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Abstract—Traffic prediction is one of the important research
directions in Intelligent Transportation Systems, with positive
implications for vehicle dispatching and vehicle management.
In reality, due to the unreliability of data transmission and the
volatility of storage devices, data sparsity limits the stability and
prediction performance of existing methods that rely on high-
quality observed data. To achieve robust sparse traffic prediction,
we first investigate two findings as our motivation: the influence of
external geographical features on shaping traffic distribution and
the coupling dependence of multi-source urban data. Specifically,
we develop a condition-guided collaborative learning network for
traffic prediction with sparse data. The core idea is to exploit both
the informative external geographic features and multiple urban
data as auxiliary information to cooperatively learn mobility
patterns from sparse data. First, we design an attention-based
bilateral filter, which explicitly models the influence of external
geographic features on spatial-temporal targets, and exploits such
patterns as conditions to further estimate the missing elements.
Secondly, a collaborative-learning framework, including a graph
fusion module and a memory-preserved mechanism is devised
to adaptively extract and aggregate fragments of similar spatial-
temporal sequences from multiple urban data, helping the model
to learn comprehensive mobility patterns from sparse data. We
verify the excellent effectiveness of our model on multi-source
traffic datasets collected in modern urban transportation systems.

Index Terms—Vehicle data, public transportation, sparse
surveillance, traffic prediction.

I. INTRODUCTION

In recent years, emerging technologies (e.g 5G technol-
ogy [1], [26], [15], [27], [48] and global position system
(GPS)) have provided new empowerment for the transportation
systems [6], [16], [19], [38], [7], [8], in particular, the prosper-
ity of the vehicle networking has enabled the interconnection
of vehicles, which can provide real-time ITS data covering
the entire road network. This has promoted the development
of the field of traffic prediction, which is intended to estimate
the future traffic conditions (e.g., traffic flow or taxi demand)
of an entire city, which can benefit many downstream vehicle
applications, such as vehicle scheduling, vehicle management,
and autonomous driving [23].

Recently, researchers have committed to the development
of traffic prediction models based on deep learning [4], [29].
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Existing models focus on analyzing human mobility patterns
from historical traffic data, and then the learned patterns are
used to predict future traffic conditions. While significantly
achieving impressive success, they all rely on large amounts
of high-quality and intensive historical traffic data to achieve a
comprehensive understanding of traffic patterns and dynamics.
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Fig. 1. Different missing pattern scenarios at different levels.

However, in practical applications, the sparsity of traf-
fic data is indeed an inevitable challenge. Existing stud-
ies typically classify the missing data into two main cate-
gories: random missing and continuous missing (as shown in
Figure.1.)Random missing occurs when point-wise data points
are lost randomly, which may result from unstable network
connections and transmission packet losses. Continuous miss-
ing happens when continuous or correlated data are missing
for a certain period, which can be further categorized into
two distinct types at the urban level: period missing and node
missing [47]. Period missing refers to a continuous absence
of data for an entire city over a long period, and this results
from storage volatility, data corruption, and power failure.
Node missing (as shown in Figure.1 (B)) refers to the gaps
in historical data of some regions or sections of urban, and
this could be due to equipment failure or insufficient coverage
of monitoring devices. In fact, the high deployment overheads
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of urban surveillance equipment hinder the dense coverage of
monitoring sensors. For example, in highly-developed cities
like Suzhou Industrial Park (SIP) and Shenzhen, only a small
percentage (e.g., 3.0% and 3.2% respectively) of intersections
are equipped with stationary surveillance cameras. Moreover,
the rising requirements for privacy protection impose stricter
limitations on the utilization of personal privacy-related data.
As a result, the availability of certain types of data that could
contribute to urban data analysis may be further limited in
the future. This increased emphasis on privacy protection may
exacerbate the severity of the sparse data issues in urban traffic
analysis.

When existing traffic state prediction models deal with
sparse data, they usually use local statistical features (such
as mean or zero values) for linearly imputing missing values,
which is a naive approach. Because as the sparsity of the
data increases, these local statistics become more and more
unreliable and even noisy. As the sparsity of the data increases,
the reliability of these local statistics diminishes, leading to
inaccurate and noisy imputations. Especially for continuous
missing scenarios, these preprocessed data would provide
spurious mobility patterns. In addition, the dilemma of zero-
inflation [50] or breakdown [39] can significantly impact
the ability of models to comprehensively capture mobility
patterns from sparse data, resulting in instability and decreased
prediction accuracy. Thus, how to achieve accurate traffic
prediction with sparse data is an open question.

There are some overlooked observations and enlightenment
that are beneficial to solving the dilemma of sparse data.
First, external geographical features have a crucial influence
in shaping traffic data, and regions with similar external
geographical features (such as POI, road network structure,
etc.) show similar traffic patterns. For instance, as illustrated
in Figure 2 A), i.e., heatmap of taxi flow at different POIs
from 7:00 a.m. to 5:00 p.m., taxi flow is relatively stronger in
residential areas since people need to leave residential areas
to regional areas during the morning, and while the situation
during the afternoon is completely contrary to what we see
during the morning. Based on this finding, it becomes possible
to estimate the traffic state of a missing region by perceiving
regions that share similar external features. This approach goes
beyond relying solely on local statistics and instead utilizes
the knowledge gained from regions with comparable features.
By incorporating this knowledge, the model’s robustness is
enhanced, leading to more reliable estimations of the traffic
state, even in situations where specific local data is unavailable
or incomplete.

Secondly, there is coupling dependency among multi-source
urban data due to the interaction of multimodal transportation.
In fact, these data fundamentally reflect people’s mobility
patterns [42], [50]. For example, as can be observed in Figure.2
A), both taxi flow and sharing-bike flow exhibit similar layout-
driven patterns in the residential areas during morning and
afternoon traffic rush hours. Moreover, Figure.2 B) and C)
illustrate the striking similarity in volume distributions across
various event categories, including taxi flow, bike flow, and
traffic accident numbers, across different days of the week
and months of the year. Additionally, Figure 2 D) provides

evidence of long-term temporal similarities. By considering
the correlations among multiple urban data sources, we can
integrate them to capture comprehensive patterns and enhance
the learning effect of sparse data. Leveraging the comple-
mentary information from different data sources allows for
an improved understanding of traffic dynamics by the model.
This integration enables more robust and accurate predictions
of traffic flow, even in scenarios where data sparsity presents
a challenge.

A) Heatmap of taxi and bike demands in rush hours 

B) Average percentage of different event numbers in different hours in weekdays and weekends

C) Percentages of different event numbers in different days and months                                                                                                 

D) Hourly numbers of different events in twenty continuous days  
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Fig. 2. Demonstration of spatial-temporal correlations among multiple
categories of urban data: Subfigure A) demonstrates the spatial distribution
similarities among the flow of taxi and sharing-bike during rush hours, B)
illustrates the average daily or monthly percentages that different categories of
events account for in a week or year, C) shows the average hourly percentages
that different categories of events account for in a day, and D) the hourly
numbers of different categories of events in about 20 continuous days.

