers, the increased model complexity can

make learning more difficult, often resulting in overfitting.

5.7 Spatiotemporal Deviation Modeling (Q.6)

We evaluate the effectiveness of the model in handling spatiotempo-

ral inconsistencies. Using the SD dataset as an example, we calculate

the percentage change between the average values of the input data

and the label data. We study two scenarios: a sudden increase and

a sharp decrease in label data.

As shown in Table 8 and Figure 6, relative to existing state-of-

the-art spatiotemporal prediction models, BiST can more effectively

handle spatiotemporal inconsistent data. While STID claims to use

the node embedding method to handle such data, existing models

only involve a forward spatiotemporal learning process without

utilizing label information, and hence they are unable to effectively

deal with complex inconsistencies. In contrast, BiST includes a

backward process that leverages label information to help themodel

better eliminate such disparities.

Table 8: Performance comparisons under severe cases on SD

datasets. "Surge" refers to the growth multiple of the mean

value of future data, while "Plummet" signifies the percent-

age decrease in the mean value of future data. "×": multiple.

Surge

1× ∼ 10× 10× ∼ 100× 100× ∼ 1000×
MAE RMSE MAE RMSE MAE RMSE

STGCN 7.82±0.18 20.61±0.32 13.75±0.25 26.36±0.28 18.19±0.11 36.45±0.47

STID 5.84±0.09 15.69±0.11 12.75±0.13 27.83±0.17 13.69±0.06 26.05±0.24

STAEformer 7.59±0.11 15.97±0.32 15.12±0.19 28.53±0.22 12.66±0.29 20.41±0.21

D2STGNN 5.68±0.05 15.88±0.15 10.81±0.11 21.86±0.29 16.03±0.07 26.99±0.35

Ours 5.33±0.07 14.50±0.14 10.41±0.12 20.29±0.23 11.53±0.14 18.67±0.18

Plummet

25% ∼ 50% 50% ∼ 75% 75% ∼ 100%

MAE RMSE MAE RMSE MAE RMSE

STGCN 13.51±0.25 27.86±0.37 18.45±0.24 28.49±0.39 23.84±0.48 36.43±0.48

STID 14.81±0.16 30.28±0.13 21.28±0.17 33.27±0.20 23.14±0.39 35.97±0.31

STAEformer 13.77±0.64 28.47±1.28 18.02±0.28 27.55±0.36 23.95±0.56 37.46±0.34

D2STGNN 14.89±0.38 27.12±0.16 17.16±0.33 26.34±0.21 21.98±0.51 34.56±0.71

Ours 12.99±0.18 26.04±0.24 16.75±0.32 25.32±0.26 21.29±0.45 33.24±0.52

Figure 6: Prediction case visualization. The above figure illus-

trates the predictive performance of the model in the event

of a surge of data, while the lower figure depicts the model’s

performance in the context of a sudden decline in data flow.

5.8 Modeling Multi-step Temporal Dependency
for Residual Learning (Q.7)

After obtaining the residual representation ZR, we employ two

methods: LSTM and Transformer, to explicitly model dependencies

between different time steps in ZR. These variants are defined as

Ours-LSTM and Ours-Transformer. As shown in Table 9, the results

demonstrate that these alternative variants exhibit inferior perfor-

mance compared to our model. The potential reason is that com-

plex backward residual modeling networks might overly emphasize

residuals while diminishing the effectiveness of spatiotemporal

feature learning, reducing its effectiveness.
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Table 9: Ablation experiment on modeling time step length.

Dataset Avg. Ours Ours-LSTM Ours-Transformer

SD

MAE 18.30±0.37 19.52±0.35 19.63±0.42

RMSE 30.44±0.42 31.84±0.43 32.22±0.54

MAPE 12.37±0.31 12.73±0.23 12.64±0.25

CA

MAE 19.95±0.42 20.41±0.49

Out-of-MemoryRMSE 32.67±0.53 33.18±0.43

MAPE 14.21±0.24 14.48±0.38

KnowAir

MAE 20.27±0.51 20.34±0.52 21.48±0.54

RMSE 29.75±0.54 29.95±0.56 32.48±0.56

MAPE 47.29±1.41 48.12±1.53 52.47±1.51

5.9 Case Study (Q.8)

5.9.1 Interpreting BiST prediction. The SHAP (SHapley Additive

exPlanations) value [37, 38] represents a comprehensive measure of

the importance of data features. It quantifies the average contribu-

tion of each feature to the predicted output, taking into account all

possible combinations of feature perturbations. Following the STL

decomposition [4], our BiST can be seen as a generalized additive

model (GAM) [18],

Y = Ŷ + Yerr, (25)

