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Abstract—Traffic prediction facilitates various applications in
the fields of smart vehicles and vehicular communications, and the
key of successfully and accurately forecasting urban traffic state is
to model the complex spatiotemporal correlations within urban
traffic networks. However, even though great efforts have been
devoted to modeling the spatiotemporal correlations, such issue
remains challenging in the following two loci, i) capturing dynamic
spatial correlations and ii) efficiently and holistically modeling
temporal trends. To tackle these challenges, in this article, we pro-
pose a novel Adaptive Graph convolution based Autoencoder with
Latent Gaussian processes (AGALG). Specifically, a graph fusion
module is proposed to fuse learnable graphs for modeling static
spatial correlations and data-driven graphs for dynamic spatial
correlations. The fused graphs are fed into an adaptive graph con-
volutional autoencoder whose encoder represents both historical
and future data in a latent space where they are holistically modeled
by Gaussian processes generated by a latent Gaussian generator.
We apply a Gaussian processes regressor to make estimations of
latent representations of future data, and the decoder of autoen-
coder finally generates predictions. Experimental results on several
widely used benchmark datasets validate that the proposed model
achieves the state-of-the-art performance.

Index Terms—Gaussian process, traffic pattern, traffic
prediction, vehicular data.

I. INTRODUCTION

TRAFFIC prediction, aiming at forecasting future traffic
states, serves as the basis of various applications in the area

of smart vehicles and intelligent transportation systems [1], [2].
For instance, [3] utilizes traffic trends to perform effective route
planning, [4] embeds a short-term traffic prediction method into
the vehicle communication system for improving robustness and
efficiency. Therefore, developing reliable and accurate traffic
prediction approaches has been a research hotspot recently.
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Since the traffic state at a given location is strongly corre-
lated to those of its adjacent locations and its historical traffic
states, the success of traffic prediction mainly lies in whether
the complex spatial and temporal correlations within traffic
networks can be extensively extracted. Numerous approaches
have been proposed to address the challenge of modeling spa-
tiotemporal correlations in traffic network. Early works apply
statistic algorithms including ARIMA [5] and VAR [6] to model
temporal trends. As spatial correlations are ignored in these
statistic methods, the performances of them are very frustrating.
Therefore, following works [7], [8] utilize machine learning
algorithms to capture both spatial and temporal correlations.
However, considering that the representative abilities of tradi-
tional machine learning methods are extremely limited, those
works fail to achieve satisfying forecasting accuracy. Therefore,
researchers tend to utilize deep neural networks to capture deep
spatiotemporal correlations [9] by taking advantage of their
superior representative abilities.

Early deep learning based attempts [10], [11] apply Con-
volutional Neural Networks (CNNs) to abstract spatial cor-
relations in traffic networks. However, urban traffic networks
have graph-like spatial structures and it is difficult for CNN
based networks to capture such non-Euclidean correlations [12].
Therefore, Graph Convolutional Networks (GCNs) have been
introduced to model the non-Euclidean spatial correlations in
traffic networks [13]. STGCN and T-GCN [14], [15] apply
GCNs on pre-defined graph structures. [16], [17] argue that
pre-defined graph structures are not optimal for traffic forecast-
ing and propose self-adaptive adjacency matrices for modeling
spatial correlations. However, the learned adjacency matrices
remain fixed during predicting and existing works thus fall short
of modeling dynamic spatial correlations.1 In summary, how
to effectively capture such dynamic spatial correlations within
traffic networks remains a challenge for existing deep learning
based methods.

Regarding capturing temporal correlations, existing models
can be divided into two categories, autoregressive models and
multi-step forecasting models. Autoregressive models [18], [19],
[20] mainly apply Recurrent Neural Network (RNN) or trans-
former based models to generate predictions at each time step
iteratively. By taking advantage of the recurrent mechanism,

1As known, regarding different traffic flow patterns in different time periods,
e.g., morning and afternoon, the spatial correlations between two intersections
are not fixed, and such time varying correlations are referred to as dynamic
spatial correlations.
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autoregressive models are capable of using future data as input
while training, thus holistically analyzing the temporal trends of
traffic state, i.e., capturing long-term correlations by taking both
historical and future data into account. However, those autore-
gressive models, which have to generate prediction iteratively,
will definitely lead to unsatisfying inferring speed and some
other difficulties in training in such holistic learning scenario.
On the contrary, multi-step models [14], [16], [17], [21] treat
historical data and future data separately and learn mapping
functions from historical data to future data. Given the fact that
multi-step models generate predictions on all future time steps
at once, they are more time-efficient in some degree. However,
those multi-step models, which are unaware of future status of
variables during training and cannot model the temporal trends
of traffic state from a long-term perspective, will definitely fall
short of accuracy in prediction. In general, how to holistically
capture both historical and future long-term temporal correla-
tions in an efficient way remains challenging yet for existing
deep learning based methods.