Based on these two findings, in this paper, we attempt
to exploit both the informative external geographic features
and correlations among multiple urban data to cooperatively
complement traffic patterns from sparse data. Specifically,
we propose a Condition-guided Spatial-Temporal Network
(CSTN) for traffic prediction with only sparse data, which
explicitly models the influence of external geographic features
on traffic distribution to estimate missing traffic patterns by
examining regions with similar external geographic features
instead of local statistical features. Moreover, we transfer the
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learned knowledge from multi-source urban data to comple-
ment the comprehensive patterns. This framework consists of
two phases:
i) Spatial-temporal learning on the single sparse data: We
formalize urban traffic as a graph structure, and then design
a condition-guided spatial-temporal network to learn spatial-
temporal correlations from sparse data, which combines the
advantages of the graph convolutional neural network and
Transformer. Specifically, we first design an attention-based
bilateral filtering to explicitly extract how external geographic
features affect urban flow and take these results as conditional
guidance to generate the graph edge weights of the graph
attention network (GAT). Based on such imaginative use of ex-
ternal geographic features, those inaccessible or missing data
points can be dynamically estimated based on the similarities
of external geographic features among data points rather than
empirically assumed. It is worth mentioning that even if the
corresponding data is not missing, such external geographic
features can also be used as supplements to further enhance
spatial-temporal representations, thus effectively benefiting the
extraction of mobility patterns from single sparse data from
both sides. Simultaneously, we especially equip Transformer
with causal convolutions to enable multiple receptive fields and
eventually capture multi-scale temporal trends from historical
data.
ii) Collaborative learning on multiple-source sparse data: Con-
sidering that multiple-source urban data is closely correlated
in both spatial and temporal perspectives, we design a collab-
orative learning framework to complement missing patterns
by leveraging the power of different attention mechanisms.
In particular, our collaborative learning internalizes the atten-
tion mechanism respectively into a graph fusion scheme and
memory-preserved mechanism, to achieve information synergy
in both spatial and temporal perspectives. For the graph fusion
scheme, we implement adaptive spatial aggregations on node
levels with regard to multiple-source urban data, ie., cross-
domain elements. Meanwhile, from the temporal perspec-
tive, given that different traffic elements share similar long-
term traffic patterns, we design an attention-based memory-
preserved mechanism to extract similar long-term patterns to
enhance the spatial-temporal representations of sparse data.

The main contributions of this paper are as follows:
• To the best of our knowledge, this paper is the first

one targeting the issue of traffic learning with only
sparse data, and this is also an effective attempt that
deep learning based data analysis is liberated from the
dependence on a long-term accumulation and intensive
collection of data.

• We propose a condition-guided spatial-temporal model
(CSTN) for traffic prediction with sparse data, and
this model exploits both informative external geographic
features and correlations among multiple-source urban
data to cooperatively complement traffic patterns among
sparsely observed traffic datasets.

• CSTN integrates an attention-based bilateral filter, which
is designed to learn the influence patterns of external geo-
graphic features on traffic targets and is further exploited
to estimate the missing elements. Second, a collaborative

learning method seamlessly incorporates a node-level
attention-based graph fusion and a memory-preserved
mechanism to respectively allow adaptive node-level ele-
ment aggregations and long-term fragment combinations
from multiple-source data, enabling the information fu-
sion in spatial-temporal perspectives and finally achieving
our co-predictions.

• Extensive experiments on real-world datasets demonstrate
that our CTSN outperforms alternative baselines in the
traffic prediction task.

The remainder of this paper is organized as follows. We
introduce the existing studies on traffic learning and review
methodology limitations in Section II. Then Section III iden-
tifies some key definitions and the task we focus on. Next,
we describe the details of our proposed model condition-
guided collaborative prediction network (CSTN) in Section
IV. Section V uses real-world traffic datasets to evaluate
the proposed model, which mainly includes two parts: the
accuracy of traffic prediction and the contribution measure
of each component. Next, we provide the limitations of the
paper and the potential avenues for future research in Section
VI. Finally, we make a conclusion for this paper in Section
VII.

II. RELATED WORK

Traffic prediction is an important task for ITS and benefits
advanced applications, such as Internet of Things (IoT) ap-
plications [45], [13], [24], [36], [31], traffic management [32]
and autonomous driving [38], [37]. Traffic prediction aims to
analyze traffic patterns from observed traffic data and predict
future traffic conditions based on the learned patterns [41],
[43].

A. Traffic prediction

The early algorithms mainly include mathematical or sta-
tistical analytical methods, such as time series models, the
autoregressive integrated moving average model (ARIMA),
and the Kalman filtering model. However, these algorithms
are inefficient because they fail to model complex nonlinear
relationships.

Recently, inspired by deep learning techniques in computer
vision and natural language understanding, researchers have
moved to study models based on neural networks, and these
models are generally composed of spatial components and
temporal components to model spatial and temporal correla-
tions, respectively. For example, ST-ResNet [46] and DMVST
[41] use Convolutional Neural Networks (CNN) to capture
spatial correlations among regions or nodes, and they also
integrate Long Short-Term Memory (LSTM) networks to learn
dynamic temporal trends. H-CNN [14] develops a hexagon-
based convolutional neural network (HCNN) as a spatial
component. However, CNNs fail to process non-European
data (i.e., graph-structured data), and traffic data can be
naturally formed as graph-structured data. Thus, the current
most popular models are based on Graph Convolutional Net-
works (GCNs). For example, ASTGCCN [44] integrates Graph
Attention Convolutional Network to capture dynamic spatial
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correlations among urban regions or nodes. STSGCN [25]
designs synchronization-GCN to capture temporal and spatial
correlations simultaneously. To capture complex temporal cor-
relations from historical data, the transformer has been widely
used as a temporal component due to its powerful ability to
model long-term dependencies [16], [35].

After achieving promising results, it is evident that these
models heavily depend on the availability of abundant high-
quality data to accurately capture mobility patterns. However,
data sparsity is an inevitable challenge arising from commu-
nication failures, fluctuations in storage facilities, damage to
monitoring equipment, and various other factors. As a conse-
quence, the sparse nature of the collected traffic data presents
significant hurdles for these models in learning comprehensive
mobility patterns. The presence of zero inflation and sparse
learning dilemmas further exacerbates the issue, leading to a
noticeable decline in their performance.

B. Traffic prediction with sparse data

Recent studies have emerged that specifically address traffic
prediction using sparse data. These works [12], [3] aim to
leverage the knowledge acquired from data-rich cities, where
extensive and comprehensive data collection is in place, to
enhance the learning capabilities of models for data-sparse tar-
get cities. For example, MetaST [39] designs a meta-learning
traffic framework to transfer the traffic pattern knowledge
of other similar cities which are intensively and integrally
monitored to predict the future traffic state of the target city.
AreaTransfer [33] selects the appropriate source city from
multi-source candidate cities and establishes area-matching
relationships between the target city and source cities. This
facilitates the transfer of relevant knowledge for traffic pre-
diction. ST-GFSL [18] presents a method that enables multi-
level knowledge transfer by matching parameters associated
with similar traffic meta-knowledge. This approach allows for
enhanced prediction performance by leveraging the shared
characteristics and patterns between different cities.

However, these methods still rely on at least one instance
of intensive data collection, the ideal scenario of having
comprehensive data in every target city is often challenging to
achieve. Moreover, the collection of appropriate auxiliary data
from other cities introduces additional complexities related to
data privacy and access, particularly when dealing with mul-
tiple municipalities. These factors may limit the widespread
deployment of these methods.

III. PPRELIMINARIES

In this section, we explicitly explain the explanatory vari-
ables and formally define the traffic prediction problem using
multi-source sparse data studied in this paper.

Definition 1 (Spatial Region): We partition an area of
interest (e.g., a city) evenly into N = H × W disjoint
geographical grids, in which each grid is considered as a
spatial region rn (1 ≤ n ≤ N). And V = {r1, ·, rN} is used
to denote the spatial region set in a city.

Definition 2 (Urban traffic graph): In this paper, we define
the traffic of a urban as an undirect graph G = (V, E ,A),

where V means the set of nodes and E indicate the set of
edges with (|V| = H ×W ) nodes, and vi ∈ V(1 ≤ i ≤ |V|)
corresponds to the i-th node in V , and eij ∈ E indicates that
there is a direct edge within node vi and vj . The corresponding
adjacency matrix A ∈ R|V|×|V| can be denoted as where

aij =

1 iff eij ∈ E

0 otherwise
(1)

Definition 3 (Sparse traffic data): Traffic data is the traffic
status (e.g., traffic flow) recorded by devices deployed on
roads (e.g., vehicle detectors). We use X ∈ RT×|V|×D =
{X1 · · ·XT } to denote observed traffic data over previous
T time steps, and Xt =

{
xt,1, · · · , xt,|V |

}
means the data

collected from the t-th time-step of all nodes, where xt,v ∈ RD

is the data of v-th node at t-th time-step with D traffic features
(e.g., traffic outflow or inflow). Due to the reasons mentioned
above, collected traffic data is sparse, thus, we use a mask
tensor M ∈ RT×|V|×D =

{
M1 · · ·M|V|

}
to indicate the

presence of the data point. If a data point xi,t is missing,
the corresponding mi,t is equal to 0, else mi,t is equal to 1.

