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ComS2T: A Complementary Spatiotemporal
Learning System for Data-Adaptive
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Abstract—Spatiotemporal (ST) learning has become a crucial
technique to enable smart cities and sustainable urban develop-
ment. Current ST learning models capture the heterogeneity via
various spatial convolution and temporal evolution blocks. How-
ever, rapid urbanization leads to fluctuating distributions in urban
data and city structures, resulting in existing methods suffering
generalization and data adaptation issues. Despite efforts, existing
methods fail to deal with newly arrived observations, and the
limitation of those methods with generalization capacity lies in
the repeated training that leads to inconvenience, inefficiency and
resource waste. Motivated by complementary learning in neuro-
science, we introduce a prompt-based complementary spatiotem-
poral learning termed ComS2T, to empower the evolution of models
for data adaptation. We first disentangle the neural architecture
into two disjoint structures, a stable neocortex for consolidating
historical memory, and a dynamic hippocampus for new knowl-
edge update. Then we train the dynamic spatial and temporal
prompts by characterizing distribution of main observations to
enable prompts adaptive to new data. This data-adaptive prompt
mechanism, combined with a two-stage training process, facilitates
fine-tuning of the neural architecture conditioned on prompts,
thereby enabling efficient adaptation during testing. Extensive
experiments validate the efficacy of ComS2T in adapting vari-
ous spatiotemporal out-of-distribution scenarios while maintaining
effective inferences.

Index Terms—Spatiotemporal learning, complementary learn-
ing system, OOD generalization, urban computing.
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I. INTRODUCTION

S PATIOTEMPORAL (ST) learning, which is inherited from
spatial learning [1], [2], [3] and equipped with temporal

tendency extractor [4], has become a pivotal technique to im-
prove the quality of urban life and the intelligence of cities.
Current spatiotemporal forecasting models usually incorporate
various spatial convolution blocks and temporal dependence
extractors to achieve predictions, enabling diverse multi-variate
urban series forecasting [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], including traffic conditions [7], [16], [17], [18],
[19], natural climates [20], [21], [22], [23], as well as key in-
dexes of environments [24], [25], [26], [27]. Despite prosperity,
most existing methods assume that training and testing data
are both independent and identically distributed (i.i.d.) where
the principle does not hold in real-world scenarios. Actually,
urban spatiotemporal elements tend to expand and increase with
urbanization and evolution of cities. In Fig. 1, we take human
mobility prediction as an instance. From a macro perspective,
the vehicle population of Shanghai increased from 3.97 million
in 2020 to 5.37 million in 2022, whereas the demographic
population of NYC decreased from 8.77 million to 8.46 million
from 2020 to 2021. From a microscopic perspective, if a region
experiences the construction of a shopping mall, the mobility
intensity will decrease suddenly during the construction period,
followed by an increase after construction. As a result, the
shifts regarding temporal distribution and urban structures pose
out-of-distribution (OOD) challenges on respective temporal
and spatial perspectives to current ST models. Therefore, a
data-adaptive spatiotemporal learning framework with timely
model updates is highly needed.

Although the majority of spatiotemporal learning methods
fail to adapt their models to new OOD instances, learning on
graphs with OOD settings has increasingly raised the attention
of researchers [28], [29], [30], [31]. In general, environment
is a fundamental concept in OOD learning where researchers
can explicitly capture the invariance across environments for
transfer. In our spatiotemporal learning scheme, we can inherit
the environment concept and classify spatiotemporal environ-
ments into temporal aspect and local structures. To address
temporal distribution shifts, AdaRNN defines covariate shifts
in time series and designs distribution characterization to ag-
gregate previous series for weighted prediction [32]. Following
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Fig. 1. Examples of urban dynamics along city evolution.

AdaRNN, CauSTG reflects complex spatial-temporal depen-
dencies by learnable parameters and takes invariant learning
from causal perspective as a priori [33]. Unfortunately, CauSTG
only captures stable neural structure yet fails to improve the
dynamic structure for data adaptation. With respect to emerging
urban structures, pioneering works take continuous learning
into consideration. TrafficStream updates the neural structure
by identifying the most dissimilar new nodes and consolidates
historical information with experience reply [34], while PECPM
manages the ST pattern bank with newly involved nodes, re-
ducing memory burdens [35]. However, experience-reply or
memory-based solutions require unlimited data space and mul-
tiple model retraining, leading to increased computational and
storage space requirements. Modeling data distributions from
environments [36], [37] can actually empower generalization
by imitating the perturbation on features and extending the
boundary of training set thus enlarging the receptive field of
models. Nevertheless, they still fall short into a closed training
set even with augmented samples, leading to the difficulty of
addressing new instances with emerging patterns and shapes.