Regarding the task of traffic forecasting, to tackle the above
two challenges, we here propose an Adaptive Graph convolu-
tional Autoencoder with Latent Gaussian process (AGALG).
Regarding the first challenge, i.e., how to model dynamic spatial
correlations in a more effective manner, we propose a novel
Graph Fusion Module (GFM) to extract both static and dynamic
correlations in spatial perspective. Specifically, in GFM, we
propose two novel graphs, a learnable graph for extracting
latent static correlations and a data-driven graph for representing
dynamic spatial correlations, and these two graphs are then fused
by GFM as the input of subsequent graph convolutional module.
Next, based on the fused graph, we construct an Adaptive Graph
convolutional Autoencoder (AGA) to further extracting spatial
correlations by utilizing its integrated adaptive graph convolu-
tion module to capture node-specific patterns. Regarding the
second challenge, i.e., how to extract temporal correlations over
dynamically changing traffic states, we design a novel Latent
Gaussian Generator (LGG) which can simultaneously take the
latent representations of both historical and future data into
account and model the long-term temporal correlations by con-
structing the joint distribution of them with Gaussian processes.
In particular, during training phase, regarding each individual
specific node, LGG uses a joint Gaussian process to constrain
the output latent representation of AGA encoder to unify the
historical and future long-term correlations of this node; and
during predicting phase, a newly proposed Gaussian Processes
Regressor (GPR) module can directly construct the estimation
of latent code of future traffic state based on the latent code of
historical data and the constructed joint Gaussian process, and
finally such estimation is then fed to AGA decoder to generate
the prediction result. We extract a series of experiments on
several widely used benchmark datasets of traffic prediction to
evaluate the performance of the proposed model and the results
validate that our proposed model outperforms other alternative
solutions in terms of traffic prediction. The main contributions
of this article are as follows,
� We propose a graph fusion module, GFM, to construct an

adjacency matrix for modeling both static and dynamic

spatial correlations within traffic network and an adaptive
graph convolutional autoencoder, AGA, to capture node-
specific patterns.

� We propose a latent Gaussian generator, LGG, for applying
Gaussian processes to holistically and efficiently model
the long-term temporal correlations in traffic networks and
utilize a Gaussian processes regressor, GPR, for inferring.

� By taking advantage of the constraint relationship between
latent space of AGA and Gaussian process, for the first
time, our model can simultaneously model both historical
and future long-term temporal correlation as well as the
dynamic spatial correlations in a holistic patterns, hence
achieving accurate multi-step prediction.

� We evaluate the proposed model on several widely used
benchmark datasets. The experimental results demonstrate
the superiority of the proposed model on traffic prediction.

The rest of this article is organized as follows. We review re-
lated works in Section II. Section III introduces the preliminaries
and Section IV details the proposed model. The experimental
settings and results are given in Sections V and VI concludes
the article.

II. RELATED WORKS

A. Traffic Forecasting

Traffic forecasting facilitates many applications in intelligent
transportation systems [22], [23], [24], [25]. Great efforts have
been devoted to modeling the spatial and temporal correlations
among variables for more accurate traffic prediction. Existing
traffic forecasting model can be divided into two categories,
autoregressive models and multi-step forecasting models. Au-
toregressive models use the chain rule to decompose time series,
and generate predictions step by step. ARIMA [26] and [5] uti-
lize linear models to capture the interdependencies among time
series. Some recent works [27], [28] apply recurrent neural net-
works to model the correlations among variables in the domain of
traffic. DCRNN [18] combine RNN with diffusion convolution
to capture both spatial and temporal dependencies among time
series. T-GCN [15] capture spatial dependencies with graph
convolution and utilize GRU to extract temporal dependencies.
With the rise of transformers [29], some researchers introduce
transformers into the area of traffic forecasting [19], [20]. Al-
though autoregressive models achieve much better prediction
accuracy by taking advantage of novel deep learning models,
they fall short of efficiently generating multi-step predictions.
Multi-step forecasting models are more deep-learning, which
simply learn the projection between historical data and future
data and ignore the inherent trends of the multi variables. [14],
[16], [21] apply dilated convolutional network to capture the
temporal interdependencies, and utilize graph convolution with
different kind of adjacency matrices to capture spatial dependen-
cies. SLCNN [30] extends traditional CNN to graph-structured
data to build an end-to-end traffic prediction network. [31] pro-
poses a novel Attention Temporal Graph Convolutional Network
(A3T-GCN) for the application of traffic flow forecasting, and
this proposed network can simultaneously capture both spatial
and dynamic temporal correlations. AGCRN [17] utilize RNN to
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capture temporal dependencies but does not generate prediction
in recurrent manner but directly outputs multi-step predictions
based on the latent state at the last historical time step. Simi-
larly, [32], [33], [34] apply transformers to model the temporal
dependencies and generate multi-step predictions directly like
AGCRN.