Definition 4 (Multi-source sparse urban data): The ur-
ban multiple sparse data can be defined as a tensor X ={
X 1 · · · XC

}
where X i(1 ≤ i ≤ C) indicates the i-th

category of collected sparse urban data. Accordingly, the mask
tensor M =

{
M1, · · · ,MC

}
is used to denote the the

presence of X. In this paper, we introude the sharing-bike
data XB and the traffic accident data XA as auxiliary, i.e.,
X =

{
X T ,XB,XA}, where X T means the traffic data.

Definition 5 (Traffic prediction with multi-source sparse
data): Given the urban traffic network G and the corresponding
urban multiple sparse data X with the masking matrix M
during the T historical time spots, we aims to train a prediction
model F which can effectually process sparse traffic data and
accurately predict the traffic state at the next Tp time steps.

F :
(
X T |X,G

)
→
[
XT

T+1, · · · , XT
T+TP

]
(2)

IV. METHOD

In this section, we will elaborate on the details of the model
CSTN. The model contains two phases: i) Learning on single
category of sparse data, ii) Collaborative-interactive learning
on multiple sparse datasets. For more clarity, Figure 3 shows
details of each block.

A. Learning on single category of sparse data

Modeling spatial-temporal correlations from historical data
is critical for traffic flow forecasting. The traffic conditions
of different locations influence each other and the mutual
influence is highly dynamic. Hence, Graph Attention Network
(GAT), which uses an attention mechanism to adaptively
capture dynamic correlations between nodes in the spatial
dimension, has attracted more attention[10]. However, when
the data is sparse, the attention mechanism becomes inefficient
due to the inaccessibility of some nodes’ historical data. To
reverse the inefficiency, the attention-based bilateral filtering
mechanism is proposed to calculate the similarity in terms
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Fig. 3. Solution overview: Subfigure A) and B) respectively correspond to two different phases of CSTN, i.e., condition-guided learning on single category of
sparse data (within the top-left red dashed wireframe) and collaborative-interactive learning on multiple sparse datasets (with the bottom-right black wireframe).

of geo-context features. The result will be as a condition to
generate edge weights in GAT to guide the model to learn spa-
tial correlations. Meanwhile, we integrate causal convolution
and transformer and design a multi-scale transformer to mine
temporal correlation from different temporal granularity.

Note that in this phase, to simplify the expression, we select
a single category of sparse data X c as input. It is simply
expressed as X =

{
X1 · · ·X|V|

}
∈ R|V|×T×D. The detailed

design of this phase is shown in Subfigure A) of Figure 3.
External factor learning. The conventional practice of learning
on the sparse dataset is to use local statistics (e.g. zero values
or the last observation) to directly complement missing values.
Honestly, such methods have certain effects to some degree.
However, in case the sparsity of the dataset increases to
a threshold or there exist continuous missing values, these
methods become unreliable, and it is almost impossible for
the model to extract the complete spatial dependencies from
sparse datasets. Based on our analysis, i.e., there exist similar
traffic patterns among nodes with similar external geographic
features, regarding a missing value of a specific node, an
intuitive approach involves simulating this value by referring
to nodes with comparable external geographic features. The
bilateral filter is particularly adept at addressing this task.
Widely employed in the realm of image processing, the funda-
mental concept underlying the bilateral filter revolves around
employing a weighted average of neighboring pixel values to
substitute the value of a given pixel [11]. We introduce it to
learn the node with missing value by accommodating the sim-
ilarities of geographic-context features among different nodes.
To adaptively quantify the influencing weights of different
nodes with similar geographic-context features on this specific
node, it uses an attention-based bilateral filtering mechanism
where a score function is designed to accommodate the inter-

node similarities in terms of geographic-context features, i.e.,

e(i,j) = exp

(
−1

2

(
ϕ (i, j)

σr

)2
)
exp

(
−1

2

(
d (i, j)

σd

)2
)

(3)
where σr and σd are the trainable parameters of bilateral filter-
ing. ϕ (i, j) is the Pearson correlation coefficient of geographic
features(e.g. POI and road network structure) of node i and j,
d (i, j) means the Euclidean distance between these two nodes.
Worth noting that the bilateral filtering based parameters are
also trainable parameters. So far, the static similarity between
nodes i and j in terms of their geographic-context features can
be obtained by:

ψi,j =
e(i,j)∑
j∈V e(i,j)

(4)

and Ψ = {ψij} ∈ R|V|×|V| indicates the entire similarity
matrix.
Condition-guided GAT. GAT has been proved its superiority
in processing traffic data. Attention scores is calculated by
the spatial-temporal features of neighboring nodes in road
network: 

βi,j = FC(
[
ωs
1h

r−1
i ||ωs

2h
r−1
j

]
)

si,j =
exp(LeakyRelu(βi,j))∑

k∈Nei(i) exp(LeakyRelu(βi,k))

(5)

where ωs
1 and ωs

2 are learnable parameters. hr−1
i means the

hidden state of node vi in the (r-1)-th layer and h0i =Xi. The
value of an element si,j in attention matrix S = {sij} ∈
R|V|×|V| semantically represents the similarity of traffic infor-
mation between node i and node j. However, in case that data
is sparse, the calculated attention scores are correspondingly
sparse. It’s the obstacle of message delivery. As discussed
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earlier, similar external features lead to similar traffic patterns.
Therefore, we consider the external factor relation matrix Ψ
as conditions to guide aggregation. First, two matries are
adaptively fused to obtain enhanced similarity matrix:

ϕi,j = ωs
3si,j + ωs

4ψi,j (6)

where ωs
3 and ωs

4 are the learnable parameters. Φ = {ϕij} ∈
R|V|×|V| is reinforced because it is calculated from the spatial-
temporal features and external features instead of just relying
on the spatial-temporal features. Then we aggregate node
features from their neighbors:

hri = ELU

 ∑
j∈Nei(i)

ϕi,j(ω
s
2h

r−1
j )

 (7)

where ELU(·) known as Exponential Linear Unit [5] is
activation function.
Multi-scale Transformer. Recently, Transformer has proven a
strong ability to model time trends, which consists of multi-
head attention layers, shared feed-forward neural layers, and
batch normalization layers between them. To deal with the
dilemmas caused by data sparsity, we redesign the multi-head
attention layer, and the other layers remain the same as the
regular transformer [28]. Specifically, for node vi, we take the
output hri from the condition-guided GAT layer as input to
show the learning process.

Traffic flow is believed to be multi-periodic. Researchers
[46], [41] tend to categorize them into closeness patterns,
period patterns, and trend patterns according to temporal
frequencies. Thus, the fusion of multiple views with different
time resolutions is beneficial to learning robust representations
of variation patterns from sparse data. Regular transformers
can’t capture multi-resolution temporal dependencies, because
it takes the same strategy (i.e. linear projection) to obtain
query vectors (Q), key vectors (K), and value vectors (V ).
We introduce one-dimensional dilated convolution (1D-CNN)
to replace the linear projection layer. In this way, the multi-
head attention layer can configure different receptive fields.
Specifically, 1D-CNN denoted as DC(·) is used to obtain query
vectors Q:

Q = DC(hri , ρ) (8)

where DC(η, ρ) =

L−1∑
i=0

Conv (i) • ηT−di (9)

where ρ means the dilation factor. L indicates the kernel size
of convolutions, opertion • corresponds to the dot product
operation. ηT−di indicates the some layer’s hidden state of the
entire graph in time point T − di . We then linearly project the
hri into key vectors K and value vectors V :