= Ybase + Ycor + Yerr, (26)

= F (MLP1 (X𝑙 ) +MLP2 (X𝑆 )) + Ycor + Yerr . (27)

where X𝑙 and X𝑆 represent the stable patterns and trend patterns

of the time series in the forward spatiotemporal learning process,

respectively. By averaging across all nodes, we calculate the SHAP

values of the four components at 3 kinds of horizon steps. As shown

in Figure 7, the application of SHAP values in BiST for spatiotem-

poral data reveals that stable temporal patterns play a crucial role

in both short-term predictions (as illustrated in subplot (a)) and

long-term predictions (as illustrated in subplot (b)). However, the

influence of trend patterns gradually diminishes as the prediction

horizon increases.

In short-term prediction, the slight increase in the "error" compo-

nent stems from growing inconsistencies between input data and

label information as prediction steps advance, making prediction

more complex and potentially leading to decreased model accuracy.

Consequently, the backward correction module plays an increas-

ingly significant role by modeling inconsistent features to adjust

baseline predictions. In long-term prediction, the contribution of

the correction term remains substantial and cannot be overlooked.

5.9.2 Prompt embedding visualizations. In this section, we extract

the trained embedding vectors from BiST for visualization to evalu-

ate their effectiveness. As shown in Figure 8, we demonstrate the

spatiotemporal prompt embeddings, the learnable embeddings of

nodes and virtual nodes in the residual decomposition layer, as well

as the receptive fields of virtual nodes and their visual position in

real-world scenarios on SD dataset.

Temporal prompt embedding. Figure 8 (a) displays the visualiza-

tion results of temporal prompt embedding 𝒆𝑇 and 𝒆𝐷 . We observed

that the prompts are precisely aggregated into 7 clusters with clear

boundaries based on the day of the week. Moreover, the parts repre-

senting the time of day within each cluster exhibit distinct patterns,
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Figure 7: The SHAP values of decomposed components of

BiST in SD dataset and (Daily) XXLTraffic dataset.

aggregating into smaller groups, demonstrating that the temporal

prompts can provide clear temporal side information.

Node embedding visualization. Using SD dataset, we first extract

the hierarchical receptive field 𝑆 in the Equation 11. We select

nodes with higher correlation in each cluster, which are denoted

as ‘representative nodes’. The feature of these nodes are close to

those of clusters. The remaining nodes are called ‘normal nodes’.

Figure 8 (b) presents the node embedding visualization of these

nodes 𝒆𝑆 , which indicates that the node embeddings are clustered,

effectively learning hierarchical information. At the same time, our

method successfully extracts shared features as the representative

nodes are positioned near the center of each cluster. We further

illustrate the distribution of these nodes in the real-world road

network, as shown in Figure 8 (c).

Personalized-feature and context-feature embeddings. Fig-

ure 8 (d) visualizes the personalized-feature 𝐸𝑞 and context-featur

embeddings 𝐸𝑘 . The context features which are shared among the

nodes exhibit a clustered distribution, while the personalized fea-

tures of each node show a strip-like distribution.

Figure 8: Visualization of various embeddings.

6 CONCLUSION

This paper presents a lightweight spatiotemporal prediction model

based on MLP, achieving competitive predictive performance while

maintaining low computational complexity and memory usage.

The model effectively addresses inconsistencies between the label
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and the input information, thereby enhancing the overall perfor-

mance. We propose a novel spatiotemporal decoupling module for

capturing residuals, which decomposes spatiotemporal features

into node-shared contextual features and node-specific features.

Across more than a dozen datasets, we demonstrate the model’s

competitive accuracy, high training efficiency, andminimal memory

overhead.
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A MATHEMATICAL PROOFS

In this section, we provide the proof of Theorem 1. Leveraging the

framework of Gaussian Markov random fields [44], our proof un-

folds by initially demonstrating the soundness of the foundational

prediction term through the conditional distribution. Subsequently,

we advance this groundwork by introducing supplementary condi-

tional constraints to substantiate the veracity of Theorem 1.