B. Gaussian Process and Neural Network

Gaussian processes, which are theoretically able to approx-
imate arbitrary smooth functions satisfying mean square con-
tinuity and differentiability [35], have achieved promising per-
formance on univariate time series forecasting problem [36],
[37]. The core of utilizing Gaussian processes for univariate
regression is to find proper prior forms of kernel functions,
which have significant affects on the performance. [38] shows
that Bayesian neural networks with infinitely many hidden
units converged to Gaussian processes with a particular kernel
(covariance) function, which reveals the connections between
Gaussian processes and neural networks. Considering the po-
tential of Gaussian processes for modeling functions, Neural
Process (NP) [39] and Conditional Neural Process (CNP) [40]
combine benefits of neural networks and Gaussian processes,
which bypass the kernel function and utilize neural networks to
directly generate the conditional distribution of target variable.
Following NP, [41] builds a new member of Neural Process Fam-
ilies called GloBal Convolutional Neural Process (GBCoNP),
which defines global uncertainty to represent a belief of prior
form of function. [42] proposes an additional loss term which
is conceptually equivalent to CNP, and the proposed loss can be
used as regularization for many kinds of neural networks. In this
article, we propose a new member of Neural Process Families
to tackles the multi-step multivariate forecasting problem which
generates kernel functions for Gaussian processes rather than
conditional distributions. The key difference between our model
and existing NP models is that existing NP models are trying
to implement or approximate Gaussian processes with neural
networks while our model is to embed Gaussian processes into
neural networks to implement forecasting. Actually, existing
NP models can be modified and embedded into our model
for replacing Gaussian Process Regressor and Latent Gaussian
Generator.

III. PRELIMINARY

In this section, we introduce the basis of this work and
formally define the problem of traffic prediction.

A. Traffic State

At time step t, the traffic state collected from the i-th sen-
sor region is denoted as xi

t ∈ R
d, where d is the number of

features, e.g., traffic speed and traffic flow. Thus, we have the
state of the whole traffic network at time step t denoted as
Xt = [X1

t , X
2
t , . . . , X

N
t ] ∈ R

N×d.

B. Represent Traffic Network With Graph

Recent works utilize graph structure to model the traffic net-
work. A traffic network can be formulated asG = (X,E)where
X denotes the set of nodes, i.e., features collected fromN sensor
regions in the traffic network, and E is the set of edges, which
represent the correlations among nodes. We can also formulate a
graph with adjacency matrix as G(X,A), where A ∈ R

N×N is
the adjacency matrix whereAij = 1 if (xi, xj) ∈ E andAij = 0
else wise.

C. Gaussian Processes for Time Series Modeling

Gaussian Processes are widely used in modeling time series. A
Gaussian process is a collection of random variables, where any
finite number of variables have joint Gaussian distributions [35].
A Gaussian process denoted as GP(m, k) can be specified by
its mean function m(t) and covariance function k(t, t′), which
determine the joint Gaussian distribution given the indexes
of variables. For instance, when given indexes of 2 variables
[xt1 , xt2 ], we have,

[
xt1

xt2

]
∼ N

([
µt1

µt2

]
,

[
Σt1t1 Σt1t2

Σt2t1 Σt2t2

])
(1)

where µi = m(ti) and Σtitj = k(ti, tj), i, j ∈ {1, 2}. The key
to modeling time series with Gaussian processes is to find
suitable mean and covariance (kernel) functions.

D. Traffic Prediction

Give the observed states of all the sensor regions during P
historical time steps [Xt−P , Xt−P+1, . . . , Xt−1], the goal of
traffic prediction is to predict the state of traffic network of the
following Q time steps [Xt, Xt+1, . . . , Xt+Q−1], which can be
formulated as estimating the conditional distribution,

p(Xt, Xt+1, . . . , Xt+Q−1|Xt−P , Xt−P+1, . . . , Xt−1) (2)

E. Optimizing Goal of Applying Latent Gaussian Processes

We derive the optimizing goal of applying latent Gaussian
processes for traffic forecasting. For the convenience of deriva-
tion and notation, we simplify the goal of traffic forecasting in
(2) as modeling p(Xt|X<t) which can easily be generalized
to multi-step forecasting. To introduce Gaussian processes to
traffic forecasting, we apply latent variable to model p(Xt|X<t),
as,

p(Xt|X<t) =
p(X�t)

p(X<t)

= EZ�t∼q(Z�t|X�t)

[
p(X�t, Z�t)

p(Z�t|X�t)

p(Z<t|X<t)

p(X<t, Z<t)

]
(3)

where q(Z�t|X�t) is the prior Gaussian process. Given ob-
served traffic stateX�t, q(Z�t|X�t) determine a joint Gaussian
distribution for Z�t. For notation brevity, we omit the sub-
script Z�t ∼ q(Z�t) in the following derivation. Since we have
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Fig. 1. Solution Overview. Graph Fusion constructs fused graph for capturing both static and dynamic spatial correlations. The fused graph is fed into Adaptive
Graph Autoencoder which consists of adaptive graph encoder and decoder. The encoder generates latent representation of traffic state and the decoder recover
traffic state based on latent representation. Latent Gaussian Generator constructs Gaussian processes to constrain the latent representation of both historical data
and future data, e.g., Z1−6 and Z7−12 in this figure. Gaussian Process Regressor estimates the latent code of future traffic state according to latent code of historical
traffic state and the constructed joint Gaussian process, and finally such estimation is then fed to AGA decoder to generate the prediction result.