K = ωkhri , V = ωvhri (10)

where ωk and ωv are learnable parameters. K ∈ RT×dk and
V ∈ RT×dv are key vector and value vector respectively. Then
we calculate the attention scores for the queries of all positions
by dot product operation of K vector and Q vector, and a self-
attention layer can be denoted as:

Attention (hri , ρ) = softmax

(
Q(KT)√

dk

)
V (11)

The multi-head attention mechanism is preferred to enhance
the presentation capabilities of the model. However, the
problem of information redundancy between multiple heads
[20] could weaken this advantage. As mentioned above, the
collaboration of multiple views with different time resolutions
is benefit, thus we suggest that different heads could be
equipped with different receptive fields (i.e., different ρ) to
learn different temporal trends. The result of the multi-head
attention is the concatenation of the output of each attention
function. The learning process can be formulated as:

Oi =Multi− head (hri ) ;

= Concat ( head 1, . . . headNS
)ωP ;

where head s = Attention (hri , ρs)

(12)

where ωP is learnable parameters of linear projection to
adaptively coordinate the attention heads. NS is the number of
heads and different heads. We expect the dilation factor ρ is not
equal in different heads. Note that in the first phase: Learning
on single category of sparse data, we employ consolidated but
independent models on different categories of sparse datasets
separately. This means that they do not share learning param-
eters of models. So we obtain the outputs sequence of all cat-
egories of datasets, it is expressed as O =

{
O1, · · · ,OC

}
∈

RC×|V|×T×do where Oc =
{
O1, · · · , O|V|

}
.

B. Collaborative-learning on multi-source sparse data
As analyzed above, there are correlations between multiple

traffic data. We design a graph fusion mechanism and memory-
preserved mechanism for collaborative learning of multiple
datasets to further estimate missing patterns and enhance
spatial-temporal representations.
Attention-based graph fusion.

For a node (region), there are close relationships between
multiple traffic events. Inspired by the heterogeneous graph
representation learning task, we can regard different types of
spatial-temporal features as the independent attribute channels
of each node. Thus, we can achieve preliminary collaborative
spatial learning from the node perspective by interacting with
these channels of each node.

Thus, the graph fusion mechanism based on the attention
mechanism is proposed. Specifically, considering the output
of the first phase O, it can be reshape as O={o1, · · · , o|V|}
where oi ∈ RC×(T×do). For node vi, we first use a nonlinear
transformation to embed its corresponding output after phase
one, i.e.,

µi = Tanh (ωµ
i oi + bµi ) (13)

where ωµ
i and bµi are learnable parameters. And then we then

normalize learned semantic correlations by

Ωc,n
i =

exp((µc
i )

Tµn
i )∑C

k=1 exp((µ
c
i )

Tµk
i )

(14)

where Ωc,n
i represents the correlations between node vi in the

c-th category of data and node vi in the n-th category of data.
µc
i represents the c-th row of µi. Then we achieve aggregation:

σc
i =

C∑
n=1

Ωc,n
i oni (15)
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where σc
i ∈ RT×dp , dp is the dimension of feature. Thus, for

node vi, we obtain the output sequence Pi =
{
σ1
i , · · · , σC

i

}
∈

RC×T×dp .
Memory-preserved mechanism. Long-term traffic patterns
(e.g., periodic patterns) are critical for traffic forecast models.
As discussed above, these patterns of multi-traffic events
may be similar (as shown in Figure.2 D), which can be
regarded as a global property. To find these shared long-
term pattern fragments, we design the memory-preserved
mechanism to explicitly learn and store them, and then we
achieve further collaborative interactive learning between mul-
tiple sparse datasets by dynamically interacting the long-term
shared spatial-temporal information in the memory to improve
the effect of collaborative learning.

Specifically, the memory is a parameterized matrix and
denoted as Me ∈ RNm×dm , where Nm is a hyperparameter
and means the number of stored patterns in memory. We use
M t−1

e to denote the state of the memory unit during the (t−1)
time step. For the hidden features Pi of node vi from the graph
fusion part, we map it to a high-dimensional space to get the
query vector Qm, and then Qm is used to access memory to
obtain hidden feature vector Hm.

Hi
m = softmax

(
Qm(M t−1

e )T√
dm

)
M t−1

e (16)

then we use the residual term to integrate Hi
m into Pi for en-

hancing spatial-temporal representation. It can be formulated
as Zi

out=Hm+Pi, for all nodes, the final output is denoted as
Zout={Z1

out, ..., Z
|V |
out}.

Next we use the gate mechanism inspired by Gate Recurrent
Unit (GRU) to filter the noise information and update patterns
in the memory. Specifically, we employ the self-attention
mechanism to obtain hidden feature vector Zt−1, i.e.,

Zt−1 = softmax

(
M t−1

e (Qm)T√
dm

)
Vm

where Qm = ωπ
kPi, Vm = ωπ

vPi

(17)

where ωπ
q , ωπ

k , and ωπ
q are learnable parameters. Then we use

Zt−1 to renew the memory unit M t−1
e as follow:

I = Sigmoid
(
ωI
zZt−1 + ωI

πM
t−1
e + bI

)
U = Sigmoid

(
ωU
z Zt−1 + ωU

πM
t−1
e + bU

)
Z ′
t = Tanh(ωz′

[
I ⊙ Zt−1 ||M t−1

e

]
+ bz′)

M t
e = U ⊙M t−1

e + (1− U)⊙ Z ′
t

(18)

where I is the input gate, U indicates the update gate which
controls the information update of the memory component.
ωI
z , ωI

π , ωU
z , ωU

π , ωz′ , bI , bU , and bz′ are learnable parameters.
So far the state of the memory is updated to t time step.

C. Multi-task learning

In order to improve the effect of collaborative learning of
sparse datasets, we make predictions for each traffic event, and
use the loss sum of multi tasks to train the model. Specifically,

we first feed Zout into FC layers, and obtain the final output
of the entire two-phase attention-based network, i.e.,

Ŷ =
{
Ŷ1, · · · , ŶC

}
= FCs (Zout) (19)

Where Ŷc (1 ≤ c ≤ C)represents the predicted value of the
c-th urban data. Then we calculate the prediction loss of
each task. Considering the various sparsity rates of multiple
datasets, we design loss function to dynamically adjust the
loss with the sparsities of multiple datasets:

Loss =
C∑

c=1

λc

(1− ϑc)
2

∥∥∥(Yc − Ŷc
)
⊙Mc

∥∥∥
2

(20)

where Yc means the ground-truth value. Notice here we use
the mask tensor M to make sure that the calculated loss is to
optimize the network only based on the observed data points
in multiple sparse datasets. ϑc represents the sparsity which
can be calculated by the ratio of the number of data points
value equal to zero to the total number of all data points in
the c-th category of urban data.

V. EXPERIMENTS

In this section, we evaluate the validity of our proposed
model through a series of experiments and address the fol-
lowing concerns:

Q.1: What is the performance for the traffic prediction with
sparse data of the proposed model? Please refer to Subsection
V-D.

Q.2: Can the model effectively handle various sparse data
scenarios? Please refer to Subsection V-E.

Q.3: Can the results confirm the positive effects of these
two findings in this paper? Please refer to Subsection V-F.

Q.4: Does each component of the proposed model contribute
to the performance? Please refer to Subsection V-G.

Q.5: What is the sensitivity of hyperparameter K? Please
refer to Subsection V-H.

A. Experiment setting

Datasets. As an important branch of traffic data, taxi flow
has been widely studied by researchers. In the experiment,
following the previous work, we select taxi flow as a moni-
toring indicator of traffic status and evaluate our method on
public real-world datasets of NYC 1. The taxi flow data is
recorded as taxi GPS information from April 1st to October
1st, 2018 (183 days in total). Moreover, we use sharing-bike
data and traffic accident data as auxiliary. Our goal is to predict
future taxi flow by collaborative learning on three datasets and
external information. The descriptions of the three datasets are
as follows:

(1) NYC taxi. The dataset of NYC taxi consists of more
than 3.5 million taxicab trip records including recording time,
longitude and latitude.

