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Inferring Intersection Traffic Patterns With Sparse
Video Surveillance Information: An ST-GAN Method

Pengkun Wang““, Chaochao Zhu, Xu Wang

and Yang Wang

Abstract—Traffic patterns of urban road intersections are im-
portant in traffic monitoring and accident prediction, thus play
crucial roles in urban traffic management. Although real-time
traffic information is consistently provided by surveillance cam-
eras equipped at road intersections, the sparsity of surveillance
distribution poses great challenges in performing a complete real-
time traffic pattern analysis. To tackle that, existing works either
assume that the traffic patterns are static, or assume a multi-variant
distribution model for intersection traffic volumes. The former
assumption neglects the temporal features of traffic patterns, and
the latter is limited in capturing fine-grained spatiotemporal de-
pendencies. To tackle the problem, we propose a novel framework,
SpatioTemporal-Generative Adversarial Network (ST-GAN), that
exploits deep spatiotemporal features of urban networks and offers
accurate traffic pattern inferences with incomplete surveillance
information. The ST-GAN framework incorporates a modified
GCN network wired with the encoder-decoder mechanism and
an LSTM network, which are further boosted by an iterative
adversarial training process. Comprehensive experiments on real
datasets show that ST-GAN achieves better inference accuracies
than state-of-the-art solutions.

Index Terms—GAN, inference, intersection, sparse surveillance,
traffic pattern.

I. INTRODUCTION

HE proliferation of road video surveillance systems [ 1]—[3]

gives prominence to intelligent transportation services [4]—
[6], including optimization of urban vehicle driving [7]-[10] and
analysis of road network traffic flows [1], [2], [11], [12]. Most
traffic analysis with surveillance systems assumes a dense cover-
age of surveillance distribution over road network intersections.
However, the sparsity of surveillance distribution can hardly
be avoided in real applications, due to the high deployment
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Fig. 1.  Sparse distributions of road surveillance cameras in SIP and Shenzhen.
Red dots indicate intersections where a surveillance camera is deployed. The
surveillance camera coverage rates of SIP and Shenzhen are 3.0% (103/3,468)
and 0.8% (129/16,264), respectively. (a) SIP (3.0%, 103/3,468). (b) Shenzhen
(0.8%, 129/16,264).

cost and dynamic characteristics of urban road networks. For
instance, Fig. 1 shows the distributions of road surveillance
cameras of two leading cities in China, Suzhou Industrial Park
(SIP) and Shenzhen. In this figure, only 3.0% (103) of the 3,468
road intersections in SIP are surveillance-equipped, while only
0.8% (129) of the 16,264 road intersections in Shenzhen are
surveillance-equipped.

There have been studies [13]-[15] on forecasting traffic sta-
tuses with data incompleteness caused by the data sparsity
issue or networking failure. However, these seemingly simi-
lar techniques cannot be directly used for inferences with the
permanent incomplete traffic information caused by the sparse
coverage of road surveillance cameras. Recently, there have
also been studies [16]-[21] on modeling and inferring citywide
traffic statues with sparse surveillance information, which can
be clustered into two categories, discrete road segment similarity
based methods [16], [18], [19] and holistic road network spa-
tiotemporal correlation based methods [17]. The former makes
inferences based on the calculation of similarities between
surveillance-equipped and surveillance-free road segments with
contextual information, such as velocities, road segment length,
and Point of Interest (POI) features. However, these methods
simplify the profound natures of spatiotemporal correlations
into pair-wise similarity score comparisons, thus fall short in
making accurate inference [22]. The latter infers traffic volumes
for surveillance-free intersections with the assumption of multi-
variant distribution models [17]. Nevertheless, the assumption
may yield biased estimation due to the lack of parameters of
surveillance-free intersections.

To tackle the challenges mentioned above, we propose
a novel framework, SpatioTemporal-Generative Adversarial
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Urban Computing System of SIP. The size of points represents the relative value of the traffic volume at the corresponding intersection, and the point color

of red or purple demonstrates the traffic volume of an intersection is monitored by the pre-deployed surveillance cameras or inferred by our method, respectively.

Network (ST-GAN), inspired by recent advances in face com-
pletion techniques [23]. Our ST-GAN consists of a mod-
ified Encoder-Decoder based Graph Convolution Network
(ED-GCN) and a Long Short-Term Memory (LSTM) neural
network, for learning latent correlations in graph-structure data
like road network [24]—-[26] and temporal dependencies of traffic
volumes [24], [27], [28], respectively. The iterative adversarial
training process of GAN enables our framework to improve the
quality of volume inference within surveillance-free intersec-
tions.

Our work is a sub-system of a real project, i.e., the inte-
grated urban computing system, in cooperating with the traffic
administrative agency of SIP, as shown in Fig. 2. However, the
information is incomplete in the sense that the distribution of
surveillance cameras is sparse, as shown in SIP and Shenzhen
in Fig. 1. We also collect the third-party GPS data of 4,367 and
8,572 taxicabs with an average sampling rate of 20 seconds for
Shenzhen and SIP to generate the training data, we mask a set
of randomly selected intersections for the GPS data, in order
to imitate the incomplete video surveillance scenarios. We then
train the generator of our ST-GAN framework to reconstruct the
original data with incomplete training data, which captures the
deep spatiotemporal correlations through ED-GCN and LSTM
modules. The ability of the generator is further enhanced by an
iterative adversarial training process with the discriminator in
ST-GAN. Atlast, the trained generator can be used to infer traffic
volumes of surveillance-free intersections, with only real-time
and sparse surveillance information collected from surveillance-
equipped intersections. Experiments show that our proposal can

improve the inference accuracy at least 10.43% and 13.85% on
two real-world datasets, respectively.

