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Abstract—Intelligent taxicab scheduling systems on smartphones continue to gain popularity as they offer prominent conveniences for urban
travelling as well as increase potential profits for taxicab drivers, hence inject prosperity and vitality into intelligent transportation and urban
business. Existing scheduling approaches usually fall into biases and myopia due to their single target perspective of satisfying the immediate
order acceptance, or maximizing the global business success rates. However, the highly complex spatiotemporal dependencies among
multiple factors and the efficiency bottleneck of massive order flows make the taxicab scheduling issue still challenging. To this end, in our
paper, we propose an integrated scheduling algorithm with both future-aware and context-aware mechanisms. In particular, we first present a
generalized graph-based framework which aims to capture traffic dependencies, providing precise and quantified supply-demand prediction in
taxicab scheduling. Then, we develop a measurement of regional supply-demand context to perform cooperative and distributed scheduling.
To tackle the efficiency bottleneck in massive order flow scenario, we correspondingly design a model to learn business patterns with
considering benefits from both drivers and passengers, and further promote service delivery rates via a novel bi-incentive strategy. Extensive
numerical studies illustrate the remarkable significance of our method, in terms of both service delivery rates and global driver revenues. The
promising results and brand-new perspectives enable our algorithm to be a paradigm in general spatiotemporal scheduling tasks.

Index Terms—Intelligent taxicab scheduling; future-aware; intelligent transportation; context-aware.
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1 Introduction
Recent advances in wireless sensors and networking technologies
in mobile vehicles, e.g., 4G/5G, Wi-Fi, RFID, and GPS, give
prominence to the business opportunity and prosperity for the
market of taxicab industries [17], [30], [38], [39]. According to
the report of Analysis International [13], online taxicab calling
services such as Didi [1] and Kuaidi [2] have more than 150
million active users in China, and are able to collect about 12
million taxicab trips every single day. Meanwhile, public contro-
versy arises due to the safety concerns on existing commercial
taxi service applications, which request taxi drivers to get orders
actively with actual operations on mobile terminals during driving.
The operating process for getting active orders, as shown by the
example of Figure 1, can be a source of distraction for taxi drivers
and therefore cause an ill effect on public traffic safety. More,
due to the competition of taxicab drivers, such systems lead to
inefficiency in scheduling and on the contrary, automatic order
dispatch and taxicab scheduling system will directly contribute to
a more than 10% improvement on the service delivery rate [29].

Existing data-driven approaches related to taxicab scheduling
are mostly on finding the optimized routes for taxicab drivers [7],
[14], [22], [33] in urban navigation, and on equilibrating the needs
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of both passengers and taxicab drivers [32], [34], [35]. Only a
few address efficient scheduling problems of taxicabs, but with
the optimization in terms of energy [16], [21], [37], profits [25],
[36], and transportation QoS (Quality of Service) [4], [15], [20] in
carpooling services. Most of these algorithms focus on processing
historical trajectory records for the retrieval of taxicab mobility
and passenger occupation patterns without considering depen-
dencies among taxicabs and order-taxicab interactions. Advanced
developments on taxicab order dispatching regard taxicab drivers
as multiple agents in the road network and formulize a series
of value functions to perform deep reinforcement learnings [29],
[43]. However, such seemingly advanced techniques may degrade
the interpretability of the model, hence increase the uncertainty
of the scheduling results. In summary, existing solutions fail to
consider time-varying taxicab demand and supply patterns as
well as maximize the service delivery rates simultaneously, hence
deteriorate the system performance in real scenarios involving
large-scale order-taxicab pairs.

To this end, in this work, we propose an intelligent future-
aware taxicab scheduling system, Taxicab Scheduling with Dis-
tributed and Future-Aware mechanisms (TS-DFA), to address the
challenges of both interactive supply-demand effects and large-
scale order flows during rush hours.

Specifically, we first forecast the future distributions of city-
wide traffics and taxicab demands for subsequent scheduling
by mining the spatiotemporal patterns of historical taxicabs and
demands. Second, to help improve the efficiency of order dis-
patching, we develop a learning-based method to rank a series
of relative values of all current orders to each driver. The main
research challenges of our system include: i) the dependencies
among taxicabs in different road segments and the dependencies
between taxicabs and scheduling strategies; ii) the efficiency
bottleneck if a large number of orders appear during rush hours;
and iii) the algorithm-insolubility of scheduling multiple taxicabs
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Fig. 1: Online taxicab Calling Apps (Didi as an example)

cooperatively to maximize the overall profits and service delivery
rates simultaneously within polynomial time complexity. To our
best knowledge, none of the existing taxicab scheduling systems
address the above challenges systematically and comprehensively.
In order to address these challenges, we propose a novel al-
gorithm which contains two parts, offline learning and online
scheduling. First, we build several spatiotemporal submodels to
capture the time-varying traffic and business patterns. Specifically,
by taking advantage of the region-wise spatial correlations among
the road segments and temporal dependencies among time slots,
we propose a graph-based approach to learn the dynamic taxi
demand patterns and a regression-based method to estimate the
order-taxicab value score with regard to each individual order-
taxicab pair. Further, we introduce a context-aware feature named
regional driving value (RDV), to model both taxicab supply and
demand of each road segment. With these carefully-designed
models, we are able to integrate the learned spatiotemporal
demand-and-supply patterns with the real-time taxicab calling
information for optimizing the service delivery rates as well as
the total profits of taxicab drivers simultaneously. Next, in the
online scheduling part, given a series of calling information and
taxicab trajectories, we estimate the values for each order-taxicab
pair and broadcast the appropriate orders to drivers after careful
selections. Meanwhile, to alleviate the supply-demand imbalance
in those taxicab-free places, we develop a bi-incentive strategy to
stimulate both drivers and passengers in the case of long pick-
up distance and low-expected revenue orders. In our system, the
tradeoff between vacant taxicabs and taxicab demands is equili-
brated with the context-aware RDV and future-aware prediction
by scheduling the idle taxicabs to most taxicab-needed urban
regions. For evaluating the proposed TS-DFA, we compare it with
the state-of-the-art solutions Cost-Effective Recommender System

(CERS) [25], Taxi Order Dispatch model with Combinatorial
Optimization (TODCO) [41] and Large-scale Order Dispatch in
on-demand Ride-Hailing Platform (LOD-RHP) [29] via two real-
world datasets including Suzhou and New York City (NYC). The
results show that our TS-DFA algorithm increases the average
daily profit of taxicab by 10.2 (RMB) and 16.5 (USD) in Suzhou
and NYC respectively, compared with the best baseline. More-
over, our TS-DFA achieves maximum service delivery rates and
relatively less waiting time for online taxi calling passengers on
both two datasets.

The main contributions of this work can be summarized as
follows:

• To our best knowledge, this is the first work to optimize
taxicab service delivery rates and global taxicab revenues
simultaneously by considering the real-world massive taxi-
cab business flows in rush hours as well as the complex
multiple dependencies among the factors of taxicab sup-
plies, demands and scheduling strategies.

• To jointly consider the mutual influences among taxicab
peers and order-taxicabs in cooperative taxicab scheduling,
we design the novel context-aware regional driving values
and order-taxicab value scores to measure the road net-
work taxicab supply-demand patterns as well as potential
revenues between order-taxicab pairs respectively.

• We evaluate the proposed algorithm on two real-world
datasets (Suzhou and NYC). Compared to the state-of-
the-art machine learning-based method, TS-DFA can still
enhance the global revenues and overall service delivery
rates by up to 2.43%-6.90% and 3.93%-4.85%, respec-
tively. The cross-validated experiments demonstrate the
absolute effectiveness of our TS-DFA in both two cities.