p(X�t,Z�t)

p(X<t,Z<t)
= p(Xt, Zt|X<t, Z<t), (3) can be further trans-

formed as,

p(Xt|X<t) =
p(X�t)

p(X<t)

= E

[
p(Xt|ZT )p(Zt|X<t, Z<t)p(Z<t|X<t)

p(Z�t|X�t)

]

(4)

Noting that p(Zt|X<t, Z<t)p(Z<t|X<t) = p(Z�t|X<t), we fi-
nally get,

p(Xt|X<t) = E

[
p(Xt|Zt)p(Z�t|X<t)

p(Z�t|X�t)

]
(5)

The goal of our model is to maximize the probability in (5) and
the following loss can be obtained by applying ELBO trick [43],

L = − log p(Xt|X<t)

≤ −E

[
log p(Xt|Zt) + log

p(Z�t|X<t)

p(Z�t|X�t)

]
(6)

IV. METHOD

Based on the derived optimizing goal in (6), we propose our
model as illustrated in Fig. 1. The first term in (6) means the
model needs to minimize prediction error given latent represen-
tationZt, and the second term minimizes the divergency between
prior Gaussian distribution Z�t ∼ q(Z�t|X�t) and conditional
Gaussian distribution p(Z�t|X<t) given historical data X<t.
According the above optimizing goal, we propose an Adaptive
Graph convolutional Autoencoder with Latent Gaussian process
(AGALG), which consists of four parts, a graph fusion module
(GFM), an adaptive graph autoencoder (AGA), a latent Gaussian
generator (LGG) and a Gaussian process regressor (GPR). We
detail each component in the following.

A. Graph Fusion Module

For better modeling spatial correlations among nodes in traffic
networks, we propose two kind of graphs, i.e., learnable static
graph AS and dynamic data-driven graph AD, and fuse them in
the proposed Graph Fusion Module (GFM).

Learnable static graph: Learnable static graph AS is defined
to model the static spatial correlations among nodes, e.g., inter-
sections connected by roads are certainly correlated. Early works
capture such static spatial correlations by constructing distance
based or road network based adjacency matrices. However, the
matrices generated are intuitive, not specific to the prediction
task and are unable to model implicit spatial correlations. To
this end, we propose to generate the adjacency matrices for such
static spatial correlations in a learning manner. The graph fusion
module maintains e-dimension embeddings for each variable,
denoted as E ∈ RN×e, and determines the correlations among
nodes by calculating the similarity of their embeddings, which
can be formulated as,

AS(i, j) =< Ei, Ej >=
Ei · Ej

|Ei||Ej | (7)

where AS(i, j) denotes the adjacency between i-th and j-th
nodes, Ei corresponds to the embedding of i-th node, · means
dot product and |Ei| means the norm of Ei. Notably, we denote
such operation in Fig. 2 with a black cross for brevity.

Dynamic data-driven graph: The learnable static graph AS

keeps fixed after training thus falls short of modeling some
dynamic spatial correlations among nodes. For instance, dif-
ferent traffic flow patterns in the morning and noon certainly
lead to different spatial correlations. Addressing the issue that
static graph can not model the dynamic spatial correlations,
we propose a data-driven method to construct dynamic graphs
based on the observed traffic state. Specifically, given observed
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Fig. 2. Graph fusion of learnable static graph AS and dynamic data-driven
graph AD .

historical observation X , we apply a 1D convolution on it and
construct the dynamic graph AD in the same way as (7).

AD(i, j) =< X ′
i, X

′
j >=

X ′
i ·X ′

j

|X ′
i||X ′

j |
(8)

where X ′ is the result of applying the 1D convolution on X .
Taking advantage of convolution, X ′ is able to encode local
temporal trend [19].

Graph fusion: The obtained learnable static graph AS and
dynamic data-driven graph AD are further fused as in Fig. 2
before being fed into AGA. The fusion process is simply
defined as,

AF =
(AD +AS)−min(AD +AS)

max(AD +AS)
(9)

which restricts the values in AF into [0, 1]. The fused graph AF

are taken as input in both encoder and decoder of AGA.

B. Adaptive Graph Convolutional Autoencoder

The interdependencies among nodes in traffic network result
in dependencies of latent representations of nodes, making it
intractable to model them by independent Gaussian distributions
in latent space. However, constructing dependent distributions
of the latent representation of all nodes leads to unaccept-
able time and memory consumption. Therefore, we propose
an autoencoder structure to decouple the dependencies among
variables in the encoder and recouple them in the decoder, so
that the nodes are decoupled in the latent space. With the rise
of graph convolution, many recent works [30], [44], [45] are
tend to model the interdependencies among nodes by graph
convolution networks. Following those works, we here apply
graph convolution to build the autoencoder.