Therefore, we can summarize two serious problems in exist-
ing solutions to OOD challenges. First, these methods explic-
itly model environments but still have nothing to do with the
newly arrived data, especially lack the designs to accommodate
model evolution and data-adaptive update [33], [36], [37]. Sec-
ond, current frameworks including continuous learning, suffer
computational burdens and space complexity from preserving
the historical regularity [33] and new patterns [34], [35], thus
limiting the efficiency of model generalization when the patterns
and structures vary.

Fortunately, there are some updates on the understanding of
memory mechanism in human brain, i.e., different regions in our
brain usually carry out distinctive roles and work in a comple-
mentary manner to consolidate historical memory and assimilate
fresh knowledge [38], [39], [40], [41]. In particular, it reveals
that the neocortex neural module gradually acquires structured
and well-learned historical knowledge whereas the hippocampus
structure tends to efficiently learn specific individual instance-
level skills [39], [42]. This insight, formally referred to comple-
mentary learning system (CLS) [38], opportunely provides clues
to consolidate and update model parameters in a complementary
perspective for adapting streaming spatiotemporal observations.

Recently, the complementary learning system has been in-
vestigated to realize continuous learning [42], but it still has

never been coupled with spatiotemporal frameworks. Given the
inherent property of spatiotemporal data, i.e., revealing complex
spatial and temporal dependencies with interactions among en-
vironmental factors, and the nature of complementary learning,
i.e., requiring disjoint learning structures and effective update
strategy, introducing CLS into ST learners still presents the
following challenges.
� How to seamlessly couple the complex spatiotemporal

learners with complementary learning in a unified and
efficient framework, i.e., given an ST learner, how to
efficiently identify both stable neocortex neural module
and dynamic hippocampus structure for transferability and
model update, respectively?

� How to cooperatively model spatiotemporal observations
with environment features in a holistic perspective, and
then appropriately deal with unseen data to adapt the
hippocampus structure to new environments?

� How to design the training strategy to simultaneously pre-
serve the historical information and enable online model
to update upon new patterns with limited consumption?

In this work, inspired by complementary learning system in
neuroscience, we propose a prompt-based data adaptive Com-
plementary ST learning System (ComS2T) to tackle the OOD
challenge and endow the model with evolution capacity. Our
ComS2T actively identifies the respective stable and dynamic
subspace of learning weights to instantiate the complementary
learning. First, by reflecting the spatial-temporal dependencies
into learnable parameters, we disentangle the full neural weights
into two complementary subspaces, stable neocortex and dy-
namic hippocampus. Second, interactions between environment
factors and spatiotemporal observations are often multi-layered
and complex. To disentangle such interactions and refine them
as prompts to train the following neural architecture, we take
spatial location description and temporal signals as basic envi-
ronment signals for prompts. These basic signals are utilized
to train learnable spatial-temporal prompts by reconstructing
the input main observations with parameterized distribution.
We then exploit the well-learned prompts to fine-tune hip-
pocampus structures of our spatial-temporal blocks, allowing
the whole architecture to evolve with new input observations.
Finally, we devise a two-stage training process with spatiotem-
poral warm-up and prompt-based fine-tune, which progressively
learns the mapping functions conditional on prompts and al-
lows efficient adaptation during testing stage. To this end, our
complementary learning empowers model evolution on both
training and testing stages. Specifically, along the training pro-
cess, our CLS simultaneously preserves the historical informa-
tion and allows the flexibility of hippocampus. During testing
process, the designs of adapting spatial-temporal prompts to
testing data with limited self-training further enables the model
adaption. The contributions of this study are summarized as
follows.
� It is the first attempt to couple complementary learning in

neuroscience with spatiotemporal models to realize gen-
eralization and data adaptation, where an efficient neural
architecture disentanglement is devised through two well-
preserved variation matrices.
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� A self-supervised prompt learning is proposed to bridge the
gap between environment factors and distribution of main
observation, which not only allows prompts for neural net-
work fine-tune, but also enables the dynamics and evolution
of model parameters sensitive to data distributions.