The rest of this paper is organized as follows. Section 2
presents related works. Section 3 provides the preliminaries and
formulates the problem. Section 4 analyzes the time-varying
patterns of traffic flows and then models spatiotemporal dependen-
cies among taxicab demands and moving taxicabs, respectively.
Section 5 describes several submodels as well as our intelligent
future-aware taxicab scheduling algorithm. Section 6 evaluates the
proposal and Section 7 concludes the paper.

2 RelatedWork
Plenty of efforts have been invested on tasks related to taxicab
scheduling. Taxi route recommendation is one of the widely stud-
ied problems targeting maximizing individual taxicab revenues
and the probability of picking up passengers. For example, some
recent algorithms focus on recommending optimized paths to
taxicabs in order to enhance energy efficiency. [8] first extracts
driving patterns of successful taxicab drivers in terms of revenue
against fuel usage, then clusters pick-up locations for these drivers
in a certain time period. It proposes two algorithms based on
a candidate route evaluation function as well as a mobile rec-
ommender system to provide pick-up points for taxicab drivers.
[36] proposes a new mathematical concept ”cruising graph” by
using intersections of road networks as vertices, road segments
as edges and expected numbers of arrival passengers in road
segments as weights. Based on this graph, the proposed pCruise
algorithm selects the shortest cruising routes for taxicabs to
find passengers, and recommends optimized routes for taxicab
drivers to pick up passengers with the maximum profits. Based
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on fundamental works above, the online scheduling task, which
schedules taxicabs to order requests, is further studied for di-
versity objectives. [21] proposes a new algorithm to search and
schedule candidate taxicabs to satisfy potential taxicab requests
from passengers with minimum additional travel distance incurred,
so as to save fuel consumptions. In [37], a carpooling service
system named coRide is presented to reduce total mileage and
achieve fewer energy consumptions. After formulating an NP-
hard route calculation problem under different actual constrains,
a linear programming optimized algorithm and a 2-approximation
polynomial complexity algorithm are proposed with a win-win
fare model for both taxicab drivers and passengers. Also, in
terms of learning-based methods in mobile computing and traffic
pattern learning, many existing studies contribute to promising
results [10], [23], [24]. And [6] designs a dynamic programming
algorithm to optimally solve the unlimited expansion of the size of
the dispatch region while given a specific taxicab request by taking
the benefits of both drivers and passengers into consideration. With
the increasing prosperity of machine learning, few newest works
invest on addressing the large-scale order-dispatching problem by
formulating the drivers as multiple agents based on reinforcement
learning [29], [43], which may lack the model interpretability.

In conclusion, all the above researches either focus on opti-
mizing the routes for both cruising and on-business drivers, or pro-
vide order-taxicab dispatch methods by targeting one-side overall
profits. Directly ignoring spatiotemporal dependencies may sig-
nificantly influence the efficiency of scheduling. In contrast, our
algorithm allows more intelligent scheduling factors for multiple
taxicabs by taking the predicted future demands, the influences of
previous scheduling strategies and spatiotemporal correlations into
account. Further, although some previous works have advanced
that the traffic recommender system should be traffic sensitive,
none of them has jointly considered both the supply-demand
balance as well as the massive order flows simultaneously, which
is of great significance in the overall performance and stability of
scheduling solutions.

3 Background and Problem Description
3.1 Preliminaries and Basic Concepts

We hereby present the preliminaries of our algorithm, including
problem assumptions and formalizations of several important
concepts.

Assumptions. For the intelligent taxicab scheduling, we as-
sume that a taxicab follows the scheduling strategy once it accepts
the task assignment. There is a threshold on the waiting time for
both passengers and taxi drivers. The passenger would opt for
other taxis and the driver would transmit its state from busy to free,
if the waiting threshold is met. This means that if one taxicab is
assigned with an order, it will immediately transmit its state from
free to busy. And if it rejects this order within the allowable time,
the state will then transmit to free. Further, we do not assume any
specific mobility patterns for unoccupied taxicabs, they can either
drive around or wait at a position for new passengers.

Concepts. Given the intersections and road segments, the
road network can be denoted as a directed Road Network Graph
G(V, E). Here the vertex set V means all intersections and the
edge set E represents road segments, i.e., ∀i, j ∈ [1, |V |], Ii ∈ V
and directed road segment ri j from intersection Ii to I j must have
ri j ∈ E. Note that ri j and r ji are the road segments between the
same two intersections with opposite directions.

The entire taxicab fleet running in the road network can be
denoted as: TF = {n1, n2, ....., n|TF|} where ni is the ith taxicab.
The historical taxicab trajectory set is denoted as TR. For each
taxicab ni in TF, we can write its trajectory in one specific day
d as: TRni (d) = {start = rk1k2 (t1), rk2k3 (t2), ......, rkl−1kl (tl−1) = end},
which is an element in set TR. Here the taxicab starts its journey
at time t1 and road segment rk1k2 , then ends this journey at time
tl−1 and road segment rkl−1kl .

To better solve the taxicab scheduling task, we introduce the
cost fc(ri j,TP) and profit fp(ri j,TP) for taxicabs running through
road segment ri j during time slot TP.

3.2 Primary Goal of Taxicab Scheduling

As discussed, the two primary goals of our distributed taxicab
scheduling task are to help taxicab fleet maximize their total
profits and improve the service delivery rates simultaneously by
recommending them the optimized driving routes, i.e.,
Definition 1 (Taxicab Fleet Scheduling Problem).

Assume the taxicabs within our online scheduling system
are denoted as a taxicab set A. For one specific day d, the
total profits of taxicabs and global service delivery rates are
abbreviated as fp(d) and R(d), which can be formalized by:

f (d) =

|A|∑
i=1

f ni
p (d) (1)

R(d) =
Na(d)
No(d)

(2)

where f ni
p (d) denotes the profits of taxicab ni on day d,

Na(d) and No(d) are the numbers of accepted orders and total
online requests on day d, respectively. Given the historical
trajectory set TR and the corresponding business records,
our target is to find the optimized joint taxicab scheduling
function F(order, driver) for order dispatching and taxicab
route recommendation by maximizing the profits fp(d) and
global service delivery rates R(d) at the same time, i.e.,

{TR,A}
F(order,driver)
−−−−−−−−−−−→ Optm{R(d), fp(d)} (3)

Here Optm{R(d), fp(d)} is the closely optimized scheduling
scheme calculated by our algorithm.

4 Urban Taxicab System Analysis
In this paper, the task of large-scale taxicab scheduling is decom-
posed into several subtasks including demand prediction, order
revenue calculation, order dispatch and supply-demand balancing,
which are of great difficulty to be solved by deep neural networks
in an end-to-end way. Therefore, in this section, we first model the
general traffic conditions and then, analyze the urban taxicab sys-
tem in terms of taxicab running patterns and settings of the urban
taxicab system, for designing our intelligent TS-DFA algorithm.