Our main contributions are summarized as follows.

e To the best of our knowledge, this is the first work
that utilizes the GAN-based deep learning framework
to tackle the sparse-surveillance based real-time urban
traffic pattern inference problem, by modeling the holis-
tic urban traffic patterns of the entire urban road net-
work from a third-party dataset and using the learned
holistic patterns to infer traffic volumes of surveillance-
free intersections only based on real-time and reli-
able inferred volumes of sparse surveillance-equipped
intersections.

e The proposed generative adversarial network, ST-GAN,
takes the well-designed ED-GCN and LSTM integrated
module as the generator, to jointly capture spatial corre-
lations and temporal dependencies. Through adversarial
training on a dynamically masked third-party dataset, the
generator of our ST-GAN is capable of inferring traffic
volumes for surveillance-free intersections, and the seam-
lessly combined generator and discriminator can iteratively
improve the performance of our ST-GAN.

® We evaluate the performance of our proposal with real-
world large-scale monitoring datasets collected from two
cities, i.e., SIP and Shenzhen. Extensive experiments cross-
validate that our proposal significantly outperforms other
alternative state-of-the-art solutions. Furthermore, we
perform a case study to demonstrate that our ST-GAN
can effectively capture the dynamic and diverse traffic
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patterns well and tackle the permanent sparse challenges
by visualizing the inferred results of ST-GAN.

The rest of this article is organized as follows. Section II
reports recent related works. Section IIl introduces preliminaries
and formalizes the problem. Section IV investigates the proposed
ST-GAN framework. Section V presents empirical studies. Sec-
tion VI further discusses issues related to our problem and
Section VII concludes the article.

II. RELATED WORK

In recent years, tons of works [13], [14], [16]-[21] have been
achieved to address the data sparsity problem in urban traffic
analysis. And the data sparsity problem in urban traffic surveil-
lance can be divided into two categories, temporal missing, and
spatial sparsity.

Regarding the issue of temporal missing which is mainly
caused by the data sparsity issue or network failure, many
methods of time series analysis and forecasting [13], [14] have
been raised to address the problem. Obviously, these kinds of
time series analysis and forecasting technologies, which highly
rely on the spatial completeness of data, cannot be used to solve
the problem of spatial sparsity in our task by making inferences
with the permanent incomplete traffic information.

The problem of spatial sparsity is caused by the sparse cov-
erage of road surveillance cameras, and there are also a small
number of recent novel studies [16]-[19] aim at solving this
problem. We can also summarize existing efforts on this field
into two categories, discrete road segment similarity based meth-
ods [16], [18], [19] and holistic road network spatiotemporal
correlation based methods [17], [20].

Regarding discrete road segment similarity based meth-
ods, [16] calculates and ranks the similarities within road seg-
ments to determine whether they should be selected into a candi-
date set, then infers the traffic volumes of those surveillance-free
road segments based on the combination of the candidates by
a key-value attention method. [18] proposes a Spatiotemporal
Semi-Supervised Learning network (ST-SSL) to solve the prob-
lem of citywide traffic volume inference. It first constructs spa-
tial and temporal affinity matrices to represent the correlations
within road segments by taxicab trajectories as well as some
other static features of road segments, then infers segment traffic
volumes based on the assumption that two segments should have
similar lane volume patterns if they share similar urban fea-
tures. [19] first collects traffic speeds and volumes from original
GPS data, then solves the problem of speed missing with the
method of collaborative matrix factorization and abstracts train-
ing traffic features with the bayesian network, and finally infers
citywide traffic volumes with the K-Nearest Neighbor (KNN)
algorithm. In practice, the road traffic volumes of individual road
segments can be significantly influenced by the topology and
traffic statuses of the entire road network, so this kind of discrete
road segment similarity based methods should have very poor
performances on inferring traffic statuses of complex urban road
networks. Besides, these discrete road segment similarity based
methods mostly focus on the traffic volume completion issue
of individual road segments, while the traffic statuses of urban
intersections are more important for urban traffic administrative
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departments since it has been proved that most urban hazards
and traffic problems concentrate on intersections [22].

For holistic road network spatiotemporal correlation based
methods, [17] first models the traffic volume of the entire
road network with transferred transition probabilities from a
third-party GPS dataset, uses a multi-variate normal distribution
model that takes transition probabilities as inputs to make the
incomplete surveillance space approximately complemented,
and finally infers real-time traffic volumes in road networks with
only partial intersections equipped with surveillances. However,
the hypothesis that the traffic volumes of urban road networks
follow a multi-variant distribution is too idealistic for real-world
data research. Further, this statistical model based method can-
not truly address the challenge of surveillance-free intersection
traffic volume inference since it still has to fill the parameters of
surveillance-free intersections by the parameters of the nearest
surveillance-deployed intersections.

In summary, existing works on addressing the problem of
spatial sparsity cannot effectively and deeply capture the holistic
inter-intersection spatial correlations which are the essential
elements in inferring citywide traffic volumes when some parts
of the surveillance information are unavailable. To this end, we
should tackle the problem of spatial sparsity with a new holistic
and deep learning perspective.