� Our framework can simultaneously deal with shifts on both
spatial and temporal aspects, and four OOD scenarios are
constructed to imitate the data adaptation for model veri-
fication. Experiments show that our ComS2T can improve
performances from 0.73% to 10.79% under temporal shifts,
while promote 1.19% to 14.48% under structural shifts.

II. PRELIMINARIES

A. Problem Formulation and Basic Structures

Given spatiotemporal graphs with T steps, G =
{G1,G2, . . .,Gt, . . .,GT }, each Gt is described as {V,Xt, E}
where V = {v1, v2, . . ., vN} is the node set, and E describes
the graph structure. In the observed spatiotemporal graph, we
denote Xt ∈ RN×F as the deterministic main observations
of Gt, and take E = {Es,Et} as the observed contextual
environments, consisting of spatial environment es ∈ Es such
as geographical encoding and location index, and temporal
environment et ∈ Et, such as day of week, timestamps of day,
etc. Spatiotemporal learning aims to predict next consecutive
l steps by exploiting previous κ steps, i.e., Ŷ = f(X) where
(X,Y ) = (Xt−κ+1:t,Xt+1:t+l), and f is a spatiotemporal
learner. Generally, for an ST learning framework f(·), it usually
consists of two main components, graph-based spatial learning
FS(X) and temporal convolution module ΓT (XS), where the
two components can learn alternately. Given input sequential
observations X = {X1,X2, . . .,Xκ}, we formalize the spatial
representation Xs, and the output of spatial learning block
Fs(·) as,

XS = FS(X) = GCN(AXW sp) (1)

The output of temporal learning block is XST which is con-
structed by feeding XS into ΓT , i.e.,

XST = ΓT (XS) = TCN(XS ;W T ) (2)

where W s = {A,W sp} and W T respectively account for
learnable parameters on spatial and temporal perspectives. Given
the training and testing data Dtrain, Dtest, the data distribution
shift refers to the changes of distribution over training and
testing observations, i.e., Ptrain(X) �= Ptest(X), and the goal
for data-adaptive model evolution is to derive a new mapping
Ŷ = f ∗(X;P ) simultaneously containing an invariant relation
component and a data-adaptive dynamic component based on
prompts P . The learning objective can be determined as,

min R
(x,y)∈Gs

(ŷ; f ∗(x)) (3)

B. Theoretical Analysis for Complementary Spatiotemporal
Learning

To analyze the superiority of complementary learning, we
first provide the definition and process of CLS, and make some

fundamental assumptions of spatiotemporal learning to facilitate
the derivation, then demonstrate the superiority of coupling CLS
with ST learners by careful derivation.

1) Complementary Learning System: From the neuro-
science, theory of Complementary Learning System (CLS) de-
livers how different structures of our brain work cooperatively to
consolidate the knowledge and acquire new skills. Specifically,
CLS in our brain is consisted of two major components, hip-
pocampusMH and neocortexMN structures. The hippocam-
pusMH captures the short-term and new episodic information
in a real-time manner while neocortexMN accounts for slow
learning of structured information and then replays such consol-
idated memory [40]. Moreover, the neural structures in brains
are activated by outer stimulation and activation signals can be
transmitted by pre-synaptic neurotransmitters [43]. Concretely,
the cooperation and update function U can be formulated as two
steps [44], [45],

MN
cons←−MH ; U(MN ,MH) =MN ||MH (4)

where cons indicates the consolidating process from short-term
memoryMH to stable neocortex memoryMN , || denotes the
neural structure concatenation.

2) Fundamental Assumptions on ST Learning: To analyze
learning process of spatiotemporal forecasting, we make funda-
mental assumptions following EERM [30].

Assumption 1 (Dependence between main observation and
their environments): Given sequential spatiotemporal observa-
tionsX1,X2, . . .,XN , we suppose the distributionsP(X) can
be dependent on the contextual environments E = {Es,Et}.

Different from modeling categorical environments in other
literature [36], [37], we do not assume a closed set for environ-
ments, instead we instantiate them with continuous geographic
and timestamp embeddings, indicating the urban structure and
overall temporal shifts. Then the distribution shifts over Xi can
be attributed to changes of the virtual environment E.