4.1 Analysis of Road Traffic Conditions

Urban traffic conditions are able to help calculate the expected
revenues of potential taxicab businesses, which guides recom-
mending optimized routes to taxicabs and further scheduling.
As the assignment and scheduling are determined by potential
gains in the future, the foreseeability of traffic conditions plays an
increasingly important role in scheduling tasks. In general, traffic
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Fig. 2: Analysis of urban taxicab running during different time periods in March, 2012, Suzhou.

conditions can be depicted by speeds, traffic volumes and other
dynamic elements in the road network. Here, to perform fine-
grained predictions, we first divide one day into time slots of T
minutes 1, and aggregate all traffic attributes into corresponding
time slots. Second, for better capturing the road segment-wise
traffic propagations, we extend our Road Network Graph G(V, E)
to G(V, E, A). Then, we redefine the road segment set E as ri ∈ E
where 1 ≤ i ≤ |E|, and the matrix A ∈ R|E|×|E| is a linkage matrix.
The element ai j ∈ A denotes the linkage between contiguous
road segment ri and r j, namely, ai j = 1 if and only if the
terminated intersection of ri should also be the initial intersection
of r j. The linkage matrix A enables the graph to carry richer
information, hence help the modelling of traffic propagations [?].
Existing traffic-related studies demonstrate that a sequence of
past observations of traffic conditions may imply many possible
futures through mining their spatiotemporal correlations [31],
[40], [44]. Hereby, we present a General Graph-based Traffic
Forecasting framework (GGTF) which has the potential to foresee
near future’s traffic statuses via Road Network Graph G(V, E, A),
hence supports our future-aware intelligent taxicab scheduling.
Given the historical observations of citywide traffic conditions
F (∆t) ∈ R|E|×1(∆t = 1, 2, 3..,T ) and linkages matrix A, we can
predict the traffic conditions F (TP) of time slot TP. The related
time slots for predicting F (TP) are in set RT(TP) which consists of
three temporal perspectives [31], [40], [45], hourly closeness (i.e.
adjacent P time slots with TP), daily periodicity (i.e. the last P
days of the same time slots with TP) and distant trend (i.e. the last
P weeks of the same day time slots with TP) 2. Considering the
spatial correlations with regard to road segment-wise propagations
as well as the temporal influences, we predict the traffic statuses
by:

F (TP) =
∑

k∈RT (TP)

A ∗ F (k) �WFk (4)

Here, WF

k ∈ R
|E|×1 is the learnable traffic condition parameter

which determines different spatiotemporal importances of each
road segment to the final results, and � denotes the element-wise
product. Obviously, the general framework can be trained offline in

1. The setting of T should balance the tradeoff between the accuracies and
temporal granularity. In our implementation, we slice the temporal information
into slots of 15 minutes. Notice that such a setting may be related to the results
of scheduling but is orthogonal to the generalities of our proposals

2. The hyperparameter P in our paper is set as 3 according to common
settings in previous studies [31], [40].

a back-propagation manner and the traffic conditions are predicted
in a citywide way.

In this part, we aim to forecast the average driving speed of
every road segment during different time periods, then estimate the
driving time between two specific locations in the road network
during a given time period. For road segment speed prediction, the
F is substituted by the historical speed observations TV . Then the
citywide expected speed in time slot TP can be derived as

Ex[TV(TP)] =
∑

k∈RT (TP)

A ∗ TV(k) �WV
k (5)

where the expected speed in a specific road segment ri is denoted
as Ex[tvri (TP)]. WV

k ∈ R|E|×1 is the speed-related learnable pa-
rameter and the estimated time cost for running through ri can be
achieved by:

Ex[tcri (TP)] =
Lri

E[tvri (TP)]
(6)

where Lri denotes the length of road segment ri. With the time
cost of running through road segment ri in time slot TP as its
weight WE of E, the Road Network Graph can also be modified as
G(V, E,WE)(TP), which becomes an E − weighted graph for time
slot TP. Based on this graph, we calculate the optimized driving
route from road segment ri to r j during time slot TP by:

OR[tcri→r j (TP)] = Dijkstra[G(V, E,WE)(TP), ri, r j] (7)

where Dijkstra means Dijkstra’s shortest path algorithm [5]. The
expected driving time between these two road segments ri and r j

can be further calculated by the summation of each road segment
along the optimized route, which is written as:

Ex[tcri→r j (TP)] =
∑

r∈OR[tcri→r j (TP)]

Ex[tcr(TP)] (8)

4.2 Analysis of Taxicab Running

The running of urban taxicabs usually exhibits obvious time-
varying patterns [28], [42]. On this account, we select four
different weeks in March, 2012 from Suzhou dataset, and average
them into period-wise running statistics in Figure 2. The spatial
distributions of taxicab businesses are illustrated in Figure 3.

As shown in the first subfigure of Figure 2, the average
occupied ratios 3 during 7:00 a.m. to 7:30 a.m. are the highest,
due to the high service demands and the low taxicab on-duty

3. It refers to the rate of occupied taxi number to all on-duty taxicab number.
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Fig. 3: Examples of pickup and drop-off points on workday mornings. Each red point represents a pick-up activity while each purple
point indicates a drop-off activity.

rates. Also, the supply-demand ratio patterns on workdays and
holidays are different, where occupied rates are relatively higher
on workdays than weekends during morning hours while they
are higher on weekends than workdays in late afternoon. From
the second subfigure, we discover that the average profits of
individual taxicabs are extremely high in the early morning, it is
most likely that the number of on-duty taxicabs is relatively small
and there are more long-distance taxicab trips with destinations of
airports, train stations. In the third subfigure, the orange and green
lines are for the total numbers of on-duty taxicabs of workdays
and weekends, respectively. There are more taxicab businesses
on weekends than workdays, because most people take buses
or subways on workdays in rush hours, and they tend to take
taxicabs for travelling to leisure places that are not distributed
along the subway lines. Notice that there are also three valleys and
a prominent peak in all three subfigures, which correspond to three
mealtimes of a day and the disequilibrium between supplies and
demands caused by the fact that driver shift periods of taxicabs are
occasionally overlapped with the traffic rush hours in the morning.

Figure 3 visualizes the pick-up and drop-off points during 8:30
a.m. to 9:00 a.m. for ten randomly selected workdays. The point
cluster of drop-off points in the peripheral urban area is much
denser than that of pick-up points. Actually, most factories and
companies are in the peripheral urban area, and therefore there are
obvious traffic flows from residential places to business places in
the morning and vice versa, reflecting the traffic can be influenced
by hierarchically urban patterns.

Based on the visualized observations above, we can conclude
that taxicab demands reveal an obvious period-wise and holiday-
related pattern, which is also interacted with urban hierarchical
structures. Thus, a more precise taxicab demand and volume
prediction method considering spatiotemporal dependencies is
subsequently developed to facilitate the description of taxi rev-
enues, and further help vacant taxicabs hunt for new passengers.

4.2.1 Modeling of Taxicab Businesses in Road Segments

It is widely accepted that historical calling information can be
obtained easily while real-time and near future demands cannot
always be collected timely and foreahead [?], [45]. Therefore, the

capacity of real-time perception and future foresight in the taxicab
scheduling system is the critical factor that allows the scheduling
more intelligent and balanced.

In this section, we model the spatiotemporal dependencies of
taxicab demands and supplies to predict their citywide distribu-
tions in the near future, based on the variants of GGTF proposed in
Section 4.1. Regarding taxi demands, since the urban area reveals a
distinct core-periphery structure, the observations of demands can
be concluded that core regions tend to follow a periodical recurrent
regularity while the orders on the periphery tend to be more
random [9], [18], [31]. Therefore, we predict citywide demands by
capturing spatiotemporal dependencies from historical records. In
the demand prediction task, the linkage matrix A is replaced by the
functional similarity matrix FS. Specifically, the Point of Interest
(POI) distribution of each road segment will be aggregated into
a C−dimension vector where C is the number of POI categories.
FS becomes region-function similarities between road segments
in terms of POI vectors. The prediction of demands can be
simplified as a weighted combination of recent citywide demands
and long-term expected demands. Given the historical sequence of
calling information D = {Di, i = 1, 2, ...,T }, the expected citywide
demands in time slot TP can be predicted by:

Ex(D(TP)) =
∑

x∈DR(TP)

FS ∗ D(x) �WD
drx

+
∑

y∈DE(TP)

FS ∗ D(y) �WD
dey

(9)
where DR(TP) consists of last P time slots of TP while DE(TP)
contains last P weeks of average demands with regard to the
day time slot TP in each corresponding week. Also, for one
road segment ri, Exri [D(TP)] is the element in Ex[D(TP)], de-
noting the total number of taxicab businesses during time slot
TP. WD

drx
,WD

dey
∈ R|E|×1 represent the demand-related learnable

weights, which are responsible for the combination of recent
demands and historical long-term expected demands, respectively.
Besides, we assume that the location at which the passenger
becomes available is uniformly distributed along the road segment.