III. PROBLEM DEFINITION

In this section, we formally define basic concepts as well as
the problem studied in the work.

Definition 1. (Road Network): Given an urban road network,
it can be formalized as a directed graph G(V, ) where vertex
v; € V denotes urban intersection v; and edge e;; € £ indicates
the directed road segment from intersection v; to v;.

In practice, as demonstrated in Fig. 1, traffic surveillance
cameras are pre-deployed on the road intersections to obtain
intersection traffic volumes by analyzing and comprehending
captured images and videos. Based on the fact that whether
surveillance devices have been deployed, urban intersections
can be divided into two classes, monitored intersections V,,,
and unmonitored intersections V,,, where V;, UV, =V and
Vi NV, = 0.

Definition 2. (Taxicab Traffic Volume): Given an intersection
v; and a time interval At, we can compute the traffic volume of
this intersection v; within the given interval At and denote it as
fAt. Therefore, the traffic volumes of the entire road network
can be formulated by:

Fa= L a3t M

Definition 3. (Surveillance Traffic Volume): Given road net-
work G(V, ) and the pre-deployed road surveillance system,
the surveillance volume of intersection v; during time interval
At can be written as s, The surveillance traffic volumes of the
entire road network can be defined by:

At {slm Dt S\%It} )

Here, the surveillance traffic volume of a surveillance-free inter-
section i is null (s; = null iff s; € V,,,) regardless the setting
of time interval At.
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Fig. 3. Solution overview.

Worth noting that the traffic volume of an unmonitored inter-
section is null, while the traffic volume of a monitored intersec-
tion which has no vehicle cross by during a given time interval
should be 0. Notice that it is commonly accepted that urban traf-
fic flows have obvious time-varying patterns, and the setting of
the time interval can significantly influence the understanding of
urban traffic patterns [29]-[32]. With this preliminary, we define
taxicab volumes and surveillance volumes with the time-varying
traffic features.!

Definition 4. (Inference with Sparse Surveillance): In the
road network G(V, E), given sparse surveillance information
from monitored intersection set V,,, and a time interval At, our
purpose is to design an algorithm to estimate the traffic volume
of intersection v; € W,,/dgring the same time interval At.

Assuming 9t and 98 are the actual and estimated traffic
volumes of intersection v; during At respectively, if v; € V,,,
we have 92t = s8¢, The accuracy of traffic volume inference
can be estimated by equations 3.

,L9At

- 3)
DRt 4 [9AT— o

According to this equation, the accuracy of a monitored intersec-
tion is 100%, and for an unmonitored intersection, the accuracy
is determined by the ratio of the real value to the summation of

Inference Accuracy (IA) =

'At should be set with considering the equilibrium within the inference
accuracies and temporal granularity. We here divide the temporal data into
30-minute slots according to common knowledge [17]. The setting of At has
obvious correlations with the results of accuracy, and meanwhile, restricts the
pervasiveness of our model.
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the real value and the estimation error, and notice that such a
setting of the denominator is to normalize the accuracy to 1.

IV. ST-GAN FOR TRAFFIC VOLUME INFERENCE
A. Solution Overview

The overview of our proposed solution is illustrated in Fig. 3.
The main approach includes three stages, the data pre-processing
stage, the ST-GAN training stage, and the inference stage. De-
tails about each stage are illustrated as follows.

B. Data Pre-Processing

Since the surveillance traffic data are inherently incomplete,
we use a third-party taxicab dataset for learning traffic patterns
of the entire road network. Fig. 4 demonstrates the analysis of
similarities of traffic volumes between taxicab and surveillance
data in SIP. Fig. 4(a) illustrates the Pearson coefficient analysis
with different volumes, where positive correlations can be ob-
served between taxicab and surveillance data for intersection
traffic volumes. Fig. 4(b) shows the variation tendencies of
normalized average traffic volumes for both taxicab and surveil-
lance data, which also shows significant correlations between the
two. Based on such observations, we use taxicab traffic data as
training data for the learning of traffic patterns of urban vehicles,
and for further inferring the traffic volumes of surveillance-free
intersections. The benefits gained from adopting taxicab traffic
data are for its full coverage of all urban intersections. For
making it adaptive to the incomplete surveillance scenario, we
randomly mask a set of intersections for making the training
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Fig. 4. Analysis of the similarities of taxicab and monitored traffic volumes
in Suzhou. (a) Correlation analysis within different volumes. (b) Normalized
taxicab and traffic volumes.

data sparse. Thus, the masked taxicab data for traffic volumes
are as follows.

F_mask®' = {f_masklAt fomask®t ... f_mask‘%‘t}
“4)

where f_maskim is the after-masking taxicab volume of inter-
section v; during At, satisfying:

fAt v, is unselected
null v; is selected to be masked

f_maskft = { 5)

With the random masking method, we can enhance the ro-
bustness and generalization of our trained model, supporting
to capture the dynamic patterns of urban surveillance systems.
After being masked, the taxicab data is concatenated with
other static features of intersections, such as the numbers of
connected road segments and the surrounding POlIs, to gen-
erate an incomplete graph snapshot 2% for time interval At.
By doing so, we can use a series of incomplete graph snap-
shots &' = {gAt-(m=1) gAt=(m=2) ... pAY a5 inputs of the
ST-GAN network to infer the complete citywide volumes in
At, where m is the number of input time intervals.2