Assumption 2 (Invariance property): Even though the covari-
ate distributions changing over environments, there must exist
some invariant relations. Given two environments ei, ej ∈ E,
∃(p, q), s.t. P(xp, xq|ei) = P(xp, xq|ej), where xp and xq are
specific observations of X . To this end, we can decompose
all the relations between X and Y into invariant parts and
dynamic parts, accounting for respective causal and non-causal
components.

In the dynamic graph regression, given node vi, let degree of
vi, and proportions of neighbors with causally invariant relations
to vi denote as di, pi with di > 1, 0 < pi < 1. Considering the
covariate shifts, i.e., we train the model on samples following
Gaussian distribution Gs ∼ N(μ0, σ0|e0) and test on samples
following Gt ∼ N(μq, σq|eq).

3) Failure on Traditional ST Learning: For GNN-based rep-
resentation learning, we consider one-time GNN aggregation of
its neighbors, from T -step to achieve the expected regression
prediction of T + 1-step. Based on above assumptions, for node
vi, we take Nc(vi) as the causally correlated neighbor set of vi
while Ns(vi) denotes the set of non-causally correlated neigh-
bors. Given degree di, the traditional one-time aggregation for
vi with all nodes can be formulated by decomposing the causal
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and non-causal parts, and the hidden representation of node i at
time step T can be written as,

E(hT
i ) =

xT
i +

∑
cj∈Nc(vi)

wc
ijx

T
cj

+
∑

sj∈Ns(vi)
ws

ijx
T
sj

1 + di
(5)

where cj and sj are the subscripts of two neighborhood sets,
Nc(vi) andNs(vi), corresponding to nodes with potential stable
relations to node vi and spurious correlations to vi. Learnable
weights wc

ij and ws
ij are denoted for causal parts and non-causal

parts. By calculating the difference between the aggregated
expectation E(hT

i ) and ground-truth xT+1
i , we can derive the

prediction error ε0 after one-time aggregation by neglecting the
non-linear activations, i.e.,

ε0 = ||E(hT
i )− xT+1

i ||

= ||

xT
i +

∑
cj∈Nc(vi)

wc
ijx

T
cj

+
∑

sj∈Ns(vi)
ws

ijx
T
sj
− (1 + di)x

T+1
i

1 + di
|| (6)

Assume that observations on both current step xT
i and next

stepxT+1
i follow the same Gaussian distributionN(μ0, σ0), and

pi =
||Nc(vi)||
||N (vi)|| accounts for the proportion of causal neighbors.

To facilitate the expression, we letμt
0, μ

t+1
0 be the expectation

of observation xi at t and t+ 1, and μc
0, μ

s
0 represent the expec-

tation of the expected observation of its causal neighborhood and
non-causal neighborhood. The initial error ε0 can be modified
by,

ε0 =
μt
0 + pidiμ

c
0w

c
i + (1− pi)diμ

s
0w

s
i − (1 + di)μ

t+1
0

1 + di
(7)

where we ignore the sign for absolute value, and assume that the
expectation and learnable weights all preserve positive.

Since the non-causal based learning is formulated by regres-
sion function of ŷi = wc

ixc + ws
i xs, the prediction residual resi

will be derived by resi = ŷi − wc
ixc = ws

i xs. Therefore, we
can substitute the difference between aggregated causal parts
and ground-truth with aggregated non-causal part, and obtain
the following equations,

ε0 =
μt
0 + pidiμ

c
0w

c
i − (1 + di)μ

t+1
0 + (1− pi)diμ

s
0w

s
i

1 + di

=
2(1− pi)diμ

s
0w

s
i

1 + di
(8)

With (8), we can arrive that the derived error is not reducible
as wc

i �= 0. And we further disentangle the influence factors of
this error. As causal parts are defined on the stable relations
while non-causal parts are defined on highly variant correlations
across distributions, we can impose the distribution assumption
of corresponding learnable weights by,

wc
i ∼ N(μw, σwc), ws

i ∼ N(μw, σws)

s.t. σws � σwc (9)

Given that if one random variable follows Gaussian distribu-
tion, then 99.73% of the samples fall into the ranges between
[μ− 3σ, μ+ 3σ], according to the ’Three Sigma Principe’. This

principle tells us almost all samples must fall into above ranges
excluding very few extreme values. Then we can approximate
error ε0 with restoring μs