Similarly, we estimate the number of vacant taxicabs coming
into road segment ri within near future’s time slot TP. Due to
the dynamic but periodical transition patterns in cruising taxicabs,
we apply the GGTF by modifying the propagation matrix A as a
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transition matrix TM. The element TMij(TP) in TM(TP) represents
the number of vacant taxicabs transfer from road segment ri to r j

averagely in historical daily time slot TP, indicating the traffic
patterns among adjacent road segments. The statistical time slot-
varying transition matrices are stored as a tensor. We organize the
historical data and learn the trainable weight WT offline.

Then, we obtain the estimated number of citywide vacant
taxicabs during time slot TP:

Ex[Tx(TP)] =
∑

i∈RT (TP)

TM ∗ Tx(i) �WT
i (10)

Note that Exri [Tx(TP)], the element in Ex[Tx(TP)], is the number
of vacant taxicabs coming into road segment ri during time slot
TP, and WT

i ∈ R|E|×1 is the learnable weight in terms of vacant
taxi numbers.

All parameters including statistics and learnable weights such
as TM, FS, WD

dr, WD
de and WT can be viewed as the derived traffic

and taxi business patterns in our data-driven method.

4.2.2 Profit Analysis of Taxicab Businesses
Now, we present the profit model for taxicabs. In the revenue
system studied before, the profit of a taxi driver is the total income
minus all costs. Then, we detail the compositions of profits in
terms of the cost and income respectively.

As for the cost of each driver, it is further classified into
rental fees and energy costs. Since the rental fee is fixed, we can
transform the daily rental fee into a rental fee rate, that is the
average fee per time unit, denoted as α. Also, we transform the
energy expense into an energy cost rate, that is the average energy
cost per distance unit, denoted as β. Then, the costs for taxicabs
running through road segment ri are as follows.

fc(ri,TP) = Ex[tcri (TP)] ∗ α + L(ri) ∗ β (11)

Here, Ex[tcri (TP)] represents the real-time estimated time arrival
(ETA) costs for a taxicab running through road segment ri in time
slot TP, which can be calculated via Equation (5) and (6).

Next, we elaborate the taxi profits from the perspective of in-
comes. First, the potential profits of a taxicab are traffic-sensitive,
e.g. fluctuations on ETA in accordance with the congestion condi-
tions of different road segments.

Then, the route planning for taxi drivers has a direct effect on
its profits. Hence, we devise a method for calculating the potential
profits in different road segments and time slots.

Given a taxicab business trip b(rm, rn,TP), where rm and rn

represent the starting point and the destination of this trip, respec-
tively. We assume the optimized driving route for this business can
be unfolded as OR[tcrm→rn (TP)] = (rm, rm+1, · · · , rn)(n > m). The
potential profits with regard to the trip b(rm, rn,TP) can be written
as:

fp(b(rm, rn,TP)) = M −
n∑

k=m

fc(rk,TP) (12)

where M is the business fare and can be computed by:

M =


ξ i f

n∑
k=m

L(rk) ≤ l

ξ + γ ∗ ROUND
(

n∑
k=m

L(rk) − l
)

i f
n∑

k=m
L(rk) > l

(13)
Here, ξ is the taxicab starting fee, l is the taxicab starting

distance, γ is the taxicab fare price per unit distance, and Function
ROUND is to round the taxicab fee into an integer. In the case

of the total driving distance of a business
n∑

k=m
L(rk) is less than

the taxicab starting distance l, the total fee is just ξ, otherwise the
total fee is the sum of the taxicab starting fee and the subsequent
service fee.

The above approach is to evaluate the potential profits of
taxicab businesses while sources and destinations are given. It is
suitable for online taxicab calling requests since the destinations
are marked by passengers before the trip starts. Nevertheless, for
roadside service requests, the destination is not known before and
therefore the route cannot be planned in advance.

In our work, we calculate the possible profits of a roadside
taxicab business appearing at rm during time slot TP, by mining
all historical taxicab businesses to find those occur in the same
road segment and at the same time slot. More precisely, we can
calculate it by the equation below i.e.,

fp(rm,TP) =

∑
b(rm, rn,TP)∈B

fp(b(rm, rn,TP))

|b(rm, rn,TP) ∈ B|
(14)

Note that B is the set of historical taxicab businesses and
|b(rm, rn,TP) ∈ B| denotes the number of elements in set B.

4.3 Analysis of Settings in Urban Taxicab System

Here, we discuss the settings of our intelligent taxicab systems.
For the length of the time slot, people used to uniformly split
one day into time slots of 30 minutes [28], [40]. However, from
Figure 2, the average occupied ratio of taxicabs, the average profit
of individual taxicabs, and the number of taxicab businesses all
change rapidly during different specified time slots. Based on this,
we find that 30 minutes is too long to depict the changes of the
traffic conditions and taxicab business patterns. After a few rounds
of testing, in our implementation, we set the length of time slot to
be 15 minutes which is more accurate to capture the fluctuation
of dynamics in the road network. In the case of increasing more
and smaller time slots, a specific trip may be covered by multiple
time slots, we need to perform a recursive multi-step predictions
of traffic statuses. This way, to calculate a trip from road segment
ri to r j, we associate the GGTF framework to predict the citywide
statuses, then generate Ex[tv(TP)], Ex[tc(TP)], Ex[D(TP)] and
Ex[Tx(TP)] for corresponding road segments.

5 Online Taxicab Scheduling
In this section, we design a context-aware based regional value to
help quantify the potential profits of each possible driving route
considering the impact of peer taxis and time-varying traffic con-
ditions. To improve the order dispatch efficiency and maximize the
service delivery rates of our taxicab scheduling system, the order-
taxicab value score and bi-incentive strategy are well-designed,
respectively. Finally, we present the integrated online scheduling
algorithm.

5.1 Online Regional Values for Potential Driving Routes

In order to optimize the recommended route for a taxicab from
all its possible driving routes, we need to compute the potential
profits of this taxicab while it entering a road segment in a given
route at a given time slot, which boils down to calculating the
local potential profits that a taxicab is expected to earn. Here, we
suppose the location where a passenger appears along the road is
uniformly distributed, and all vacant taxicabs travel along the road
segment at a fixed speed depending on traffic conditions.
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Fig. 4: Temporal-spatial diagram of taxicabs in road segments
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Fig. 5: Examples of taxicab scheduling

As discussed above, most previous studies were on recom-
mending optimized paths to individual taxicabs [25], [33], [35].
However, the optimal scheduling strategies for individual taxicabs
may not be optimal for the entire taxicab fleet. For instance, a
scheduled vacant taxicab enters a road segment at a specific time,
and the potential profit of this road segment will be influenced,
because the potential business could be taken away by the taxicab.
At this moment, if sending another taxicab to this road segment,
the potential profit in this road segment would become very
limited, because of the competition taken for taxi orders. Another
example is shown in Figure 5. Figure 5(b) illustrates the scanerio
that two drivers can arrive at the order departure place within the
same time, it becomes difficult to decide which taxicab to pick up
the passenger. And in Figure 5(c), if both two drivers can arrive
at the order departure place within maximum waiting time, the
system is required to dispatch the best order-taxicab pair. In case
1, imbalance arises when passenger 1 has to wait much longer than
passenger 2, which deteriorates the user experience of passenger
1. However, in case 2, it balances the waiting time between two
passengers even though passenger 2 has to wait for longer time.
These two cases jointly indicate that the cooperative scheduling
with context taxicabs and orders considered is of great significance
in optimization.