According to [46], we can approximate the graph convolution
operation by 1st order Chebyshev polynomial expansion and
generalized to high-dimensional GCN as:

Y =
(
I +D− 1

2 AD− 1
2

)
XW +B (10)

where X ∈ R
N×d denotes the input, A,D ∈ R

N×N are the ad-
jacency matrix and degree matrix, respectively. W ∈ R

d×d′
and

B ∈ R
d′

are learnable parameters. Considering that in the task
of traffic forecasting, the adjacency matrix and degree matrix
could be implicit and undefined, we modify the adaptive graph

Fig. 3. Architecture of encoder and decoder in AGA.

convolution proposed in [17] to build an Adaptive Graph convo-
lutional Autoencoder (AGA). The adaptive graph convolution
reuses the embeddings proposed in GFM and the computational
procedure of the proposed adaptive graph convolution can be
formulated as,

Y = softmax(AF )X � (EWg) + EBg (11)

where E ∈ RN×e,Wg ∈ R
e×d×d′

and Bg ∈ R
e×d′

are train-
able parameters. Given X ∈ R

N×d and W ∈ R
N×d×d′

, � is
defined as,

X �W = [X1W1, X2W2, . . . , XNWN ]T (12)

which corresponds to matrix multiplications applied at each
row of X and W . And AF is the adjacency matrix generated
by the graph fusion module, which has been introduced as
in (9). Both encoder and decoder are stacked adaptive graph
convolution layers as in Fig. 3. The encoder and decoder have the
same architecture. Given historical data X , the encoder of AGA
transforms X into latent code ZX , and given latent code ZY of
future data, the decoder of AGA transforms ZY back to future
data Y . Taking advantage of the stacked graph convolution,
the autoencoder is able to decouple the dependencies among
variables in encoder and recouple them in the decoder. The
decoupling of the correlations among variables is implied in
the process of Latent Gaussian Generator (LGG). Since LGG
generates independentN Gaussian processes forN nodes, AGA
are forced to learn decoupled latent code of different nodes.
Otherwise, the model would fail to make accurate prediction
or even fail to converge. In the following, we detail the design
of LGG.

C. Latent Gaussian Generator

As mentioned, the second term in (6) requires the model
to minimize the divergency between prior Gaussian distribu-
tion Z�t ∼ q(Z�t|X�t) and conditional Gaussian distribution
p(Z�t|X<t) given historical data X<t. To achieve this goal, the
proposed Latent Gaussian Generator (LGG) works as the mean
and covariance functions of Gaussian processes, and outputs a
joint distribution p̂ of Z�t based on Z<t. Combined with the
encoder of AGA, which outputs Z<t according to X<t, we are
able to generate Z�t base on X<t.
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Fig. 4. Generation procedure of mean vector in LGG.

Specifically, in the scenario of traffic forecasting, our goal is
to generate ZP+Q base on XP , where P and Q correspond to
the length of historical data and future data. Thus, the dimen-
sion of latent space is R

N×(P+Q), and to construct the joint
Gaussian distribution of ZP+Q, a mean vector and covariance
matrix are required. Using single learnable mean vector and
covariance matrix would severely limit the performance on
estimation. Therefore, the proposed LGG maintains a pool of
M mean vectors U ∈ R

M×N×(P+Q) and M covariance vectors
S ∈ R

M×N×(P+Q)×1 and generates the conditional distribution
by utilizing the pool. Notably, all the mean vectors and covari-
ance vectors are trainable. The procedure of LGG is demon-
strated in Fig. 4. Given latent representation ZP ∈ R

N×P , LLG
first calculates attention values for each mean and covariance
vectors by,

ATTm =
exp(

∑N
i=1

∑T−1
j=1 Zij

P Umij)∑M
k=1 exp(

∑N
i=1

∑T−1
j=1 Zij

P Ukij)
(13)

Then, the mean of conditional distribution can be calculated as,

µ =
M∑

m=1

ATTmUm (14)

Considering that the covariance matrix must be positive-
semidefinite, we calculate it as,

s =

M∑
m=1

ATTmSm

Σ = ssT + I (15)

which makes Σ a positive-definite matrix. So far, we obtain the
conditional distribution p(ZP+Q|XP ) as N (µ,Σ).

During training, we need to measure the divergency between
q(ZP+Q|XP+Q) and p(ZP+Q|XP ). Given observed data XP

and corresponding label XQ, the encoder of AGA represents
them into latent space and obtains ZP+Q = [ZP , ZQ]. Then
LGG generates the conditional distribution p(ZP+Q|XP ) and
we apply maximum likelihood to train the parameters of LGG
by maximizing the posterior probability that ZP+Q is sampled
from N (µ,Σ),

max
U,S

log(p(ZP+Q)) (16)

After obtaining p(ZP+Q|XP ), the Gaussian process regressor
(GPR) generates estimation of ZQ according to p(ZP+Q|XP )
andZP , which is then fed into the decoder of AGG for generating
the final prediction.