0 to μ0,

ε0 ∼ 2(1− pi)diμ0(μw ± 3σws)

1 + di
(10)

Since two variables of pi satisfying 0 < pi < 1 and σws �
σwc are constants that cannot be ignorable, the errors for non-
invariance learning will be positively proportional to both μ0μw

and σws while negatively correlated with pi. That’s to say, the
less causal parts within observations, i.e., smaller pi, and the
larger variations of relations across environments, i.e., larger
σws, the performance deterioration will be more serious. More-
over, when f is transferred to OOD testing set N(μq, σq|eq)
satisfying μq = qμ0 where q ∈ N+. The approximated error of
OOD testing risk is amplified to,

εq ∼ 2(1− pi)diqμ0(μw ± 3σws)

1 + di
(11)

To this end, with μw �= 0, this derivation manifests that learning
over OOD scenarios suffer q − times errors of in-distribution
(ID) ones, resulting in an unacceptable amplification of er-
ror bounds from ID to OOD samples. Thus, the traditional
non-invariant relation learning is inclined to fail on OOD
regressions. �

4) Superiority of Complementary ST Learning: In CLS,
given ŷi = wc

ixc +ws
ixs, when the invariant neural architec-

ture and dynamic context-sensitive architectures are disentan-
gled, then the learnable weights can be explicitly separated into
two sections, i.e., W = {wc,ws}, for stable neocortex and
dynamic hippocampus structures. The two learnable parts are
explicitly considered as satisfying the following distributions,

wc ∼ N(μw, σwc), ws ∼ N(μw, σws) (12)

In OOD scenarios of our CLS, wc should be static thus transfer-
able across environments, while ws can be variable and timely
updated upon the distribution of main observation changes. Then
given node vi in spatiotemporal graph, (7) becomes reducible
and can be suppressed by optimizing ws

i . Let (7) = 0, the ws
i

must have an analytical solution to this optimization, shown as,

ws
i =

(1 + di)μ
t+1
0 − (μt

0 + pidiμ
c
0w

c
i )

(1− pi)diμs
0

(13)

We then conclude that our ComS2T can potentially converge
to optimal results under the distribution shifts with disentangle-
ment and update mechanisms for data adaptation.

III. METHODOLOGY

A. Framework Overview

Inspiring by neuroscience, ComS2T unifies the invariance
and dynamics into a complementary spatiotemporal learning
system, as illustrated in Fig. 2. First, it efficiently disentangles
the learnable neural weights into two complementary subspaces,
where two structures work cooperatively to dynamically adapt
streaming spatiotemporal data. Second, ComS2T pre-trains the
spatial-temporal prompts via self-supervised learning, bridging
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Fig. 2. Framework overview of ComS2T, consisting of four major components. The right top Complementary neural disentanglement is the detailed illustration
of the first component for decoupling stable and dynamic weight spaces in CLS.

the gap between learnable prompts and specific data patterns.
Such pre-training strategy allows test-time training and model
sensitivity to distribution shifts. Finally, we devise a progressive
learning architecture, consisting of four major components, i.e.,
efficient neuron disentanglement, prompt pre-training, prompt-
based fine-tune and test-time self-adaptation, to realize the data
adaptation from coarse to fine-grained.

B. Efficient Neural Disentanglement

Following the complementary learning that different neural
structures play respective roles, we propose an efficient disentan-
glement to decouple the potential neocortex and hippocampus
structures from neural networks.

To ensure an interpretable and aligned disentanglement, we
take spatial module and temporal module as separated units.
Assuming there areK layers for spatial aggregation andL times
of temporal convolution, we take both the spatial adjacency
and feature-level scaling as the spatial learnable space W S =
{Ai,ωsi}i=0,1,...,K and the set of temporal learnable weights is
designated as W T = {wti}i=0,1,...,L. For easier notation, we
take all learnable parameters in a spatiotemporal learner f(·) as
W = {W s,W T }, and denote wsij and wtij as the specific de-
terministic element in W s ∈ RP×Q and W T ∈ RM×N , where
P ×Q and M ×N are the virtual dimensions for representing
these two weight sets for convenient description, respectively .1

To obtain an efficient neural disentanglement, we describe
the model behavior by weight series, i.e., W 0,W 1, . . . ,W tb,
where tb is the training unit consisting of several batches or