(2) NYC Bike. The dataset of NYC Bike includes about
3 million transaction records where each record contains the
information of sharing-bike order time and location.

1https://opendata.cityofnewyork.us/
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TABLE I
THE PREDICTION PERFORMANCE OF THE MODELS.

Dataset Metric ARIMA SVR LSTM STGCN DMVST-Net STDN GMAN ST-MGCN Ours

RM-20
MAE 6.81 6.72 6.06 5.04 5.67 5.21 4.94 4.82 4.60

RMSE 11.32 11.40 10.21 8.35 9.10 8.65 8.33 7.89 7.62
MAPE(%) 16.73 14.59 13.80 11.28 12.23 11.67 11.06 10.62 9.90

RM-40
MAE 10.23 8.11 7.79 5.92 6.46 6.21 5.57 5.39 4.98

RMSE 17.07 12.98 11.79 9.81 10.34 10.70 9.56 9.23 8.37
MAPE(%) 19.08 17.37 16.78 12.67 15.22 13.89 12.93 12.39 11.01

RM-60
MAE 16.31 11.44 11.93 7.67 8.96 8.43 6.32 6.12 5.66

RMSE 26.58 18.05 19.53 11.24 13.25 13.81 10.65 10.49 9.86
MAPE(%) 25.32 20.21 21.12 15.81 18.12 17.24 14.65 14.26 12.68

NM-40
MAE 10.68 8.23 8.96 5.87 6.54 6.42 5.73 5.51 5.15

RMSE 17.72 13.91 13.55 10.12 10.75 9.99 9.43 9.65 8.79
MAPE(%) 21.61 19.35 18.81 16.45 15.89 14.21 12.84 12.89 11.58

PM-40
MAE 10.81 8.44 8.13 5.99 6.81 6.31 5.73 5.47 5.03

RMSE 14.12 14.50 13.12 11.51 11.24 9.87 9.36 9.12 8.04
MAPE(%) 23.64 22.33 20.32 17.20 16.67 14.01 12.77 13.01 10.34
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Fig. 4. The prediction performance of the models with different missing ratio of data.

(3) NYC Accident. The dataset of NYC Accident consists of
more than 90k accident records which include the information
of accident location, time, and etc.

(4) External factors. The two types of external geographic
features in our experiments are explained in detail below, POI
and road segments. Regarding POI, it includes seven possible
options, residence, school, culture facility, recreation, social
service, transportation, or commercial. The road segment data
includes road length, width and type.
Experiments settings. We partition all data in three pieces in
temporal perspective with the ratio of 7:2:1 respectively for
training, testing, and validation. Meanwhile, the whole New
York City is divided into 5*15 grids. We regard all grids as
graph nodes by employing the method proposed in [30], [22].
The length of time interval is set to 1 hour 2. We used one-hot
encoding to transform discrete features (e.g., POI and the type
of the road). The training phase is performed using the Adam
optimizer with learning rate 10−4 and batch size is 32. The
early-stop strategy is used. Regarding the predictions on both
sharing-bike and taxicab datasets, we focus on the demands of
bicycles and taxi, therefore the feature dimensionality D is set
to 1. In the multi-head attention module, we achieve the fusion

2The length of time interval should be set with considering the equilibrium
within the prediction accuracy and temporal granularity of different datasets.

of four heads (i.e. NS=4). Our model is implemented with
PyTorch 1.9 in Python, and executed with Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz and Nvidia Tesla V100 16GB.
Metrics. Classic metrics including Mean Absolute Error
(MAE), Rooted Mean Square Error (RMSE) and Mean Ab-
solute Percentage Error (MAPE) are used to evaluate the
performances of the models for the demand prediction of taxi.

B. Sparse data
As motivated by our paper, we focus on traffic prediction

without intensively monitored traffic data. Following previous
general settings [17], [21], [47], we mask partially collected
data in taxi/Bike datasets to generate sparse data in both spatial
and temporal perspectives. For the NYC accident dataset, it is
naturally sparse [50], [30].

We use the parameter ξ to measure the ratio of masked
data points 3. For instance, ξ = 0.3 means that 30% of all
data points in all these datasets are masked. Considering real
application scenarios, we formulated three masking rules to
construct sparse dataset (as shown in Figure 5):

1. Random Mask strategy (RM). As shown in Figure 3(a),
the missing data points are randomly scattered and completely

3Notice here the sparsity of all C categories of data
{
ξ1 · · · ξC

}
is set to

the same value, therefore we use a unified ξ to represent the sparsity of all
categories of data.
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independent. In experiments, we set ξ equal to 0.2, 0.4, and 0.6
respectively, and three datasets are denoted as RM-20, RM-40,
and RM-60.

2. Node Mask strategy (NM). As shown in Figure 3(b), we
first randomly select some nodes, and current input data of
these needs will be masked. For this missing pattern strategy,
it may be caused by the privacy policy of a certain area of
the city or monitoring equipment that has not been deployed.
In this setting, we select 40% of the nodes to mask, which is
denoted as NM-40.

3. Period Mask strategy (PM). We mask data in consecutive
time horizons (as shown in Figure 3(c)). In this setting, About
40% of flow data is masked, and this dataset is denoted as
PM-40.

N
o
d
e

N
o
d
e

N
o
d
e

Time Interval Time Interval Time Interval

(a) Random missing (b) Node missing (c) Period missing

：Missing value ：Valid value

Fig. 5. Illustration of RM, NM, and PM scenarios. (a) Random elements of
data are masked. (b) Current input data of the node is masked. (c) Consecutive
data segments are masked over some time slots.

C. Baselines

We compare our model with the following alternative base-
line models. For baselines, we impute missing values with 0
or the mean value, and the better prediction performance of
the two methods are shown.

(1). Autoregressive Integrated Moving Average Model
(ARIMA). It is an attempt to predict future traffic through
autocorrelation and difference of data.

(2). Support Vector Regression (SVR) [2]. It is also a
traditional time series data learning model by learning feature
mapping functions.

(3). Long short-term memory (LSTM). An LSTM network
has input, output, and forget gates, and can capture long-term
temporal correlations more effectively than traditional RNNs.

(4). ST-MetaNet [46]. It utilize GNN and RNN to learn
spatial-temporal patterns, which employs meta learning strat-
egy to generate the parameters of GAT and RNN.

(5). DMVST-Net [41]. It is a multi-View spatial-temporal
network for predicting traffic flows. And semantic information
is used to model the spatial-temporal patterns of similar areas.

(6). STDN [40]. It designs flow gating mechanism and
periodic shift attention mechanism to learn dynamic spatial-
temporal dependencies.

(7). GMAN [49]. It is a graph attention model to capture
spatial-temporal patterns for traffic prediction.

(8). ST-MGCN [9]. It develops a multi-graph convolution
to explicitly model complex spatial correlation.

D. Experimental result analysis

Table.I and Figure.4 show the performance of different
methods on four series of intensive experiments on different
datasets, which includes three datasets randomly masked (RM)
20, 40, and 60 percent of data points. The NM-40 dataset and
CM-40 dataset are constructed using the node masking (NM)
strategy and the node masking (NM) strategy with the sparsity
rate 0.4, respectively. Five datasets are respectively expressed
as RM-20, RM-40, RM-60, NM-40 and PM-40.

The first three datasets are obtained according to the random
masking strategy. ARIMA and SVR can only learn linear
mappings from historical data and fail to capture complex
spatial-temporal correlations, so they have higher errors than
the models based on deep learning. LSTM has poor prediction
performance for sparse data because it only captures temporal
correlations and is sensitive to missing values. DMVST-Net,
STGCN, and STDN have better prediction performance than
LSTM because they can efficiently learn more spatial correla-
tions. However, since DMVST-Net and STDN integrate CNN
which is also sensitive to missing values when the data missing
rate is large, they cannot capture complete traffic patterns
from sparse data, and the prediction performance of the two
models is not promising. STGCN achieves smaller errors than
DMVST-Net and STDN because they use external geographic
features (e.g. POI and road network information) as auxiliary
information to help models learn complex spatial-temporal
correlations from sparse data and enhance spatial-temporal
representations. This is beneficial for the model to learn more
patterns from sparse data. ST-MGCN is composed of multi-
graph convolutional networks based on multiple graphs which
are constructed according to external geographic features (i.e.
POI information and geographic attributes). This avoids the
learning dilemma of models relying only on sparsely observed
data. When the missing rate of data becomes larger, the
prediction errors of other baselines increase significantly. In
contrast, CSTN achieves excellent prediction performance
with sparse data. Because CSTN mainly utilizes external
geographic features as auxiliary and collaborative learning of
multi-related datasets, these two strategies effectively help the
model complement missing patterns and improve the ability
of the model to model data distributions.