D. Gaussian Processes Regressor

Given the latent representation ZP of historical data, LGG
generates the conditional distribution of ZP+Q, which is a
Gaussian distribution N (µ,Σ) as,[

ZP

ZQ

]
∼ N

([
µP

µQ

]
,

[
ΣPP ΣPQ

ΣQP ΣQQ

])
(17)

Based on the above equation, the Gaussian Processes Regres-
sor (GPR) is able to build the conditional distribution of ZQ

according to the joint distribution N (µ,Σ) by,

ZQ|ZP ∼ N (µQ +ΣQPΣ
−1
PP (ZP − µP ),

ΣQQ − ΣQPΣ
−1
PPΣPQ) (18)

We make estimation ẐQ of ZQ by simply taking the mean of
the above distribution,

ẐQ = µQ +ΣQPΣ
−1
PP (ZP − µP ) (19)

E. Training and Inferring Procedures

Given inputXP and targetXQ, GFM first computes the fused
graph AF for AGA. The encoder of AGA represents both the
input and the target into the latent space as ZP and ZQ. Then,
LGG constructs the estimated joint distribution p of ZP and ZQ

according to ZP , i.e., p(ZP+Q|XP ). According to (18), GPR
generates the estimation ẐQ of ZQ. Given ẐQ, the decoder of
AGA makes the prediction and output X̂Q.

With the light of (6), we have the final loss function for
training as,

L = λmean(|X̂Q −XQ|)− log(p(ZP , ZQ)) (20)

where p denotes the conditional joint distribution
p(ZP , ZQ|XP ), log(p(ZP , ZQ)) is the log probability that
(ZP , ZQ) is sampled from p, the constructed joint distribution
of ZP and ZQ. mean(|X̂Q −XQ|) and log(p(ZP , ZQ))
correspond to the first and second terms in the (6), respectively,
and λ is a hyperparameter to adjust weight of the first term.

V. EXPERIMENT

To evaluate the performance of proposed model on traffic
forecasting, we employ four datasets and conduct experiments
with two kind of settings, i.e., single-step forecasting, using P
historical data to predict future status at a given future time step,
and multi-step forecasting, using P historical data to predict the
status at the following Q time steps.

A. Datasets

As shown in Table I, we employ four widely used multivariate
datasets to evaluate the proposed method, including:
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TABLE I
DATASETS STATISTICS

Traffic2 This dataset is collected by 963 sensors and describes
the occupancy rate, between 0 and 1, of different car lanes of
San Francisco bay area freeways. The measurements cover the
period from Jan. 1st 2008 to Mar. 30th 2009 and are sampled
every 10 minutes.

TaxiBJ This dataset is introduced by [11], which contains
taxicab GPS data in Beijing, China from 1st Nov. 2015 to 10th
Apr. 2016. The urban area of Beijing is divided into a 32 ×
32 grids, and each record in TaxiBJ corresponds to the taxicab
inflow and outflow of a specific grid within 30 minutes.

METR-LA This dataset is collected by the Los Angeles
Metropolitan Transportation Authority [47], and contains aver-
age traffic speed measured by 207 loop detectors on the highways
of Los Angeles County ranging from Mar 2012 to Jun 2012 with
time interval 5 minutes. The total number of time points is 34272.

PEMS-BAY [18] This dataset comes from the California
Department of Transportation (Caltrans) Performance Measure-
ment System (PeMS) [48] and is collected by 325 sensors in the
Bay Area over a period of 6 months from Jan 1st 2017 to May
31st 2017 with time interval 5 minutes. The total number of time
points is 52,116.

B. Baselines and Metrics

The proposed model is compared with different baselines in
single-step forecasting, i.e., usingP historical data to predict fu-
ture status at a given future time step, and multi-step forecasting,
i.e., using P historical data to predict the status at the following
Q time steps. We employ different baselines because single-step
forecasting models perform badly on multi-step forecasting task
and multi-step forecasting models are unable to achieve compet-
itive accuracy on single-step forecasting. Comparing different
SOTA models on different tasks aims at better evaluating the
generalization capacity of our model.

Single-step forecasting baselines:
� Vector Auto-Regression (VAR) is a statistic model captur-

ing linear correlations.
� LSTNet [49] discovers the short-term and long-term pat-

terns.
� MTNet [50] maintain a large memory component to cap-

ture long-term dependencies.
� DSANet [51] captures both spatial and temporal nonlinear

dependencies.
� MTGNN [21] applies graph convolution and dilated in-

ception convolution to capture both spatial and temporal
dependencies.

2[Online]. Available: https://archive.ics.uci.edu/ml/datasets/PEMS-SF

� CATN [52] constructs a tree structure to learn hierarchi-
cal dependencies and proposes an end-to-end forecasting
model.

Multi-step forecasting baselines:
� DCRNN [18] combines diffusion graph convolutions with

recurrent neural networks.
� STGCN [14] combines graph convolution with 1D convo-

lutions.
� Graph WaveNet [16] integrates 1D dilated convolution

with diffusion graph convolution.
� GMAN [53] utilizes spatial and temporal attention for

forecasting.
� AGCRN [17] proposes an adaptive graph convolution and

combine it with RNN.
� GWNET [42] introduces a covariance loss applicable to

many kinds of networks.
� FC-GAGA [54] proposes a fully connected spatiotemporal

model combined with temporal and graph gating mech-
anism, which works without prior knowledge of spatial
graph.