In order to avoid collisions as well as biased solutions in
taxicabs scheduling, we are encouraged to collect the orders sub-
sequently as Figure 5(a), and take the spatiotemporal influences of
previous taxicab scheduling strategies into account for calculating

the potential profits of the road segments. This way, such schedul-
ing strategies are arguably collision-avoided and context-aware.

It is accepted that the potential profits are mainly determined
by the driving route of each driver [14], [36], [41]. Intuitively,
according to the city structure and urban functionality, it follows
different revenue patterns in each road segment, i.e. closer to
downtown, the values are higher, which indicates a larger opportu-
nity to meet with high-quality orders with long business distance
and short pick-up distance. The regional revenues are dependent
on the supplies provided by taxi drivers and demands launched by
passengers in the road segment. To describe real-time prospective
revenues of taxicabs cruising, we design a context-aware feature,
named regional driving value (RDV), to perceive real-time supply-
demand business status in each road segment.
Definition 2 (Regional Driving Value). Given a road segment ri

and the current time slot TP, the number of vacant taxicabs
Txri , and the number of passenger callings Dri , the Regional
Driving Value (RDV) of the road segment ri can be defined as
VRDV (ri,TP),

VRDV (ri,TP) = 1 +
1 + Dri (TP)
1 + Txri (TP)

(15)

where the factor ’1’ is designed to eliminate the impacts of zero
values of Txri (TP) or Dri (TP). As described in [25], we don’t
have to consider the influences of the road segments which are 5
steps away from the taxicab driver when calculating the potential
revenues, since the increasing rates of the expected revenues
are less than 10% after more than 5 road segments. Thus, it is
reasonable to set an upper bound Ω = 5 for the length of possible
route S . Without considering online taxicab calling information,
the total expected values are indicated by the following five road
segments which starts at the current one and ends within five steps
in the corresponding route S . Then the regional driving value
along the route S is computed by

VRDV (S ,TP) =
∏
ri∈S

VRDV (ri,TP) (16)

As we obtain the predicted demands and taxicabs in Section
4.2.1 in future time slots, we are also able to foresee future poten-
tial values in all road segments. To better understand our proposed
RDV , we show an example of citywide RDV in Figure 6. The
subregions colored deeper represent they are with greater demand-
supply ratios and more potential driving values. Meanwhile, the
citywide RDV generally follows the core-periphery pattern except
for some highlighted spots such as transportation center, which
conforms to the real-world business patterns.
Definition 3 (Optimized Route Selection Problem). Given a

taxicab, for a candidate set of driving routes Θ, the target is
to recommend a route S ∗ ∈ Θ with the maximum expected
revenue in the current time slot, i.e.,

S ∗ = arg max
S∈Θ

{VRDV (S ,TP)} (17)

Since we bound the length of possible routes by Ω, and de-
termine that each intersection connects with constant outgoing
road segments, the searching space of possible routes can thus
be elaborated with constant time complexity. Then the quantified
potential revenues along the route S ∗ can be calculated with the
sum of profits in each involved road segment by Equation ( 12)-
(13):

fp(S ∗,TP) =
∑
ri∈S ∗

fp(ri,TP) (18)
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Fig. 6: An example of the citywide RDV map

5.2 Order-Driver Value Prediction for Improvements on Or-
der Dispatch Efficiency

By investigating real-life taxicab businesses, we find that broad-
casting orders in a wide-spread fashion in most taxicab scheduling
systems such as Didi deteriorates the efficiency of matching
order-taxicab pairs. Since order-taxicab pairs are usually with
various interacted attributes (e.g. pick-up distance) that contribute
to unequal values to each driver, it is highly wanted to compute
the potential revenue of each order specific to every individual
taxicab. Inspired by [41], in our system, we design an order-
taxicab value score, which can be estimated by the descriptions
of orders and drivers. Further, to perform in a data-driven manner,
the value score can be viewed as the predicted probability of a
successful business within an order-taxicab pair. Thus, the training
samples can be organized easily. The description of orders and
drivers are classified as order related, including business distances,
ETAs between the origin and destination and the destination
category, taxicab related including the historical and recent order
probability, and order-taxicab related including pick-up distance
as well as contextual factors. All these features are aggregated
into a feature vector x and fed into a regression function. Given
the taxicab’s road segment rk, order’s origin ro and destination rd,
the score VOod = 1 stands for acceptance while VOod = 0 stands
for non-acceptance, the value score can be formulated as:

VOod = p (y = 1|rk, ro, rd) =
1

exp
(
−wTxk,o,d

) (19)

where wT represents the learnable parameters. This model can be
trained offline and the value scores within order-taxicab pairs are
calculated with online deployment. This mechanism captures the
order-taxicab interactions and improves the coarse-grained order
dispatch to a more precise recommendation, which not only avoids
the order explosion in rush hours, but promotes the dispatching
efficiency.

5.3 Bi-incentive Strategy for Maximizing the Service Deliv-
ery Rates

Nearly all studies on order dispatch or taxicab scheduling focus on
maximizing the profits of drivers and very few consider to promote
the service delivery rates which closely related to passengers’
experience. Considering the two following scenarios, since the
orders with long pick-up distances occur in peripheral and taxi-
free regions, it becomes difficult to match the order-taxicab pair.

This is mainly because drivers wouldn’t like to take external detour
costs to pick up the passenger with limited revenues. And in
another scenario, orders with shorter business distances are also
unpopular to drivers due to the revenues are proportional to the
order distances. In this case, there are still some taxicabs cruising
unoccupiedly. In order to improve the overall occupied ratios and
service delivery rates, we propose a bi-incentive mechanism to
stimulate both drivers and passengers on the deal in the case of
long pick-up distance and low expected revenue orders. Specifi-
cally, from the view of drivers, our system raises the order price by
asking the passenger and providing additional allowances. From
the view of passengers, we identify the nearest taxicab hotspots
where passengers can easily arrive and recommend the hotspots to
passengers for a more quick pick up.

5.4 Proposed Algorithm: Future-Aware Intelligent Taxicab
Scheduling

The difference between the goal of intelligent taxicab schedul-
ing and order dispatching lies in that the former one not only
determines the best order-taxicab matching but recommends the
vacant taxicabs to the regions with more potential revenues. In
our problem settings, this goal can be interpreted as maximizing
global future gains of all drivers as well as the overall service
delivery rates in a coordinated way.

So far, we have proposed mechanisms to predict taxicab de-
mands, taxicab supplies as well as order-taxicab interactive values
for supporting our order dispatching and scheduling task. In this
section, given the taxicabs within our online scheduling system
A and the historical trajectory set TR, we formally introduce our
distributed and future-aware intelligent scheduling algorithm F.

The overall taxicab scheduling algorithm consists of two parts.
The first part is the learning-based module which aims to learn
the spatiotemporal patterns of traffic and taxicab business. This
part only needs to be executed once and the model parameters
will be restored for online taxicab scheduling. The second part
is taxicab scheduling with online real-time taxicab statuses and
passenger calling information. With above pre-trained models,
our scheduling system can perceive the current traffic conditions
and foresee the status in near future. Noticed that due to the
seasonal fluctuations on traffic, the learnable parameters will be
updated every three months, hence it enables the system to be
more sensitive in different seasons. We estimate the real-time local
values RDV in each road segment to sense the supply-demand
conditions which indicate how much the taxicab will earn, and
subsequently provide guidance to select the optimized route for
taxicabs.