In conclusion, CSTN outperforms state-of-art traffic predic-
tion models in various data missing scenarios. This illustrates
the feasibility of using multimodal transport interaction to
improve learning performance.

E. Robustness Analysis of CSTN

Real-world applications may encounter various traffic data
missing conditions. To understand the robustness of CSTN in
dealing with complex data collection challenges, we evaluate
the effectiveness of our model on the NM-40 dataset and
PM-40 dataset. The NM-40 dataset is constructed by using
a node mask strategy to mask the current input of 40%
nodes. We mask continuous data segments over some time
slots to construct PM-40 dataset. Compared with the element
mask strategy, there are continuous missing values in the
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temporal and spatial dimensions, respectively. The results of
experiments on two datasets are shown in Table.I.

For the NM-40 dataset, we observe that the models based on
CNN (e.g DMVST-Net and STDN) generally perform worse
than the models based on GNN (e.g GMAN and ST-MGCN),
and this phenomenon is more obvious in the fourth group of
experiments (on NM-40 dataset). On the one hand, GNN is
more effective in processing traffic road graph data. On the
other hand, GNNs have been proven to have strong inductive
learning ability that can generalize messages to unknown
nodes by the message passing mechanism [34]. The traffic
states of masked nodes are directly related to neighbor nodes
and evaluated by them. However, their prediction performance
is still not as good as CSTN, because the external factor
learning module of CSTN can guide the GAT to globally
discover nodes that are more relevant to traffic patterns and
capture comprehensive spatial dependencies. Simultaneously,
CSTN integrates a multi-graph fusion mechanism, and the
information of the missing node can be supplemented by other
spatial-temporal event features of this node.

The prediction errors of LSTM increase significantly on
the PM-40 dataset, because LSTM is sensitive to continuous
missing values and only explores temporal correlations of
traffic data. When the traffic data is missing continuously,
the temporal information is relatively less preserved, and
the spatial information for traffic forecasting is extremely
important. The multi-scale Transformer of CSTN can help
the model learn more temporal information about traffic data,
and the memory mechanism which learns the sharing patterns
among multi-source data provides long-term spatial-temporal
features.

In conclusion, CSTN has good robustness and can effec-
tively deal with various sparse data in complex scenarios.

F. Experimental analysis with the findings

The influence of external geographical features. We argue
that nodes with similar external geographic factors may exhibit
similar traffic distributions. In order to investigate the posi-
tive role of external geographic factor learning, we develop
a variant, CSTN-EF, which means CSTN without External
geographic Factors. The prediction performance of the two
models is shown in the Table.II. We can observe that CSTN-
EF can achieve lower errors than CSTN, especially on the
NM-40 dataset, where the data of 40% nodes is missing. CSTN
can fill in traffic patterns by detecting other nodes with similar
geographic features, which is more robust than relying entirely
on local statistics, such as averages or zero values. This also
proves that our finding is beneficial for sparse data learning.

TABLE II
THE PREDICTION PERFORMANCE OF CSTN AND CSTN-EF.

Model RM-20 NM-40

MAE RMSE MAPE MAE RMSE MAPE

CSTN-EF 4.74 7.96 10.14 5.43 10.03 12.95
CSTN 4.60 7.62 9.90 5.15 8.79 11.58

The coupling dependency of multi-source urban data. We
develop a variant CSTN-MUD which means CSTN without
multi-source urban data (i.e., sharing bike dataset and traffic
accident dataset). We show the prediction performance of two
models at 8.am and 9.am, the results are shown in Table III.
We find that CSTN achieved better predictive performance for
the morning peak period. This proves that the correlation of
multi-source urban datasets can improve the learning effect of
sparse data in the model, especially in the peak period. For
example, in residential areas, because people come to work
areas with diverse transportation, the flow of taxis and shared
bikes both increases sharply at 8 a.m, the model can make
accurate predictions for traffic flow by analyzing the demand
trend of sharing bikes.

TABLE III
THE PREDICTION PERFORMANCE OF CSTN AND CSTN-MUD.

Model RM-20 RM-40

MAE RMSE MAPE MAE RMSE MAPE

CSTN-MUD 9.74 13.98 22.15 12.31 17.59 25.08
CSTN 9.46 10.34 20.04 10.17 15.46 22.15

G. Ablation studies

In this subsection, We design some variants to conduct
ablation experiments on the datasets RM-40, which randomly
mask 40% of data observations, to illustrate the effectiveness
of different components. Variants are described as follow:
(1). CSTN-EF: CSTN without external factors as auxiliary
information, and we only rely on the observation data to
generate edge weights in GAT.
(2). CSTN-CG: CSTN with regular GAT instead of condition-
guided GAT, and we use a fully connected layer to embed
external features instead of attention mechanism inspired by
bilateral filtering. And we only rely on the observation data to
generate edge weights in GAT in this variant.
(3). CSTN-MS: we use regular transformer to learn temporal
correlations instead of multi-scale transformer.
(4). CSTN-GF: CSTN without graph fusion mechanism in the
collaborative-interactive learning phase. The result of the first
phase will be as the input of the memory to learn long-term
patterns.
(5). CSTN-Me: CSTN without memory to store the long-term
patterns.
(6). CSTN-GM: CSTN without both attention-based graph
fusion mechanism and memory mechanism. We feed the
outputs of the first stage directly to the fully connected layers
to make predictions.
(7). CSTN: Our proposed framework uses multi-source urban
datasets and external geographical features to support sparse
traffic learning.

Figure.6 shows the performances of CSTN and all its vari-
ants. As illustrated, the performances of all variants are more
or less not as competent as the performances of CSTN. This
demonstrates the effectiveness of the individual components in
CSTN. Worth noting that, the worse prediction performance
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Fig. 6. Ablation studies of CSTN on RM-40.

of CSTN-EF indicates that external geographic features, as
auxiliary factors, can assist the model in mining abundant
patterns from sparse data, and improve the performance of the
model. CSTN-CG which only uses FC layer to model external
geographic features into the model achieves higher errors than
CSTN, this suggests the necessity of explicitly modeling the
impact of external geographic features on traffic flow, i.e. the
effective attention mechanism inspired by the bilateral filter-
ing mechanism. CSTN-GM which does not include multiple
datasets collaborative learning phase is not as excellent as
CSTN, this demonstrates that exploiting correlations across
multiple related datasets can help models infer complete
traffic patterns from sparse data. The prediction of CSTN is
better than CSTN-Me without the memory to store similar
pattern fragments, this demonstrates that explicitly preserving
temporal patterns is beneficial for estimating missing traffic
patterns and can enhance spatial-temporal representations.
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Fig. 7. The prediction performance of CSTN with different Nm on RM-40.

H. Hyperparameter Experiment (Q.5)

The number of patterns in the memory. We evaluate the
effect of the hyperparameter Nm value for the prediction
performance of the model, and the Nm value represents the
number of stores and the number of patterns in the memory.
We conducted experiments on the dataset RM-0.4. And the
results are shown in Figure.7.

For RM-0.2 and dataset RM-0.4, we find that the perfor-
mance increases in the beginning but decreases later, and when
the Nm is equal to 24, the model has the lowest prediction
errors. If the Nm is smaller than 24, the memory fails to
provide enough information for the model. When Nm is larger
than 24, it means that the memory needs to store too many
patterns and can not focus on capturing long-term patterns.
Simultaneously, we observe that with the increase of the
data sparsity rate, a larger Nm is beneficial to improve the
prediction performance of the models.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss some interesting issues, which
can be our future research.