C. ST-GAN for Traffic Volume Inference

Our ST-GAN includes two modules following the conven-
tional GAN framework, a generator G and a discriminator D.
Generator G consists of two submodules, an ED-GCN for spatial
correlation learning and an LSTM for temporal correlation learn-
ing. The encoder of ED-GCN first extracts and maps the spatial
correlations of the inputted incomplete graph snapshots into high
dimensional graphs. The decoder of ED-GCN then decodes the
mapped high dimensional graphs to complete graph snapshots.
Finally, the outputted complete graph snapshots are fed into

2 According to the settings in [33], we set the value of m as 3.
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the LSTM to learn and exploit the temporal correlations of
intersection volumes. Regarding the discriminator D, it contains
two Fully Connected (FC) layers and a Sigmoid activation layer.
We then feed the generated complete graph snapshots and the
real graph snapshots into the discriminator D to distinguish
whether it is fake or real. With this minimax two-player game,
this adversarial process can eventually force G to generate plau-
sible and high-quality recovery of surveillance-free intersection
volumes.

1) Generator G: As above mentioned, G contains two parts,
ED-GCN and LSTM, for extracting the spatial and temporal
correlations of intersection volumes respectively. We hereby
introduce detailed implementations of this generator.

a) ED-GCN for spatial correlation learning: The detailed
architecture of ED-GCN is illustrated in Fig. 5. Here, we use
a multi-layer modified GCN to exploit the spatial correlations
within urban intersections in an encoder-decoder manner. The
convolution can only affect 1-hop neighbors of an intersec-
tion vertex, while the distribution of monitored intersections
is sparse. Thus we modify multi-layer convolutions to extract
the correlations within multi-hop neighbors.? Specifically, the
encoder and decoder are two three-layer symmetric GCNs.
Two additional ReLU activation functions are employed in the
second and fifth layer to make sure the results are non-linearized.
For calculating this multi-layer GCN network, instead of calcu-
lating the adjacent matrix of urban intersections, we compute
the weighted adjacent matrix M, for all urban intersections by
the following equation.

Qapl © Qg
Ma= :
Q[ Ay
where ag; = {Lane number of e;; e;; € € ©)
0 otherwise

Here, the element o;; in the matrix M, indicates the potential
traffic intensity from intersection v; to v;. Notice that the fact
ajj = a;; may not hold, so that matrix M, maybe not symmet-
ric. We thus generate a new matrix A by setting A = M, + Ijy.
Here, Iy is the identity matrix of [V| x [V|. Next, we generate
the degree diagonal matrix D of all intersections by the following
equation.

dy 0 - 0 ‘
0 dp -+ 0 4

D= where d;; = Z ay; (7)
: : : -
0 0 Ay

Here «;; is the ¢_th row and j_th column element of matrix A,
d;; 1s the degree of intersection v; in the road network graph
G(V, £). With these preliminaries, we then calculate the weight
laplacian matrix M of connections within intersections by:

M=D:iAD? 8)

3Considering the scale of the urban road network and the sparsity of surveil-
lance devices, we here set the number of layers to 6.
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For given time interval At, we can compute the ED-GCN by:

ReLUMHELW)) 1=2,5
M = ©)
MHEW, otherwise

Here, HlAfl and "HlAt are the input and output of the [_th layer,
respectively. And H5M = 21
the [_th layer.

The encoder sub-part is to learn the spatial correlations be-
tween urban intersections by encoding the input incomplete
graph snapshots to high-dimensional feature maps. It diffuses
the features of intersections to their adjacent neighbors, in
accordance to the adjacent matrix M,, by increasing the di-
mensionality of features to 128, 256, and 512 respectively. The
output of the encoder is |V| x 512. By using the output of the
encoder as the input, the decoder of a 3-layer GCN is to decrease
the dimensionality of features. The output of the decoder, denote
as H5%y, is [V| x 1. The outputted low dimensional complete
snapshots have involved all the initial high dimensional features
of urban road networks.

b) LSTM for temporal correlation learning: Due to the time-
varying features of urban traffics, we adopt the LSTM network
which is widely used in time sequence issues [34]. By con-
sidering the complete graph snapshots H &%, which enclosed
with the spatial correlations among all urban intersections, traffic
volumes of surveillance-free intersections can be inferred with
the time sequence analysis. Given time interval Af, by using
the outputted complete graph snapshots H5%,,, and the hidden
states Z2(=1D of LSTM cell of the last time interval as inputs,
the LSTM equation is defined as:

. W, represents the parameters of

TA' — LSTM (Hehy, 7207)) (10)
The LSTM cells enable our model to learn to retain or discard
historical information according to the training data. The final
output of the LSTM cell Z2? can be regarded as the inferred
citywide volumes at time interval At.

c) Volume loss of generator GG: With the outputted inference
of traffic volumes Z2* = (r{* 73> - - 7:31) of all urban inter-

sections, where 7% corresponds to the inferred taxicab volume

of intersection v;. We define the traffic volume loss function of
generator G as:

M

_ At At2
MZ (F =i

LossS,, = MSE (F21, 721) = (11)

vol —

2) Discriminator D: The discriminator contains two FC lay-
ers and one Sigmoid activation layer. Assuming the input of
discriminator D is ©2? for time interval At, where

FAt The input is real taxicab volumes
0% = (12)

T2t The input is inferred taxicab volumes

These two FC layers can reduce the input of real or inferred
taxicab volumes to a number y* for evaluating the reliability of
the inputs, where y2* = FC[FC(0©4?)]. The Sigmoid function
of discriminator D in the activation layer can be written as:
1
- (13)

ty _
)_l—f—e

The result of discriminator D is in the range [0,1]. With the
discriminator, we calculate the discriminator losses of real and
inferred traffic volumes by the following equations.