Next, we describe our proposed scheduling algorithm in the
following scenarios.

Scenario 1: Our system monitors the business statuses in
terms of both demand and supply sides regularly and updates
every time slot. For time slot TP, it computes the real-time
and near future’s citywide RDV with our proposed future-aware
method, to quantify the balance of demands and supplies. For
any vacant taxicab in set A, the system calculates the expected
revenues of all possible driving routes in a current time slot with
Equation (15)-(17) and recommends the corresponding optimized
route S ∗. Specifically, the system schedules the vacant taxicabs
cruising on demand-overloaded road segments to the underloaded.
In a demand-overloaded road segment, the system compares the
timestamp of each taxicab entering and then schedules the latest-
entering taxicab to other nearest potentially demand-underloaded
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road segments. Notice that only vacant taxicabs can impact the
next steps of other taxicabs that are currently vacant. In other
words, the routes of occupied taxicabs should be ignored for route
optimization.

Scenario 2: Once a vacant taxicab accepts a service request, its
driving route is determined by the trip specified by the passenger
and cannot be rescheduled before the trip ends. Then, the system
deletes all recorded recommended future routes for this taxicab to
make sure that the obsolete routes will not impact the scheduling
strategies of other vacant taxicabs. After the trip, the occupied
taxicab becomes a vacant taxicab and informs the system. Upon
receiving the information, the system calculates and recommends
an optimized route starting at the coming road intersection.

Scenario 3: Upon receiving a series of service requests from
passengers, the system triggers the order dispatch task. For a
service request originated from road segment ro and destined at
rd, the system first calculates the expected driving time to the
passenger ro for all vacant taxicabs in set A, based on current
and predicted traffic conditions. Then the system organizes the
order-taxicab attributes of those taxicabs can arrive in T0 and
evaluate their order-taxicab value scoresVOod with our pre-trained
model. The taxicabs with higher value scores tend to have a
higher possibility to accept the orders, hence taxicabs with top-K
scores are selected into a candidate taxicab set H = {vh1 , ....., vhK }.
Among them, we select one taxicab to pick up this passenger and
maximize the overall profits of all scheduled taxicabs at the same
time. Specifically, given taxicab vhk , the next recommended route
to taxicab vhk is s∗vhk

, the expected driving revenue of the given
recommended route is fp(s∗vhk

,T P). To optimize the scheduling
globally, we select the taxicab v∗ in candidate taxicab set H each
time to ensure the expected revenue of its potential route less than
the expected revenue of the given online taxicab calling business,
i.e.,

v∗ = arg min
vhk ∈H

{
fp(s∗vhk

,T P)
}

s.t.
fp(b(ro, rd,T P)) > fp(s∗vhk

,T P)

(20)

It worth noting that, here we omit the taxicab detour cost from
the cruising road segment to the passenger departure position due
to the arrival time constrains the detour cost as well as the order-
taxicab scores have taken pick-up distances into account. K is a
hyperparameter in our algorithm and we set K = 10 according to
the experiments.

If the condition is not met, we will relax above conditions to
selecting the taxicab with minimum expected potential revenues.
Then the taxicabs cruising on low expected-value road segments
are more likely to be scheduled to pick up the most recent
passengers. Otherwise, if no vacant taxicabs in set A can pick
up this passenger within T0, then the bi-incentive mechanism will
be triggered to help facilitate the deal of this order. In this case,
the order will be broadcast one round by one round dynamically
until the maximum round meets or the passenger cancels.

Scheduling Method. Our taxicab scheduling system runs
regularly as Scenario 1 described. Once a vacant taxicab in A
arrives at an intersection, the optimized route is recommended
for a global taxi scheduling. Such recommendation decides the
direction of next step, once a vacant taxicab is approaching an
intersection. When the next step of a taxicab is planned, the system
records it and takes it as a possible precondition for the subsequent
recommendation. Once the system receives a series of online
callings, the pick-up time is calculated and order-taxicab value

TABLE 1: Evaluation setup

Parameters Description
Length of time slot T 15 minutes

Upper bound of route length Ω = 5
Percentage of taxis in set
A account for total 25%

Number of days for evaluation 10
Waiting time limit of passenger T0 = 10 min

Taxicab starting distance l = 3 kilometers
Taxicab starting fee ξ = 10 RMB/8 USD

Taxicab fare price per unit distance γ = 2 RMB/Kilometer

scores are computed to help the order dispatch process, triggering
Scenario 3. Once a vacant taxicab in A picks up a passenger, it
will be released and labeled as an occupied taxicab, triggering
Scenario 2. And once the order is canceled or taxi arrives at the
destination, the system triggers Scenario 1.

To better understand the operation mechanism of our proposed
algorithm, we demonstrate the technical process of TS-DFA in
Figure 7.
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Fig. 7: The technical process of proposed algorithm TS-DFA

6 Evaluation

In this section, we evaluate the effectiveness of our proposed
taxicab scheduling algorithm by conducting extensive empirical
studies on two cities, Suzhou and NYC.

6.1 Data Description

In the experiments, we use two real-world datasets Suzhou and
NYC to implement our future-aware real-time taxicab scheduling.

Suzhou is a leading city in deploying taxicab trajectory mon-
itoring systems, and the dataset is collected from the government
of Suzhou, China [3]. By processing the dataset, we obtain
40, 970, 885 pick-up and drop-off activities throughout the entire
year in 2012 (365-day) including 4, 303-taxicab trajectories. We
randomly select 10 days which cover 1, 122, 490 records for test,
and use the remaining 355 days to infer taxicab business patterns
and taxicab running costs of road segments.

NYC is a top international metropolis with a highly dynamic
taxicab system. We collect the taxi trip records from NYC Taxi &
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Limousine Commision 4 and recover the trajectories with the pick-
up and drop-off locations. Totally, we obtain 32, 540, 088 taxi trips
containing detailed pick-up and drop-off information with time
stamps and taxi fees between 01/01/2017 and 05/31/2017 (151
days). We randomly select 10 days including 3, 361, 620 pick-up
and drop-off activities for test, and the remaining 141 days will be
utilized for pattern learnings.

Meanwhile, we assume that all active taxicabs in set A follow
the scheduling strategies of our proposal, and taxicabs in set
A account for 25% of all taxicabs except in the experiment of
investigating the impact of the percentage of taxicabs involved in
set A.

6.2 Implementation Details

In the offline learning part of the traffic forecasting framework,
we set the length of past observation P in terms of trend, period
and closeness as 3 for all perspectives, according to the settings in
traffic flow prediction paradigm [40]. For online forecasting, we
fetch the corresponding data and pass it through the model, the
algorithm outputs the predicted future traffic statuses to support
the scheduling. And in order dispatching module, online calling
requests or taxicab pick-up points in real-world datasets will
trigger the scheduling. The taxicabs with top-K order-taxicab
value scores will be selected into the candidate set. Then, the
system encourages the taxicab with lower potential revenue to
accept the most recent order. In terms of the implementation of
the proposed bi-incentive strategy, we simulate the conditions by
extending the maximum waiting time of the passengers to 1.5
times and increasing the revenues to 1.05 times of the previous
for simplicity. We fix the period of a time slot as 15 minutes and
therefore there are 96 time slots in one day.

Regarding taxicab operations, we assume that the fuel price
is 8 RMB (4 USD) per liter, taxicab consumes 10 liters of fuel
per 100 kilometers, and a driver pays 200 RMB (100 USD) to the
taxicab company every day for taxicab rents. The taxi fare is 10
RMB (5 USD) for the first 3 kilometers and 2 RMB/Kilometer
(2 USD/Kilometer) afterwards. Unless otherwise specified, the
default values are set according to Table 1.