1We take virtual dimensions for convenient model derivation, where the actual
parameter dimension is the addition among various neural layers that is hard to
characterize.

epochs in the learning process, and we can take one epoch as a
training process unit. The variations over different neuron-level
elements can be observed when the learning process achieves
relative stability. To capture the evolution behavior along train-
ing process, we propose a differential accumulation strategy.
Specifically, we instantiate two matrices, the absolute differen-

tial values ΔW̃
tb

, which characterizes the differences between
adjacent training units, and the accumulated differences Stb

Δ,
which is the summation of all variations. Given the unit number
within training process tb, the element-level model evolution
can be characterized by,{

ΔW̃
tb
= |W tb −W tb−1|

Stb
Δ
= ΔW̃

tb
+ Stb−1

Δ

(14)

Note that S0
Δ
= 0 is the initialized status, and the absolute

differential values on learnable parameters can directly outline
the quantified variations on streaming training samples, allevi-
ating the influence of signed variation on final accumulation.
We calculate (14) in an element-wise manner, and impose such
differential operation on both spatial learning space W s and
temporal convolution space W T , capturing stable relations in
an element-wise subtraction manner with interpretability. As
smaller values in St

Δ
indicate more stable relations along the

training process, we separate the stable and unstable neurons by
taking the minimal-τ% variations as a threshold. This cutting-off
threshold is respectively imposed over the spatial and temporal
learning blocks. The τ is a hyperparamter, indicating that the
model fluctuates over training samples and can be optimized
empirically. To this end, weight space with smallest variations,
accounting for τ% least values in St

δ , are considered as the
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Algorithm 1: Training Procedure of ComS2T.
Input: Main observations X , Observed environment
description E;

Output: Neocortex structure on spatial and temporal
blocks W S

ne,W
T
ne; hippocampus structure on spatial and

temporal blocks W S
hp,W

T
hp;

1: for iteration = 1, 2,..., Q do
2: Neural disentanglement decouples the learning

neural spaces into initial neocortex structure
W S

ne,W
T
ne and hippocampus structure W S

hp,W
T
hp

based on (14) to (16).
3: Self-supervised prompt training based on (17) to

(19) to obtain P S ,P T .
4: Fine-tune hippocampus structure with prompts

P S ,P T based on (20) to (23), and achieve updated
W S

hp,W
T
hp.

5: end for

neocortex neural parts for capturing invariant and stable spatial-
temporal correlations, while the complementary set (indexes for
remaining (1− τ%) largest values within St

Δ
) of the neural

parameters is considered as the hippocampus neural structure
for data-adaptive update. Given the training unit tb, we denote
Stb

spΔ,S
tb
tpΔ as the summarized variations on spatial and tempo-

ral learning blocks. The neocortex and hippocampus structures
can then be determined by highlighting the most stable learnable
weights as follows,⎧⎪⎪⎨⎪⎪⎩

{(p, q)S} = argmin
Min−τ%

1�p�P,1�q�Q

({Stb
spΔ(p, q)})

{(m,n)T } = argmin
Min−τ%

1�m�M,1�n�N

({Stb
tpΔ(m,n)}) (15)

The index sets {(p, q)S}, {(m,n)T } are index sets of selected
neuron-level neocortex elements in spatial and temporal aspects
W s and W T . After that, the disentanglement process can be
implemented by,⎧⎪⎪⎪⎨⎪⎪⎪⎩

W S
ne= Avg

Min−τ%
i,j∈{(p,q)S}

(W S(i, j)), W S
hp=W S −W S

ne

W T
ne= Avg

Min−τ%
i,j∈{(m,n)T }

(W T (i, j)), W T
hp=W T −W T

ne

(16)
where the Avg(·), which averages the learnable weights in
the set, can be viewed as a smooth strategy to ensure the
generality and smoothness of transferable neocortex structures.
And A−B denotes as the complementary set of B to set
A. W S

ne,W
T
ne are decoupled neocortex neural structures on

respective spatial and temporal blocks while W S
hp,W

T
hp are

hippocampus neural structures for two blocks. Comparing with
existing OOD generalization, the efficiency and adaptions of
our proposed neural disentanglement lies in that we do not
require too much memory, but only update theStb

spΔ,S
tb
tpΔ every

training unit, then the disentanglement can be implemented
along the usual training process.