D (7))
log (D(T41))

D (@At) = Sigmoid (yA

Lossn,al = log (1 — (14)

Loss (15)

D —
inferred —

Notice that for the two equations, we expect the discriminated
results of real traffic volumes can be close to 1, as much as
possible. Also, we expect the discriminated result of inferred
volumes can be close to 0.

3) Losses of ST-GAN: The target of the discriminator is to
improve generator G on the accuracies of traffic volume infer-
ence, until the inferred data is able to deceive the discriminator.
Therefore, we expect discriminator D can well distinguish real
and inferred data, so the overall loss for training D is as follows.

LossP” = Loss? L+ Loss? (16)

rea. inferred

To help the generator G to deceive the discriminator, we have
to make sure that the discriminated result of inferred volumes is
close to 1. So, the loss function for training G is as follows.

Loss§,, = 1 — Loss? (17)

inferred

Based on that, the overall loss for training the proposed generator
G can be formulated as follows.

Loss® = LossS,, + LossS,, (18)

The parameters of ST-GAN are trained iteratively. We fix all
parameters of the discriminator during the training of generator
G with Loss®. We also fix all parameters of the generator while
training the discriminator D, similarly.
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TABLE I
DATASETS STATISTICS

GPS data SIP Shenzhen
Time span 1/2017-3/2017 1/2017-3/2017
Number of taxicabs 4,367 8,572
Average sampling rate 20 seconds per record 20 seconds per record
Surveillance data SIP Shenzhen
Time span 1/2017-3/2017 1/2017-3/2017
Number of total intersections 3,468 16,264
Number of surveillance-equipped intersections 103 129
Coverage rate 3.0% 0.8%

D. Traffic Volume Inference of Unmonitored Intersections

As illustrated in Fig. 3, after the training of ST-GAN, gener-
ator G is capable of inferring taxicab volumes for urban inter-
sections with masked taxicab volume dataset. Then, generator
G can be used for inferring urban traffic volumes with sparse
surveillance information in a transfer learning manner, with the
input of S2*. Accordingly, the traffic volumes of surveillance-
free intersections can be inferred.

E. Pseudocode of the Training Algorithm of ST-GAN

Algorithm 1 demonstrates the pseudocode of the training
pipeline of our ST-GAN model. Algorithm 1 takes the adjacency
matrix M, timestep parameter m in the LSTM model and a series
of incomplete graph snapshots as inputs. The outputs of Algo-
rithm 1 are parameters in the ST-GAN model, where 6, and 6,
are parameters of the ED-GCN module and the LSTM module in
generator G respectively, and 6 is the parameter of discriminator
D. In Algorithm 1, we first initialize the parameters with the
standard normal distribution. In the training phase, we input m
incomplete graph snapshots {22, p A4+ ... g A=Y ipgo
the ED-GCN at one time, and we can obtain m complete graph
snapshots {2t HAMH! ... HAM(M=DY from the output of
the ED-GCN. Then, we input these m complete graph snapshots
into the LSTM module and get the final complete graph snap-
shots at At + (m — 1) time slot. According to the ground truth
at this time slot, we calculate the loss of generator G via (18) and
the loss of discriminator D via (16), respectively. To be specific,
when 0y, 0, in G are fixed, we adjust the parameter 63 through
the loss of D. In the same way, we fix 63 in D when we adjust
the parameters 0,6, in generator GG. After the model trained
with the training data, the parameters 0y, 6, and 65 are obtained
finally. To achieve stable training of ST-GAN, we use adaptive
momentum estimation (Adma) optimizer [35] with learning rate
of 0.001, 5, = 0.5, and 3, = 0.999. For ED-GCN, we set the
node number to 16264 and the window size to 3. All our results
are generated on 8 NVIDIA Tesla V100 GPUs with a batch size
of 4.

V. EXPERIMENTS

In this section, we conduct extensive empirical studies to
evaluate our incomplete volume inference framework on two
real-world datasets.

A. Data Description

We use datasets from two different modern cities, i.e., SIP
and Shenzhen. The statistics are shown in Table I. Each dataset

Algorithm 1: Training Algorithm of ST-GAN.

Input: Timestep m; Adjacency matrix M; Road Network
G(V, &); Incomplete graph snapshots
{fAt7 xAtJrl’ . xAt+(m71)}'

Output: Learned ST-GAN model, all parameters (1, 65,
03) in this framework.

1: Initialize 60, 0,, 05

fort< 1---Tdo

3 {HAt7HAt+l,“_HAt-i-(m—l)} —

ED-GCN({zAt, pAt+! g A=D1 AL 0));

N

4;  JAtHm-1)
LSTM({HAt, ];]'AtJrl7 . HAtﬁL(mfl)}’ m, 92);
5: Loss® «

1- Lossﬁfewed(ﬁl ,0,03) + LossS (01, 60,);

6:  Loss” « LossP ,(05) + Lossﬁfewed(&, 0,,05);
7. Let 6, 0, fixed, do
8: 03 < Adamopt(Loss®, [03]);
9: Let 05 fixed, do
10: (6, 0,) < Adamopt(Loss®, [01, 62]);
11: end for

12: return 6y, 05, 05

contains two sub-datasets: GPS data and surveillance data at
road intersections as follows.
® GPS data: There are 4, 367 and 8, 572 taxicabs that upload
their accurate GPS information every 20 seconds via their
equipped 4 G devices running independently in SIP and
Shenzhen, respectively. We collect the GPS data in SIP
and Shenzhen from Jan 1, 2017 to Mar 31, 2017, and
subsequently generate the corresponding training data.
® Surveillance data: For the same period from Jan 1, 2017 to
Mar 31, 2017, we use all sparse surveillance information
collected from monitoring in SIP and Shenzhen, and match
this dataset with the GPS dataset.