6.3 Experimental Results

6.3.1 Baselines

Since the studies most closely related to ours are taxicab route
recommendations and order dispatch tasks, we compare our taxi
scheduling algorithm TS-DFA with state-of-the-art algorithms,
CERS [25], LOD-RHP [29], and TODCO [41].

• CERS designs a profit objective function to evaluate the
potential profits of all possible driving routes while min-
imizing the cruising time and recommending the optimal
route for drivers [25].

• TODCO is a combinatorial optimization method which
aims to maximize the global business success rate by
predicting driver actions and passenger destinations simul-
taneously [41].

• LOD-RHP is an MDP-based method that formulates the
order dispatch as a large-scale sequential decision-making
problem and aims to optimize the platforms long-term
efficiency as well as instant customer demands [29].

4. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

The performances of CERS, TODCO and LOD-RHP algo-
rithms are all evaluated with online taxicab calling information
for fair comparisons.

6.3.2 Evaluation Metrics
The performances of a taxicab scheduling system are mainly
concerned with drivers’ profits and passengers’ experience. In
this case, the metrics designed for evaluating the performances of
taxi scheduling algorithms are as follows: i) average daily profits,
average passenger waiting time and overall service delivery rates
of taxicabs; ii) average profits, passenger waiting time and service
delivery rates in terms of different time slots; iii) average daily
profits of taxicabs on different types of day and iv) profit distribu-
tions among various taxicabs. To be noted that the service delivery
rate refers to the order acceptance rate in the calling system.

6.3.3 Numerical Results Comparison and Analysis
Daily evaluation. The numerical results in terms of daily average
metrics are illustrated in Table 2. Overall, our proposed algorithm
TS-DFA gains remarkable improvement on average profits and
service delivery rates, which are two key metrics in taxicab busi-
ness system. Obviously, the service delivery rates, namely business
success rates, raise a lot compared with alternative methods such
as CERS by 10% and 5% on Suzhou and NYC, respectively. It
achieves closely and slightly higher performance with TODCO,
which mainly aims to optimize global business success rates. The
improvement of our integrated algorithm may stem from the pro-
posed future-aware mechanism, which guides the inexperienced
drivers to cruise on road segments with higher potential values
and balances supply-demand dilemma ahead of time. And the
predictions of order-taxicab value scores enable our algorithm to
filter out the most appropriate taxicabs for best dispatching. At the
same time, there is no doubt that overall profits are raised with the
promotion of business rates. Noted that, CERS helps drivers earn
more profits than TODCO, as CERS only optimizes the single
objective of profits. These results coincide with our motivation
that a farsighted and win-win business operation leads to more
revenues and service success rates.

For the metric of passenger waiting time, LOD-RHP achieves
better performance, as it tends to satisfy the instant customer
demands. Even so, our method still performs best among them
mainly because the order-taxicab value score and bi-incentive
strategy make sense when in the face of extreme taxicab business
environments.

From the perspective of different day types, we observe that
the average daily profits of taxicabs during weekends are better
than those during workdays in Table 3. This is due to the orders at
weekends may be a little more than workdays. Another reason can
lie in that traffic patterns are more easily captured at weekends,
and taxicabs can run more efficiently under this circumstance.

Figure 9 presents the distributions of the average daily profits
of individual taxicabs on Suzhou dataset. The distribution of our
algorithm is roughly in the range of 350-500 RMB per day. It
means that our algorithm is capable of equilibrating the daily
profits among taxicabs. Also, the average daily profit of TS-DFA
is more stable than others, especially compared with CERS, due to
CERS is only to maximize the driver profits without considering
the imbalanced traffic and demand patterns.

Another interesting phenomenon in Table 2 is that the average
profits in NYC are higher and the waiting time is less than those
of Suzhou consistently. The reason behind it may lie in that the
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(a) Average profits during different time 
periods on Suzhou

(b) Average profits during different time 
periods on NYC

(c) Average passenger waiting time 
during different time periods on Suzhou

(d) Service delivery rates during 
different time periods on Suzhou

Fig. 8: Performance during different time periods

TABLE 2: Results comparisons in different cities

City Methods Average Profits
per day (RMB/USD)

Passenger Waiting
Time (min)

Service Delivery
Rates (%)

Suzhou

CERS 406.0 6.29 74.82
TODCO 395.6 6.42 82.45

LOD-RHP 418.5 5.69 81.03
TS-DFA (Ours) 428.7 5.76 84.96

NYC

CERS 223.5 4.87 78.94
TODCO 218.0 4.66 82.42

LOD-RHP 238.3 4.32 80.36
TS-DFA (Ours) 254.8 4.48 83.17

TABLE 3: Profit performance on different types of days

Dataset Suzhou(RMB) NYC(USD)

Method
Day type Workday Weekeed Workday Weekend

CERS 398 408 241 251
TODCO 385 412 248 254

LOD-RHP 409 424 252 262
TS-DFA 422 432 262 268

average GDP values in NYC are much higher than those of Suzhou
while the urban areas covered in NYC are smaller than Suzhou,
then the drivers can arrive at the pick-up location more quickly.

Time slot-wise evaluation. To investigate the algorithm per-
formance in terms of various time periods, we visualize the
average profits between 7:00 a.m. and 8:00 p.m. in Figure 8(a)
and (b) for Suzhou and NYC, respectively. Also, in order to
evaluate the online calling service capacity, we take Suzhou as
an example and present the performances on these two metrics
in Figure 8(c) and (d). Overall, our proposed method is able to
gain more profits and facilitate the deal of taxi business in most
time slots. Worth noting that we observe the proposed algorithm
performs remarkably better than others during most time periods
from 7:00 a.m. to 9:00 a.m., 5:00 p.m. to 7:00 p.m. in terms
of service delivery rates. This reveals our proposed method has
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Fig. 9: Profit distribution of scheduled taxicabs

the superiority to deal with large-scale orders with order-taxicab
value scores and can work better with insufficient taxicab supplies.
At nights, our method schedules and stimulates the unoccupied
taxis to areas with higher probability to pick up passengers
under the circumstance of supply-demand imbalance, satisfying
the passenger demands and improving overall revenues.

6.4 Ablation Studies

In our work, three important schemes are proposed, traffic fore-
casting based future-aware mechanism, regional driving value
metric and order-taxicab value score-based context-aware mecha-
nism. To investigate how each newly proposed component con-
tributes to the success of the entire algorithm, we remove the
proposed strategy from the integrated algorithm to perform the
ablation studies on our Suzhou dataset. The following strategies
are removed successively as TS-V1 to TS-V4: (1) TS-V1: Future-
aware mechanism, (2) TS-V2: Regional driving value, (3) TS-V3:
Order-taxicab value score, (4) TS-V4: Bi-incentive strategy.

Table 4 shows the performances of these four variants of our
algorithm. Obviously, the future-aware mechanism contributes to
a large decrease of waiting time by 6% from 6.14 min to 5.76 min.
This verifies that the mechanism enables our algorithm to precisely
foresee the near future traffic statuses, and to improve the taxicabs
utilization as well as global revenues. As for the bi-incentive
strategy, it provides opportunities for drivers and passengers to
reconsider the business and facilitate the deal success, promoting
the overall profits and service delivery rates. If we remove it, the
business success rates and profits will drop to 82.17% and 416.5
RMB. With RDV removed, the profits have an increases, and
with bi-incentive strategy removed, the passenger waiting time
decreases due to the discards of out-of-range orders. In summary,
our integrated model is consistently superior to other variants on
most metrics and the scheduling task needs the tradeoff between
different factors.