� USTAN [55] synchronously captures dynamic spatiotem-
poral correlations with a novel unified spatial-temporal
attention network.

Following existing works, Traffic is employed for single-step
forecasting and the other three datasets, TaxiBJ, METR-LA
and PSME-BAY, are applied for multi-step forecasting. Three
typical metrics are employed to comprehensively evaluate the
prediction accuracy, i.e., Mean Absolute Error (MAE), Root
Mean Square Error (RMSE) and Mean Absolute Percentage
Error (MAPE). Given prediction X̂ ∈ R

N×T and corresponding
label X ∈ R

N×T , the metrics can be formulated as follows,
Mean Absolute Error (MAE)

MAE(X, X̂) =
1

TN

T∑
i=1

N∑
j=1

|Xij − X̂ij | (21)

Root Mean Square Error (RMSE)

RMSE(X, X̂) =

√√√√ 1
TN

T∑
i=1

N∑
j=1

(Xij − X̂ij)2 (22)

Mean Absolute Percentage Error (MAPE)

MAPE(X, X̂) =
1

TN

T∑
i=1

N∑
j=1

∣∣∣∣∣
Xij − X̂ij

Xij

∣∣∣∣∣ (23)
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TABLE II
FORECASTING PERFORMANCE COMPARISON ON MERE-LA, PEMS-BAY AND TAXIBJ DATASETS ON METRICS MAE, RMSE AND MAPE

C. Settings

For single-step forecasting, we split the Traffic datasets into
training set, validation set and testing set in chronological order
according to the ratio of 6:2:2. Given 48 historical data, all the
baselines and the proposed model are required to predict the
traffic state at one target future step with horizon as 3, 6, 9 and
12, respectively, i.e., using 48-step input to predict single-step
target.

For multi-step forecasting, TaxiBJ, METR-LA and PEMS-
BAY are also divided into training set, validation set and testing
set in chronological order but with different ratio as 7:1:2 as
in [53]. All the baselines and the proposed model are requires to
forecast the following 12-step status of all variable, i.e., using
12-step input to predict 12-step target.

All the dataset are normalized with min-max normalization,
and the model is trained by Adam optimizer with initial learning
rate as 0.001 and batch size as 64 for 100 epochs. λ in (20)
is set to 100. Both Encoder and Decoder of AGA contains 4
adaptive graph convolutional layers in the final implementation.
Zero initialization is applied on pool of mean vectors U and
pool of covariance matrices S is randomly initialized. Zero
initialization of covariance matrices is non-sense, which would
lead to zero gradients of S. And in our tuning process, we find
zero initialization of U results in faster convergence of U . We
implement the model with PyTorch1.9 and train it on a Tesla
V100 16 GB GPU. All results of baselines are either reproduced
according official public code with default settings or cited from
existing works.

D. Main Result

Tables II and III provide the prediction performance com-
parison between baselines and our proposed model AGALG on
the four datasets in single-step setting and multi-step setting,
respectively. As demonstrated, the AGALG achieves state-of-
the-art results on all metrics on all the datasets.

Single-step forecasting: In the single-step experiments, the
AGALG outperforms all the baselines on all the three metrics
at all the target horizons. Compared to the latest and best
performing baseline CATN, the proposed AGALG outperforms
it with 6.26%, 10.09% and 6.75% average improvements on
MAE, RMSE and MAPE over all horizons on the Traffic dataset.
When the target horizon is 9, AGALG outperforms CATN by

TABLE III
FORECASTING PERFORMANCE COMPARISON ON TRAFFIC DATASET

the most with improvements on MAE, RMSE and MAPE as
10.36%, 12.23% and 9.99%. Such result proves the superiority
of AGALG on single-step traffic forecasting. In later section, we
will further explore the effect of the size of historical window,
i.e., the input length, to evaluate the scalability of the proposed
AGALG.

Multi-step forecasting: Table II shows the average pre-
diction accuracy according to the three metrics cross all
12 future time steps. As demonstrated, AGALG achieves
state-of-the-art prediction performance on multi-step forecast-
ing on all the datasets, i.e., TaxiBJ, METR-LA and PEMS-
BAY. Compared to the best method of all baselines, AGALG
achieves {1.47%, 1.82%, 5.10%}, {4.92%, 3.28%, 1.44%} and
{1.95%, 2.18%, 2.99%} improvements of on TaxiBJ, METR-
LA and PEMS-BAY with respect to MAE, RMSE and MAPE,
respectively.
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Fig. 5. Prediction performance comparison at each horizon on TaxiBJ, METR-LA and PEMS-BAY.

To further evaluate the finer grained prediction performance
of AGALG, we compare the three metrics of AGALG on
all the three multi-step datasets at each target time horizon
with those of GMAN and USTAN, as they perform the best
among all baselines. As shown in Fig. 5, AGALG achieves
better performance on at almost all the horizons. Notably, we
can find AGALG performs better at larger horizons than the
other two baselines. This result further validates the superi-
ority and robustness of the proposed AGALG on multi-step
forecasting.