B. Implementation Details

In the training phase, we first generate citywide taxicab vol-
umes by GPS data. At each time interval, we randomly select
to mask part of intersection volumes, leaving the masked inter-
section volumes as the target data to be inferred. The original
citywide volumes are viewed as the ground-truth to train our ST-
GAN model, with the Adam optimization in a back-propagation
manner.

In the testing phase, we use the traffic volume informa-
tion obtained by surveillance-equipped intersections. The traffic
volume information of surveillance-free intersections can be
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Fig. 6. Performance comparisons on different days. (a) Performance in SIP.

(b) Performance in Shenzhen.

seen as the masked values in the training phase. Due to the inher-
ent lack of ground-truth data at surveillance-free intersections,
we randomly select 20% surveillance-equipped intersections
with volumes and assume they are also surveillance-free for
numerical comparisons and model evaluations.

C. Evaluation Results and Analysis

1) Baselines: We evaluate the performance of our ST-GAN
model by comparing it with the following baseline models.

e Linear Regression (LR) [36]: It is a linear model which
learns to infer traffic volumes from previous observations
of surveillance-equipped intersections and related road
network features.

¢ Generalization module for citywide volume inference (CT-
Gen) [16]: It is a generalized model which infers the
volumes by distilling the extrinsic dependencies among
existing volume surveillances with neural key-value atten-
tion architecture.

e Traffic Volume Inferring with Sparse Video Surveillance
Cameras (TISV) [17]: It is a multi-variate distribution
based citywide volume inference model by utilizing third-
party vehicle GPS data.

e Deep Autoencoder (DAE) [37]: It is an encoder-decoder
based method with a deep neural architecture to infer the
citywide volumes. In this article, we use the ED-GCN
which is part of our ST-GAN as the deep neural archi-
tecture.

2) Performance Comparison: We evaluate the performance
of different models on the metric of Inference Accuracy (IA)
proposed in (3).

a) Impact of day type: We show the effectiveness of our
proposal in Fig. 6. It can be observed that the accuracy of our
proposed ST-GAN method is steadily above 75% in SIP and
73% in Shenzhen during randomly selected ten days, whether
on weekdays or weekends. Compared with the baseline methods
(i.e. CT-Gen, TISV, LR and DAE), our solution can increase
the accuracy by 35.89%, 29.86%, 28.81%, 10.43% in SIP and
32.41%, 27.42%, 25.90%, 13.85% in Shenzhen. Among four
baselines, DAE performs the best with the encoder-decoder
mechanism. Since DAE does not consider temporal relation-
ships and lacks the discriminator, the inference accuracy is
significantly less than ours. For TISV, the strong assumption
of multi-variant normal distribution traps the algorithm into a
relatively lower accuracy. LR is a linear model and it fails to
capture complex spatial relationships between intersections. As
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Fig.7. Performance comparisons during different time slots. (a) Performance

during different time slots in SIP. (b) Performance during different time slots in
Shenzhen.

shown, CT-Gen performs the worst due to the lack of spatial
correlations in consideration. By contrast, we consider the com-
plex spatiotemporal relationships and solve the sparse problem
with the help of third-party data, which takes effect in our spatial
sparsity challenge task.

b) Impact of time slots: We also examine the performance
with respect to the effects of time slots in Fig. 7. Obviously,
our method consistently obtains higher accuracies than others
in any time slot even though with little fluctuations. This kind
of fluctuation may be related to the complexity and variations in
traffic patterns. For example, During the day, especially during
the rush hours, since taxis are for-profit and the road conditions
are prone to congestion, the travel routes chosen by some drivers
may be unconventional, so there is a deviation between the taxi
travel pattern and the overall travel pattern. At night, the overall
traffic condition is relatively smooth, and the travel choices of
drivers are more normal, so the taxi travel pattern is more similar
to the overall travel pattern. Further, as shown in Figs. 8 and
9, whether on weekdays or weekends, taxicab and monitored
traffic volumes are more similar during night times than during
rush hours, which more clearly demonstrates the fluctuations in
inference accuracy.

3) Inferring Error Analysis: We also utilize widely used
metrics to quantify the inferring errors of different methods,
including Mean Absolute Error (MAE), and Root Mean Square
Error (RMSE), shown as below.

D]

MAE = ‘Ti' Z PRt — 9AL (19)
=1
D)
(20)

1
SE=,| =3 (92 —pai
RMSE IDI;(l :
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Fig. 9. Similarities between taxicab and monitoring traffic volumes on weekends.

where 92t and 9£* are the actual and inferred traffic volumes
at intersection v; during At, respectively. D is the total number
of verifying intersections. The experimental results are shown
in Table II. We found our ST-GAN model achieves the best
performance on both two real-world datasets.