6.5 Parameter studies

In this part, we study the impacts of an external parameter
and an internal hyperparameter on performances. The results are
illustrated in Figure 10.

As for the external factor, the percentage of taxicabs involved
in A, we compare the performance with the best baseline LOD-
RHP. The profits decrease when the involved taxicabs increase,

TABLE 4: Performance on different variants of TS-DFA on
Suzhou dataset

Variant Average Daily
Profits (RMB)

Passenger Waiting
Time (min)

Service Delivery
Rates (%)

TS-V1 426.7 6.14 81.44
TS-V2 431.3 5.93 82.26
TS-V3 422.8 5.72 81.55
TS-V4 416.5 5.50 82.17

Integrated 428.7 5.76 84.96

(b) Performance on different 
Top-K scores selected 

(a) Performance on different 

scheduled taxicabs

Fig. 10: Performance on different parameter settings

meanwhile the service delivery rates climb to a peak around
22% and then decline afterwards, indicating that the success of
businesses requires a medium-sized volume of scheduled taxicabs.
We also observe that our method has an edge on the robustness in
this test when the percentage of taxicabs in set A increases from
15% to 60%.

In terms of the internal hyperparameter K, we adjust K in {2,
5, 10, 15, 20} and obtain the best performance when K equals
10. The reason lies in that a greater K declines the efficiency in
order dispatch while a smaller K reduces the opportunity to select
the best order-taxicab match. Also, the highly dynamic of supplies
and demands inspires us that K can be a learnable time-varying
parameter in different time slots and it remains as our future work.

6.6 Case Study and Procedure Visualization

Besides the numerical results, in order to provide a more intuitive
understanding of the proposed future-aware and context-aware
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TABLE 5: Order-driver value scores between each order-taxicab
pair

Driver

Order
(dist) a

(6.8km)
b

(5.2km)
c

(4.8km)
d

(3.2km)

1 0.56 0.23 0.45 0.09
2 0.62 0.15 0.43 0.08
3 0.41 0.22 0.48 0.07
4 0.46 0.27 0.33 0.10
5 0.20 0.54 0.08 0.44
6 0.27 0.51 0.12 0.47

TABLE 6: Order-driver dispatch results

Driver Assigned order Order-driver value score
1 - -
2 a 0.62
3 c 0.48
4 - -
5 b 0.54
6 d 0.47

scheduling algorithm, we perform case studies in this subsection.
We first analyze the dynamic RDV map generated by the real-
world dataset. Then we select a subregion of NYC and establish a
small set of order requests and taxicabs. We will analyze how the
algorithm dispatches 4 orders to 6 drivers within the subregion.

Figure 11(a) exhibits the RDV map indicating the dynamic
demand-to-supply ratios during different time slots. The circles
colored yellow reveal the residential places near Jackson Heights
and those colored red are located in Manhattan business blocks.
We discover that Manhattan blocks tend to have higher regional
values during almost all hours, indicating driving to the business
areas usually gain more profits. Also, values in the morning
in Jackson Heights are relatively higher than afternoon while
values in Manhattan are relatively lower in the morning than
afternoon. It conforms to the urban commuting regularity that
people in residential areas will travel to urban business blocks
in the morning, increasing the taxicab demands in regions circled
yellow and the values in business blocks shrink in the morning
due to the lower population intensity. Fortunately, these results
correspond to our previous analysis and motivations, leading to a
more accurate route optimization.

Then we randomly release 4 orders with 6 taxicabs involved
to build the toy example in the selected regions as Figure 11(b)
shows. We show the derived order-taxicab value scores in Table 5
via the learned business patterns. The order dispatch results are
presented in Table 6. Specifically, the order b is assigned to taxicab
5 which is with longer pick-up distances than taxi 6 considering
the balance of passenger waiting time within order b and d. And
the order a is assigned to taxicab 2 rather than taxicab 1, probably
because the taxicab 1 locates at regions with higher potential
values than taxicab 2. The toy example results particularly verify
the effectiveness and the aims of our context-aware and future-
aware algorithm.

6.7 Discussion

In this subsection, we will discuss some practical issues related to
our proposed algorithm.

Acceptable time complexity of TS-DFA. Regarding the
algorithm complexity of our proposed method, it can be roughly

8:00-8:15 a.m. 12:00-12:15 a.m. 4:00-4:15 p.m.

(a) Time-varying RDV maps of a selected day in NYC (b) Example of order dispatch

Fig. 11: Cases of RDV Maps and order dispatch example

divided into three parts. The future-aware mechanism takes
the graph-based model as the main component, which includes
3 × P × |V | parameters and P is a constant number determined by
the combined time slots. And for our context-aware scheduling,
let Ω be the search bound in route optimization, it takes 4Ω search
space due to 4 intersections connected maximumly. The order-
taxicab value evaluation process takes |w| parameters, which is a
constant number. In the experiments, the forecasting process of
our algorithm takes averagely 1.08 seconds and the scheduling
process takes approximately 1.28 seconds when a series of orders
and taxicabs come, sufficiently meeting the requirement of real-
time taxicab scheduling. Therefore, our work can easily schedule
multiple taxicabs cooperatively within polynomial time complex-
ity with the proposed multi-stage learning-based mechanism.

The scalability of TS-DFA. The core idea in our method
includes the future-aware mechanism which foresees the traffic
statuses by mining historical patterns, the context-aware mecha-
nism that measures the regional values, and the learnable order-
taxicab value that measures the revenue of each order specific
to every individual taxicab. Thus, it has a nice extension for
encourage better optimized solutions with learnable mechanisms
in other dynamic scheduling tasks such as work scheduling and
assignment.

The limitations of TS-DFA. Despite the promising results,
TS-DFA also suffers the unforeseebility of individual vehicles,
hence the drivers within our system cannot be aware of the
surrounding individual vehicle conditions during driving process.
Thanks to edge computing techniques [19], [26], [27], there must
be opportunities to deploy sensing devices on the road to facilitate
local traffic the awareness, for supporting local driving decisions
and route planning. In addition, with emerging applications of
deep learning on vehicle technologies [11], [12], by defining
revenues and introducing novel reinforcement deep learning, our
model can be more powerful in adaptivity to more complex
situations and reduce applying labor-intensive labeled data. This
leads to another direction of future studies.

7 Conclusion
The increasing use of online taxicab calling services facilitates the
development of taxicab industries and intelligent transportation
systems. However, the large-scale order flows and short-term
imbalanced supply-demand distributions pose a great challenge
to further prosperity. In this paper, to achieve farsighted traffic
awarenesses and quick order dispatches, we propose an integrated
intelligent taxicab scheduling approach based on future-aware
and context-aware mechanisms. Specifically, we propose a graph-
based traffic forecasting framework to foresee the traffic statuses
considering the spatiotemporal dependencies, and measure the
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regional supply-demand contexts by proposed RDV for route
selection. Then we design an order-taxicab value score to mine
the historical order-taxicab business patterns in order to tackle
the efficiency bottleneck in large-scale order flows. To facilitate
the service delivery, a bi-incentive strategy is seamlessly coupled
into our dispatch scheme. Experimental results on two real-
world taxicab datasets demonstrate the significant improvement
of service delivery rates and global revenues of our proposal.
Therefore, this paper offers new solutions to urban dynamic traffic
challenges and spatiotemporal scheduling tasks with future-aware
and context-aware perspectives.

For future work, we will investigate the adaptive dynamic
order dispatch system and extend our future-aware and context-
aware mechanism to a deep reinforcement learning method while
maintaining the interpretability, which will be of significance in
dynamic scheduling tasks.
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