First, just as we expected, prediction performances are
essentially enhanced by making full use of and transferring
relevant knowledge among multi-related datasets. In fact, such
a co-prediction framework can be widely extended to address
additional spatial-temporal forecasting tasks in other fields and
domains. For example, the task of air pollutant forecasting can
benefit from the knowledge learned from meteorological data.
Hence, in the future, we will explore more spatial-temporal
tasks with our model to further verify its generalization ability
and universality.

Second, we evaluate the model on three traffic datasets
(NYC taxi, NYC Bike, and NYC accidents). However, these
three kinds of data are essentially within the same modality. In
fact, there are many urban-related datasets with heterogeneous
modalities such as high-speed sensor data (e.g. PeMS dataset)
and taxi order datasets. In the future, we will additionally focus
on the extension of the model to support the collaborative
learning of multiple modal data.

VII. CONCLUSION

In this paper, for the first time, we are concerned about a
novel question in the field of deep learning, i.e., whether is
intensive data essential for deep learning based models. We
preliminarily discuss this issue by proposing a novel frame-
work for traffic forecasting with only sparse data: Condition-
guided Spatial-Temporal graph network (CSTN).

With New York City as a case study, we investigate two
unexplored findings: (1). Geographic external geographic fea-
tures, such as points of interest (POI) and road network struc-
ture, indeed play a significant role in shaping traffic behaviors.
Nodes, such as road sections or regions, that share similar
external geographical features tend to exhibit similar traffic
patterns. For example, areas with popular tourist attractions,
shopping centers, or business districts often experience higher
traffic volumes and congestion during peak times. (2). Modern
multimodal transportation leads to the coupling correlation of
multi-source urban data. Different traffic events may have a
similar distribution in specific areas. In addition, these data
also show semblable temporal trends over a long time span.

Inspired by these findings, we integrate external geographic
features and multi-source urban data to extract comprehensive
patterns and enhance the learning effect of sparse data. Specif-
ically, we first design an attention-based bilateral filter, which
explicitly learns the influence patterns of external geographic
features on spatial-temporal targets, and exploits such patterns
as conditions to further estimate the missing elements. Sec-
ondly, to fuse multi-source traffic information, a collaborative
learning framework which includes a graph fusion module and
a memory-preserved mechanism is devised to adaptively detect
and aggregate shared patterns from multiple traffic events,
enhancing spatial-temporal representation and achieving co-
predictions. With the help of external information and corre-
lations between multiple urban events, comprehensive traffic
patterns are eventually learned from sparse data, which can
provide accurate insights into the future state of transportation.

We evaluated the validity of our model for traffic prediction
with sparse data on multi-source urban datasets, which are
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collected from New York. The experimental results show that
CSTN outperforms state-of-art traffic prediction models in var-
ious data missing scenarios and has up to 7.52% improvement
in MAE, 9.41% improvement in RMSE, and 11.14% improve-
ment in MAPE. We further performed ablation experiments to
evaluate the contribution of each component.

VIII. ACKNOWLEDGEMENT

This paper is partially supported by the National Natural
Science Foundation of China (No.62072427, No.12227901),
the Project of Stable Support for Youth Team in Basic Re-
search Field, CAS (No.YSBR-005), Academic Leaders Culti-
vation Program, USTC.

REFERENCES

[1] Y. Cao, S. Xu, J. Liu, and N. Kato, “Toward smart and secure v2x com-
munication in 5g and beyond: A uav-enabled aerial intelligent reflecting
surface solution,” IEEE Vehicular Technology Magazine, vol. 17, no. 1,
pp. 66–73, 2022.

[2] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, pp. 1–27, 2011.

[3] K. Chen, J. Han, S. Feng, and H. Yang, “Cross-city traffic prediction
via semantic-fused hierarchical graph transfer learning,” arXiv preprint
arXiv:2302.11774, 2023.

[4] Q. Chen, X. Song, Z. Fan, T. Xia, H. Yamada, and R. Shibasaki, “A
context-aware nonnegative matrix factorization framework for traffic ac-
cident risk estimation via heterogeneous data,” in 2018 IEEE Conference
on Multimedia Information Processing and Retrieval (MIPR). IEEE,
2018, pp. 346–351.

[5] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[6] J. Dai, J. Liu, Y. Shi, S. Zhang, and J. Ma, “Analytical modeling
of resource allocation in d2d overlaying multihop multichannel uplink
cellular networks,” IEEE Transactions on Vehicular Technology, vol. 66,
no. 8, pp. 6633–6644, 2017.

[7] L. D’Acierno, M. Botte, A. Placido, C. Caropreso, and B. Montella,
“Methodology for determining dwell times consistent with passenger
flows in the case of metro services,” Urban Rail Transit, vol. 3, pp.
73–89, 2017.

[8] M. Gallo, G. De Luca, L. D’Acierno, and M. Botte, “Artificial neural
networks for forecasting passenger flows on metro lines,” Sensors,
vol. 19, no. 15, p. 3424, 2019.

[9] X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu,
“Spatiotemporal multi-graph convolution network for ride-hailing de-
mand forecasting,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, no. 01, 2019, pp. 3656–3663.

[10] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 922–929.

[11] Q. Han, D. Lu, and R. Chen, “Fine-grained air quality inference via
multi-channel attention model.” in IJCAI, 2021, pp. 2512–2518.

[12] Y. Huang, X. Song, Y. Zhu, S. Zhang, and J. James, “Traffic prediction
with transfer learning: A mutual information-based approach,” IEEE
Transactions on Intelligent Transportation Systems, 2023.

[13] J. Ji, J. Wang, C. Huang, J. Wu, B. Xu, Z. Wu, J. Zhang, and Y. Zheng,
“Spatio-temporal self-supervised learning for traffic flow prediction,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 37,
no. 4, 2023, pp. 4356–4364.

[14] J. Ke, H. Yang, H. Zheng, X. Chen, Y. Jia, P. Gong, and J. Ye, “Hexagon-
based convolutional neural network for supply-demand forecasting of
ride-sourcing services,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 11, pp. 4160–4173, 2018.

[15] T. Kitagawa, Y. Kawamoto, and N. Kato, “Communication scheduling
with diversity for unmanned aircraft systems using local 5g,” Journal
of Communications and Information Networks, vol. 5, no. 1, pp. 50–61,
2020.

[16] H. Lin, R. Bai, W. Jia, X. Yang, and Y. You, “Preserving dynamic
attention for long-term spatial-temporal prediction,” in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 36–46.

[17] Z. Liu, Y. Yang, W. Huang, Z. Tang, N. Li, and F. Wu, “How do
your neighbors disclose your information: Social-aware time series
imputation,” in The World Wide Web Conference, 2019, pp. 1164–1174.

[18] B. Lu, X. Gan, W. Zhang, H. Yao, L. Fu, and X. Wang, “Spatio-
temporal graph few-shot learning with cross-city knowledge transfer,”
in Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 1162–1172.

[19] B. Mao, F. Tang, Z. M. Fadlullah, and N. Kato, “An intelligent
route computation approach based on real-time deep learning strategy
for software defined communication systems,” IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 3, pp. 1554–1565, 2019.

[20] P. Michel, O. Levy, and G. Neubig, “Are sixteen heads really better than
one?” arXiv preprint arXiv:1905.10650, 2019.

[21] U. Mital, D. Dwivedi, J. B. Brown, B. Faybishenko, S. L. Painter,
and C. I. Steefel, “Sequential imputation of missing spatio-temporal
precipitation data using random forests,” Frontiers in Water, vol. 2, p. 20,
2020.

[22] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang, “Urban
traffic prediction from spatio-temporal data using deep meta learning,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 1720–1730.