Fig. 10 visualizes the inferring errors of all evaluated models
in terms of MAE. To achieve a more comprehensive and intuitive
understanding of the absolute error values of all methods, we first
leverage the Kernel Density Estimation [38] method to calculate
the probability density distribution of all intersections’ average
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TABLE II
INFERRING ERROR COMPARISONS

SIP / Shenzhen
Model MAE RMSE
LR 206 /228 | 2117243
TISV 229 /236 250 / 268
CT-Gen 249 /255 | 275/ 287
DAE 164 / 187 196 / 214
ST-GAN 84 /103 105/ 127
0.30% 500 -
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Fig. 10. Inferring Errors Analysis in SIP. (a) Traffic Volumes Distribution.

(b) Inferring Errors Comparison.

TABLE III
PERFORMANCE ON DIFFERENT VARIANTS OF ST-GAN

SIP Shenzhen
Variants Weekdays | Weekends | Weekdays | Weekends
Model 1 0.7033 0.6968 0.6829 0.6653
Model 2 0.7180 0.6940 0.6983 0.6914
Model 3 0.7228 0.7063 0.7039 0.6827
Model 4 0.6709 0.6553 0.6550 0.6453
Integrated 0.7668 0.7551 0.7424 0.7380

traffic volumes during all time intervals in 10 different days,
and the results are shown in Fig. 10(a). We found that the traffic
volumes between 300 and 500 are more than 50% of time slots.
Fig. 10(b) is a boxplot that demonstrates the average inferring
errors obtained from different methods at time slots in 10 days.
We can see that the average inferring error of our ST-GAN model
is much smaller than other methods. Moreover, the average
inferring errors of other methods (i,e, TISV, CT-Gen, and DAE)
are not only large in the average value but also fluctuate greatly.
For our ST-GAN, the inferring errors fluctuate in a small range.
Although the inferring error range of LR is also small, the value
of inferring errors in the range is fairly large.

D. Ablative Studies

In order to evaluate the importance of each component in
our ST-GAN, we design the following ablation study. We re-
move four well-designed components subsequently as follows:
(i) LSTM module (Model 1), (ii) Substitute ED-GCN for a
traditional GCN layer (Model 2), (iii) Discriminator in GAN
(Model 3), (iv) LSTM, and discriminator (Model 4). Except for
the changed part(s), all ST-GAN variants have the same structure
and parameter settings. We compare the performance of variants
both on weekdays and weekends to observe the changes between
them. The numerical results are shown in Table III.
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Overall, the integrated model consistently outperforms other
alternative variants regardless of weekdays or weekends. As
illustrated, LSTM and discriminator modules contribute to more
than 10.4% improvement in SIP and 13.8% improvement in
Shenzhen, respectively. This also verifies the effectiveness of our
consideration of temporal effects and the generative-adversarial
process. Further, as the result of Model 2 shows, incorporating
the encoder-decoder mechanism in traditional GCN also makes
sense in our integrated model.

E. Case Study

As Fig. 2 shows, our work is a sub-research based on a real
project in cooperating with the traffic administrative agency of
SIP. Fig. 11 shows our real application within three time intervals
of two typical subregions, i.e., (i) Jinji CBD and (ii) Xietang
Residential Community. In the figure, the point color of red or
purple demonstrates the traffic volume of an intersection is mon-
itored by the pre-deployed surveillance camera or inferred by
our method. In addition, the size of points represents the relative
value of the traffic volumes. The visualization results show that
the inferred traffic volumes have achieved the expected effect,
and we will interpret it from the following three perspectives:

e Spatial similarity: Whether in Jinji CBD or Xietang Res-
idential Community, the distribution of inferred traffic
volumes of surveillance-free intersections and volumes of
surveillance-equipped intersections are consistent. If the
traffic volumes at these intersections are integrated, we find
that the overall distribution of traffic volumes across the
region is reasonable. Especially in CBD area, the traffic
flow shows a distribution that spreads to the surrounding
area.

e Temporal dynamics: In Jinji CBD, for surveillance-
equipped intersections, the actual traffic volumes dur-
ing the interval of 7:00 ~ 8:00 a.m. show an upward
trend, which indicates that this interval is rush hour. For
surveillance-free intersections, the inferred traffic volumes
during this interval also show an upward trend, which is
consistent with the actual situation. In Xietang Residential
Community, the actual traffic volumes show a stable trend,
which is also in line with the characteristics of residential
areas. In addition, the inferred traffic volumes change
smoothly, which is consistent with the actual situation.
The above changes indicate that our model can learn this
dynamic trend of traffic over time. The above information
indicates that our model can learn the trend of dynamic
change of traffic volume.

® Mobility tendency: In Jinji CBD, the actual traffic volumes
during the interval of 7:00 ~ 7:30 is small. As officers
move from various residential areas mostly located in the
southern and western in SIP to business blocks during peak
hours in the morning, the actual traffic volumes during the
time interval of 7:30 ~ 8:00 increase significantly, and
traffic volumes tend to move from south to north and from
west to east in these time intervals. Obviously, the inferred
traffic volumes also conform to this trend.

According to the above analysis, ST-GAN already has the

ability to capture spatial similarity, temporal dynamics, and
mobility tendency. The visualized results not only corroborate
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Fig. 11.