Proof of Theorem 1 By the definition of Gaussian Markov ran-

dom fields (GMRF) [11], we can define the multivariate Gaussian

distribution of probability density function corresponding to the

joint spatiotemporal variable 𝑻 = [𝑿 , 𝒀 ] ∈ R
(𝑇+𝑇𝑃 )×𝑁×𝑐 ,

𝑓𝑻 (T) = (2𝜋)
−𝑁 (𝑇+𝑇𝑃 )

2 det
(
Γ
−1

) 1
2
exp

(
−1
2
vec (T)� Γ vec (T)

)
,

(28)

where Γ = Σ
−1 ∈ R

[ (𝑇+𝑇𝑃 )𝑁 ]×[ (𝑇+𝑇𝑃 )𝑁 ] is the precision matrix,

i.e., the inverse of covariance matrix Σ. Γ represents the depen-

dency between (𝑇 +𝑇𝑃 ) × 𝑁 variables in GMRF, and vec (·) is the
vectorization operator of tensor. Here Γ reflects the dependence of

variables in the GMRF, which can be computed as

Γ := (𝑊 ⊗ I𝑁 ) + diag (ℎ) ⊗ A (A) , (29)

where𝑊 ∈ R
(𝑇+𝑇𝑃 )×(𝑇+𝑇𝑃 ) satisfying the symmetric positive def-

inite and 𝜃 ∈ R
𝑇+𝑇𝑃 satisfying the entry positive are the pseudo

parameters of the standard GMRF model. Detailed explanation of

these parameters suggests a reference to [22]. diag (·) is the diago-
nalization operator and ⊗ is the Kronecker product.

Spatiotemporal variables can be assumed as a multivariate Gauss-

ian distribution, i.e., vec (𝑻 ) ∼ N (0, Γ−1). Without loss of gener-

ality, we divide the node set of the spatiotemporal graph into two

disjoint unions to simplify subsequent calculations:V = 𝑉1∪𝑉2, i.e.,
𝑉1 ∩𝑉2 = ∅. Recall the conditional distribution of 𝒀 corresponding

to the input X with its variable 𝑿 , we can get

𝒀 |X ∼ N
(
E [𝒀 |X] , Γ−1𝒀𝒀

)
, (30)

where Γ−1𝒀𝒀 ∈ R
(𝑇𝑃𝑁 )×(𝑇𝑃𝑁 ) indicates the dependencies between

the variables contained in label 𝒀 . Hence the conditional distribu-
tion of 𝒀𝑡,𝑉1

respect to Y𝑡,𝑉2
and X for the disjoint union 𝑉1 ∪𝑉2 of

node set 𝑉 and arbitrary 𝑡 = {1, 2, . . . ,𝑇𝑃 } is
𝒀𝑡,𝑉1

|X,Y𝑡,𝑉2
(31)

∼N
(
E
[
𝒀𝑡,𝑉1

|X] + Γ
−1
𝑡,𝑉1𝑉1

Γ𝑡,𝑉1𝑉2
×2

(
E
[
𝒀𝑡,𝑉1

|X] − Y𝑡,𝑉2

)
, Γ−1𝑡,𝑉1𝑉1

)
,

where Y𝑡,𝑉𝑖 :=
[
Y
�
𝑡,𝑢,: | ∀𝑢 ∈ 𝑉𝑖

]�
for 𝑖 = {1, 2}. Hence the above

expectation equation is,

E
[
𝒀𝑡,𝑉1

|X,Y𝑡,𝑉2

]
= E

[
𝒀𝑡,𝑉1

|X] + Γ
−1
𝑡,𝑉1𝑉1

Γ𝑡,𝑉1𝑉2

(
E
[
𝒀𝑡,𝑉1

|X] − Y𝑡,𝑉2

)
, (32)

= E
[
𝒀𝑡,𝑉1

|X] + (I𝑁 + 𝛼𝑡A (A))−1𝑉1𝑉1
(I𝑁 + 𝛼𝑡A (A))𝑉1𝑉2

×2 c𝑡,𝑉2
,

where 𝛼𝑡 =
ℎ𝑡

𝑊𝑇+𝑡,𝑇+𝑡 and ×2 means the multiplication operation of

the second dimension of twomatrices. The term (I𝑁 + 𝛼𝑡A (A))𝑉1,𝑉2

indicates the submatrix consisting of rows corresponding to entries

in𝑉1 and columns corresponding to entries in𝑉2 for I𝑁 + 𝛼𝑡A (A),
which illustrates the dynamics of residual propagation in this con-

text. Based on the expansion of Neumann series [41], the above

equation can expand as follows,

E
[
𝒀𝑡,𝑉1

|X,Y𝑡,𝑉2

]
= E

[
𝒀𝑡,𝑉1

|X]