[23] Y. Qiao, Y. Cheng, J. Yang, J. Liu, and N. Kato, “A mobility analytical
framework for big mobile data in densely populated area,” IEEE
transactions on Vehicular Technology, vol. 66, no. 2, pp. 1443–1455,
2016.

[24] T. K. Rodrigues, K. Suto, and N. Kato, “Edge cloud server deployment
with transmission power control through machine learning for 6g internet
of things,” IEEE Transactions on Emerging Topics in Computing, vol. 9,
no. 4, pp. 2099–2108, 2019.

[25] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 34, no. 01, 2020, pp. 914–921.

[26] Y.-X. Sun, “Large frequency ratio antennas based on dual-function pe-
riodic slotted patch and its quasi-complementary structure for vehicular
5g communications,” IEEE Transactions on Vehicular Technology, 2023.

[27] F. Tang, Y. Zhou, and N. Kato, “Deep reinforcement learning for dy-
namic uplink/downlink resource allocation in high mobility 5g hetnet,”
IEEE Journal on selected areas in communications, vol. 38, no. 12, pp.
2773–2782, 2020.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[29] B. Wang, X. Luo, F. Zhang, B. Yuan, A. L. Bertozzi, and P. J.
Brantingham, “Graph-based deep modeling and real time forecasting
of sparse spatio-temporal data,” arXiv preprint arXiv:1804.00684, 2018.

[30] B. Wang, Y. Lin, S. Guo, and H. Wan, “Gsnet: Learning spatial-temporal
correlations from geographical and semantic aspects for traffic accident
risk forecasting,” 2021.

[31] B. Wang, Y. Zhang, J. Shi, P. Wang, X. Wang, L. Bai, and Y. Wang,
“Knowledge expansion and consolidation for continual traffic prediction
with expanding graphs,” IEEE Transactions on Intelligent Transporta-
tion Systems, 2023.

[32] P. Wang, C. Zhu, X. Wang, Z. Zhou, G. Wang, and Y. Wang, “Inferring
intersection traffic patterns with sparse video surveillance information:
An st-gan method,” IEEE Transactions on Vehicular Technology, 2022.

[33] X. Wei, T. Guo, H. Yu, Z. Li, H. Guo, and X. Li, “Areatransfer: A
cross-city crowd flow prediction framework based on transfer learning,”
in International Conference on Smart Computing and Communication.
Springer, 2021, pp. 238–253.

[34] Y. Wu, D. Zhuang, A. Labbe, and L. Sun, “Inductive graph neural
networks for spatiotemporal kriging,” arXiv preprint arXiv:2006.07527,
2020.

[35] M. Xu, W. Dai, C. Liu, X. Gao, W. Lin, G.-J. Qi, and H. Xiong,
“Spatial-temporal transformer networks for traffic flow forecasting,”
arXiv preprint arXiv:2001.02908, 2020.

[36] S. Xu, J. Liu, Y. Cao, J. Li, and Y. Zhang, “Intelligent reflecting surface
enabled secure cooperative transmission for satellite-terrestrial integrated
networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 2,
pp. 2007–2011, 2021.

[37] S. Xu, J. Liu, and J. Zhang, “Resisting undesired signal through
irs-based backscatter communication system,” IEEE Communications
Letters, vol. 25, no. 8, pp. 2743–2747, 2021.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3397716

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 18,2024 at 02:53:12 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2022 13

[38] Y. Xun, J. Qin, and J. Liu, “Deep learning enhanced driving behavior
evaluation based on vehicle-edge-cloud architecture,” IEEE Transactions
on Vehicular Technology, vol. 70, no. 6, pp. 6172–6177, 2021.

[39] H. Yao, Y. Liu, Y. Wei, X. Tang, and Z. Li, “Learning from multiple
cities: A meta-learning approach for spatial-temporal prediction,” in The
World Wide Web Conference, 2019, pp. 2181–2191.

[40] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-
temporal similarity: A deep learning framework for traffic prediction,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 5668–5675.

[41] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and Z. Li,
“Deep multi-view spatial-temporal network for taxi demand prediction,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, 2018.

[42] J. Ye, L. Sun, B. Du, Y. Fu, X. Tong, and H. Xiong, “Co-prediction of
multiple transportation demands based on deep spatio-temporal neural
network,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 305–
313.

[43] J. Ye, L. Sun, B. Du, Y. Fu, and H. Xiong, “Coupled layer-wise
graph convolution for transportation demand prediction,” arXiv preprint
arXiv:2012.08080, 2020.

[44] C. Zhang, J. James, and Y. Liu, “Spatial-temporal graph attention
networks: A deep learning approach for traffic forecasting,” IEEE
Access, vol. 7, pp. 166 246–166 256, 2019.

[45] H. Zhang, J. Liu, K. Li, H. Tan, and G. Wang, “Gait learning based
authentication for intelligent things,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 4, pp. 4450–4459, 2020.

[46] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

[47] K. Zhang, F. Zhou, L. Wu, N. Xie, and Z. He, “Semantic understanding
and prompt engineering for large-scale traffic data imputation,” Infor-
mation Fusion, p. 102038, 2023.

[48] B. Zhao, X. Dong, G. Ren, and J. Liu, “Optimal user pairing and power
allocation in 5g satellite random access networks,” IEEE Transactions
on Wireless Communications, 2021.

[49] C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention
network for traffic prediction,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 01, 2020, pp. 1234–1241.

[50] Z. Zhou, Y. Wang, X. Xie, L. Chen, and H. Liu, “Riskoracle: A minute-
level citywide traffic accident forecasting framework,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, 2020,
pp. 1258–1265.

Binwu Wang is currently working toward the Ph.D.
degree in the School of Data Science, University
of Science and Technology of China (USTC). He
has published several papers on top conferences and
journals such as ICLR, AAAI, IJCAI, IEEE TITS,
IEEE TMC, KDD, DASFAA, and WSDM. His main
research interests include traffic data mining and
continuous learning, especially their applications in
urban computing.

Pengkun Wang (Graduate Student Member, IEEE)
is now a Research Associate Professor at the Univer-
sity of Science and Technology of China (USTC).
He got his Ph.D. degree at USTC in 2023, under
the supervision of Professor Qi Liu and Yang Wang.
His research interest mainly includes generalized
machine learning, spatio-temporal data mining, and
generalized AI for Science.

Yudong Zhang (Graduate Student Member, IEEE)
is now a Ph.D. candidate in the School of Data Sci-
ence, University of Science and Technology of China
(USTC). He received his bachelor’s degree from the
University of Electronic Science and Technology of
China (UESTC) in 2020. He has published over 10
research papers on top conferences and journals such
as IEEE TITS, SIGKDD, WSDM and ICDM. His
current research interests include spatial-temporal
data mining and intelligent transportation systems.

Xu Wang is now a doctoral student in the School of
Data Science, University of Science and Technology
of China. He got his bachelor degree of automation
at North Eastern University in 2017. His research in-
terest mainly includes data mining, machine learning
and computer vision.

Zhengyang Zhou (Graduate Student Member,
IEEE) is now an Associate Researcher at the Univer-
sity of Science and Technology of China (USTC).
He received his Ph.D. degree at USTC in 2023. He
has published over 20 papers on top conferences and
journals such as IEEE TKDE, IEEE TMC, IEEE
TVT, WWW, AAAI and ICDE. His main research
interests include spatial-temporal data mining and
urban computing, and he is committed to improving
the accuracy, reliability and generalization of deep
spatial-temporal learning models to empower the

fields of traffic prediction, urban safety and pollution control.

Yang Wang (Senior Member, IEEE) is now an
Associate Professor at USTC. He got his Ph.D.
degree at the University of Science and Technology
of China (USTC) in 2007. He has published over
100 high-level conference and journal papers on
IEEE TKDE, IJCAI, AAAI, MOBICOM, ICDE, et,
al. His research interest mainly includes wireless
sensor networks, spatial-temporal data mining, and
data-driven interdisciplinary research. He is a senior
member of both ACM and IEEE.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3397716

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 18,2024 at 02:53:12 UTC from IEEE Xplore.  Restrictions apply. 