Traffic volumes visualization of typical regions. The size of points represents the relative value of the traffic volume at the corresponding intersection,

and the point color of red or purple demonstrates the traffic volume of an intersection is monitored by the pre-deployed surveillance camera or inferred by our

method, respectively.

other experimental results but also show that our model can
tackle the permanent sparse challenges effectively.

VI. DISCUSSION

In this section, we discuss some practical issues and lessons
learned in this article.

Inferring traffic volumes with sparse surveillance informa-
tion: In this work, we propose a novel ST-GAN to exploit the
spatiotemporal correlations within urban intersections, and then
infer traffic volumes with only sparse surveillance information in
a transfer learning manner. Experiments show that our approach
can effectively infer traffic volumes for unmonitored intersec-
tions with the information obtained from fixed sparse urban
traffic surveillance cameras, which only cover 3.0% and 0.8% of
all intersections in SIP and Shenzhen, respectively. Further, the
time complexity of each GCN layer is O(|E|C'F) [39], where €]
is the number of graph edges, C' is the number of input channels,
and F' is the dimension of feature maps in the output layer. Our
modified multi-layer GCN component can finish one inferring
in 0.129 seconds on average with 8 NVIDIA Tesla V100 GPUs.

The superiority of the technique for urban computing appli-
cations: In most existing intelligent transportation applications,
urban traffic information is usually retrieved on the crowdsourc-
ing platforms [40]-[42], or provided by telecommunication
suppliers [43]. The results are somehow untrustworthy due to the
inherent unreliable nature of the low-deployment-cost crowd-
sourcing platforms. Figure 12 demonstrates a case of cheating
existing monitoring Apps, which originated from a performance
art by the German artist Simon Weckert [44]. Specifically, in this
case study, 99 used smartphones are transported in a handcart
to generate virtual traffic jams in Google Maps. Through this
activity, it is possible to turn a green street into red, which has
an impact on the physical world. In our work, the information
collected by traffic video surveillance systems is obtained in real-
time and accurately for the intersections with equipped devices.
Combined with advanced communication technology [45], [46],

Fig. 12.

A case of cheating existing monitoring Apps with a small toy trailer
of mobile phones: Google map shows that the street is heavily congested while
the traffic of the street is quite smooth [44].

we believe that it makes a better and more reliable basis for
advanced urban traffic intelligent systems.

Scalability of ST-GAN network: Our work is cross-validated in
two typical cities in China. Further, it can also be a paradigmatic
solution in various spatiotemporal applications, ranging from re-
gional epidemics predictions to masked human action detection
in vision tasks where sparse surveillance data is collected perma-
nently [47], [48]. Specifically, the encoder and decoder of GCN
empower to extract the node-wise correlations in graph-structure
data, such as infected populations in cities or detected human
skeletons in the graph form. Then the nodes that need to be
predicted in the objective graph can be inferred by the GAN
architecture with an auxiliary dataset, advancing the deeper
applications of the graph-level management like population flow
controlling and action prediction.

Possibility to integrate with federated learning: Federated
learning has recently been widely used in intelligent trans-
portation [49]—-[51] and the Internet of Vehicles [52], [53] due
to the ability to break down isolated data islands and protect
data privacy. Integrating federated learning with ST-GAN is a
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potential means to improve model accuracy and generalization
in the future. Inspired by federated learning, we can lever-
age distributed organizations to cooperatively train local traffic
datasets in different regions to obtain a globally shared traffic
pattern inference model without exchanging raw data, which can
maximize the available resources of the model and ensure the
privacy and security of users.

Further issues of the inferring model: Even though our
proposed model ST-GAN can alleviate the overfitting on lo-
cal neighborhood structures for graphs with very wide node
degree distributions, the possible influence of the percentage
that intersections with stationary surveillance cameras account
for has not been discussed since the case of intensive traffic
surveillance devices in urban areas has not been found. We will
further investigate what will happen if the coverage of monitored
intersection decreases, and where is the lowest boundary of the
coverage ratio if we want to push the proposed algorithm to
become practical.

VII. CONCLUSION

In this article, we propose a novel integrated network ST-GAN
to infer the traffic volumes for surveillance-free intersections
with only sparse surveillance information. Based on highly
positive correlations between taxicab and surveillance traffic
patterns, we generate the training data with masked taxicab
traffic volumes obtained from third-party trajectory datasets of
reliable floating vehicles. With the well-designed ED-GCN and
LSTM incorporated, our ST-GAN has the ability to capture
the spatiotemporal traffic patterns between intersections. We
further enhance the deep representations by taking advantage
of the iterative improved adversarial mechanism. And finally,
we infer the traffic volumes of surveillance-free intersections
with only sparse surveillance by using the generator of the
trained ST-GAN independently in a transfer learning manner.
Performance evaluations on real-world datasets demonstrate the
effectiveness of our proposal. Therefore, our work provides
a brand-new solution to tackle the permanent spatial sparsity
challenge from a deep-learning perspective.

In the future, our possible improvement directions include
task-specific and task-independent. Task-specific promotion is
to leverage multi-source data rather than just taxicab trajectories
to further establish the knowledge graph with various auxiliary
information for spatiotemporal fusion. Thus, the sparsity chal-
lenge of monitored traffic data can be alleviated subsequently,
and the inference accuracy of our model can also be improved.
Task-independent modification is to further investigate and un-
derstand the uncertainty caused by the sparsity of spatiotemporal
data, and to support more general predictions like mobility-based
pandemic controlling problem and the cold-start problem in
recommender systems.
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