E. Ablation Study

We propose four variants of AGALG to evaluate the effect of
different components of AGALG, which are listed as follows,
� w/o static graph. GFM module fuses two kind of graphs,

static graph and dynamic graph. In this variant, we remove
static graph from GFM.

� w/o dynamic graph. Similarly, in this variant, we remove
dynamic graph from GFM.

� w/o Gaussian. In this variant, we replace LGG and GPR in
AGALG with LSTM. This variant is designed to evaluate

the effect of using Gaussian processes to model the latent
representations of nodes.

� w/o graph. In this variant, we replace the graph convolu-
tions in AGALG with fully connected layers, which leads
to none spatial aggregation among nodes.

We evaluate the multi-step prediction performance of the
variants on TaxiBJ, METR-LA and PEMS-BAY. As show
in Fig. 6, when graph convolution removed, the perfor-
mance decreases the most, which proves the importance of
spatial correlations on traffic prediction. The huge perfor-
mance loss of w/o Gaussian demonstrates the superiority of
the proposed LGG on modeling temporal correlations than
LSTM. Also, we can find both static graph and dynamic
graph have contribution to the forecasting performance of
AGALG.

F. Analysis

Size of Historical Window: To explore the scalability of
AGALG on single-step traffic forecasting, we evaluate the ef-
fect of the size of historical window by extracting a series of
experiments on Traffic with sizes of historical window as 6,
12, 24, 48, respectively, and the target horizon is kept as 3.
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Fig. 6. Prediction performance comparison of different variants and origin AGALG on TaxiBJ, METR-LA and PEMS-BAY. (a) METR-LA. (b) PEMS-BAY. (c)
TaxiBJ.

Fig. 7. MAE on Traffic and time consumption with different sizes of the historical window.

MAE is employed to evaluate the prediction accuracy. As shown
in Fig. 7(a), the proposed AGALG achieves better MAE than
all the baselines with respect to different sizes of historical
window. Also, when the size of historical window decreases, the
prediction accuracy of AGALG decreases slower than the base-
lines. Such result validates the effectiveness of using Gaussian
processes to model traffic state. Taking advantages of Gaussian
processes, AGALG is able to handle the scenario that little
historical data is accessible for making prediction, which is a
nice property for deployment.

We further compare the time consumption of our model under
different sizes of historical window with time consumption
of best performed multi-step forecasting models, i.e., GMAN
and USTAN. The result is shown in Fig. 7(b) and (c). Com-
pared with GMAN and USTAN, when the size of histori-
cal window increases, the time consumption of our model
increases much slower than that of baselines. The result in-
dicates the superiority of our model on handling long input
sequences.

Size of Pool of LGG:As mentioned in Section IV-C, LLG
maintains a pool of mean vectors and covariance vectors, which
is used to construct joint Gaussian distributions. The size of
pool determines the breadth of searching space of Gaussian
distributions that LLG can explore. In this section, we conduct
a series of experiments on METR-LA with different sizes of
pool as {1, 50, 100, 150, 200, 250, 300, 350, 400} and record the
average MAE, RMSE and MAPE over 12 horizons. As shown
in Fig. 8, although larger pool means larger searching space for
Gaussian distributions, the prediction accuracy does not always
get better with the size of the pool, which holds for all three

Fig. 8. MAE, RMSE and MAPE on METR-LA with different sizes of pool.

metrics. Based on the metrics on METR-LA and our experience
on tuning the parameters, half the number of variables in the
datasets is a suitable size of pool.

G. Prediction Visualization

Fig. 9 displays some prediction visualizations on the test-
ing set of PEMS-BAY to more intuitively show the prediction
accuracy of the proposed AGALG. We randomly select four
nodes from PEMS-BAY and the first 1000 time steps in the
testing set of PEMS-BAY are selected for evaluation. As shown,
AGALG is able to fit the general trend of traffic state very well,
even at peaks and valleys. However, we can observe that in
some extremely hard scenarios, where the traffic state changes
dramatically, AGALG fails to make that accuracy predictions.
In the future work, we will work on handling these extremely
hard scenarios.
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Fig. 9. Prediction visualization on PEMS-BAY.

VI. CONCLUSION

In this article, we propose an adaptive graph convolutional
autoencoder equipped with latent Gaussian process AGALG
to tackle the traffic prediction task. AGALG consists of a
graph fusion module (GFM), an adaptive graph convolutional
autoencoder (AGA), a latent Gaussian generator (LGG) and a
Gaussian processes regressor (GPR). GFM fuses two kinds of
graph for modeling both static and dynamic spatial correlations
in traffic networks. The fused graph is used as the input of AGA,
which stacks adaptive graph convolution layers to decouple
the dependencies among variables in encoder and to recouple
them in decoder. LGG generates joint Gaussian distributions of
historical data and future estimation, which constrains the latent
space of latent code of AGA. GPR finally generates prediction
based on the joint Gaussian distribution produced by LGG.
Experimental results on several real-world datasets validates
the effectiveness of the proposed AGALG in terms of traffic
forecasting.
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