+ (1 − 𝛾𝑡 )
∞∑
𝑘=0

(
𝛾𝑡 Ã𝑉1,𝑉1

)𝑘
(I𝑁 + 𝛼𝑡A (A))𝑉1,𝑉2

×2 c𝑡,𝑉2
,

(33)

where 𝛾𝑡 = 𝛼𝑡/(1 + 𝛼𝑡 ). Ã𝑉1,𝑉1
indicates the submatrix consisting

of rows and columns corresponding to entries in𝑉1 for Ã. It must be

noted, however, that the results of the closed form are independent

of the node disjoint union partition chosen, as determined by the

equivariance of the GMRF [2]. Hence, the case we considered in

the Theorem 1 is just a special example in the proof when𝑉1 = {𝑢}
and 𝑉2 = V\ {𝑢}. Proof of completion.�

B ADDITIONAL EXPERIMENTS

In the study of LargeST [33], the authors employed 2019 data as

a case study to compare the predictive performance of different

models. To enable a straightforward comparison, we also report the

average performance metrics across 12 time steps from the 2019

data. As illustrated in Table 10, BiST consistently outperforms all

baseline models across the four datasets, with 75% of the perfor-

mance metrics showing a relative improvement of over 5%. This

further validates the superiority of the BiST model in handling

large-scale spatiotemporal data.

Table 10: Short-term performance comparisons in LargeST

(2019). The unit of MAPE is percent (%).

Dataset SD 2019 GBA 2019 GLA 2019 CA 2019

Method MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STGCN 19.89±0.51 33.84±0.25 13.96±0.12 23.92±0.33 39.41±0.45 18.54±0.21 22.66±0.47 38.78±0.51 14.18±0.14 21.64±0.25 36.25±0.82 16.64±0.27

GWNET 18.07±0.42 29.67±0.21 11.69±0.19 20.92±0.31 33.47±0.48 17.96±0.29 21.32±0.36 33.56±0.31 13.26±0.12 22.21±0.22 34.05±0.71 17.63±0.21

STNorm 19.19±0.75 31.56±0.31 12.16±0.18 22.32±0.22 35.73±0.57 17.09±0.19 22.11±0.73 35.12±0.97 13.42±0.69 20.24±0.25 33.51±0.78 14.75±0.36

STID 18.44±0.14 32.05±0.37 12.52±0.14 20.93±0.18 35.31±0.38 17.65±0.05 20.77±0.09 35.04±0.23 13.35±0.13 19.21±0.19 31.69±0.18 15.19±0.07

STGODE 19.34±0.68 34.29±1.19 13.67±0.28 21.94±0.37 35.97±0.84 18.52±0.26 21.69±0.36 35.98±0.54 13.75±0.22 21.05±0.26 36.85±0.45 17.02±0.28

ASTGCN 23.55±1.83 39.45±3.31 16.54±1.32 26.89±0.98 41.76±2.26 24.23±1.17 27.86±1.07 44.84±2.32 16.85±1.12
Out of MemoryAGCRN 18.42±0.38 32.62±0.47 13.36±0.29 21.51±0.27 34.38±0.87 17.01±0.33 20.39±0.36 34.73±1.17 12.74±0.25

DSTAGNN 21.87±0.56 30.91±1.54 12.98±1.19 24.23±1.18 37.29±1.15 20.49±0.95

Out of Memory
STAEformer 18.96±0.42 31.79±0.78 13.23±0.31 21.79±0.56 35.12±1.30 17.07±0.27

DGCRN 18.07±0.24 30.19±0.48 12.14±0.23 21.47±0.46 33.99±0.42 17.15±0.31

D2STGNN 17.81±0.21 29.72±0.49 11.74±0.36 20.92±0.25 33.98±0.46 15.08±0.13

Ours 16.19±0.1727.72±0.3310.59±0.1219.31±0.1532.39±0.3114.43±0.0719.14±0.1231.81±0.2911.33±0.0717.58±0.1831.01±0.2212.79±0.09
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