C. Self-Supervised Spatial-Temporal Prompt Learning

Complementary learning system (CLS) is proposed to enable
adaptive model evolution with data distribution. To this end,
two important issues rise the attention, i.e., 1) how to endow
the model with capacity of data adaptation, especially exploit-
ing non-labeled samples for model evolution, 2) In a memory
system, a brief but powerful summary can help remember better,
thus how to design brief and informative prompts to guide the
update of model becomes important.

In this section, we design a distribution-supervised pre-
training strategy to achieve continuous prompt representations
in a self-supervised manner, thus we can take spatial-temporal
prompts as an intermediate variable to deliver the variation of
data to main models. First, we respectively select informative
spatial and temporal signals as the basic elements of prompts.
We take longitude, latitude, location index as basic spatial
information i.e., es(i) = [lat, long; loc_no]vi

∈ R2×E , while
consider day of week, time step, and time-series trend as repre-
sentative temporal signal, i.e., et(t) = [Dw, Ts;Tr]t ∈ R2×E ,
where ’;’ denotes the division of line in the matrix, E is the
embedding dimension, and each line carries their distinctive
semantic meanings. Second, we explicitly model the distribution
as a data summary over sequential observations, and construct
a question-answer pair between spatial-temporal prompts and
data summary to empower prompts sensitive to data distribution.
Given the spatial location es(i) and temporal step et(t) at node
i and step t in the spatiotemporal graphs, we model the con-
tinuous κ-step observations at corresponding spatial-temporal
context as an observed distribution by corresponding parameters
(μt

i, σ
t
i) ∼Xt:t+κ

i . Then we can easily regress these parameters
through a carefully designed learning blocks. To explore the
relations between data distribution and spatial-temporal context,
we construct a Spatial-Temporal Interaction Module (STIM)
g(·) to capture the interactions between spatial and temporal
contexts. It consists of a Compressed Interaction Network and
an MLP structure, which allows field-level interactions between
spatial and temporal prompts via inheriting the property of Deep
Factorization Machine [46]. With STIM, our self-supervised
pre-training on prompts can be considered as a regression task,

(μ̂i, σ̂i)t

= g ([MLP (es(i);W ps)	MLP (et(t);W pt)] ;W P )
(17)

where es(i) ∈ Es and et(t) ∈ Et are basic elements of spatial
and temporal signals for construction of prompts, also account-
ing for the environment signals in our Fundamental Assump-
tions. TheW ps,W pt,W P are learnable weights for transform-
ing spatial prompts, temporal prompts as well as overall prompt
representation to predictive distribution parameters. Through
the regression of parameters over sequential observations, the
intermediate representations of corresponding spatial-temporal
signals are taken as prompts respectively,

P S = MLP (es(i);W ps) , P T = MLP (et(t);W pt) (18)

The above P S ,P T become the well-learned spatial and tempo-
ral prompts by imposing the following self-supervised learning
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objective,

Lossself =minΣN
i ΣT

t

(
((μ̂i)t−(μi)t)

2+((σ̂i)t−(σi)t)
2
)

(19)
The above parameterized distribution can flexibly guide the

fine-tune on spatial and temporal prompts upon accessing new
observations, regardless of the learning phases of training or
testing. Moreover, such adjustment on prompts can deliver
dynamics to hippocampus structure of our main model, thus
empowering generalization to OOD scenarios and endowing it
with evolving capacity.

D. Progressive Spatiotemporal Learning

In this section, we couple the prompt learning with a two-
stage training, consisting of both warm-up and fine-tune, pro-
gressively achieving the evolution capacity. Concretely, for the
whole architecture of ComS2T, it composes of four stages,
spatiotemporal model warm up and invariance decoupling, self-
supervised pre-training, prompt-based fine-tune during model
training, and test-time adaptation for adaptive testing.

Spatiotemporal model warm up and invariance decoupling:
Following Section III-B, we train spatial and temporal blocks
with pair-wise main observations {(X,Y )}, namely model
warm up, until achieving stability of learnable parameters.
Specifically, we refer the learning divergence to the differences
of training errors between two batches and the stability refers to
such differences converge at one specific with limited variations.
By denoting the training error at t batch as εt, the stability of
training process can be formulated as |εt+1−εt| <ε0 where ε0
is the threshold describing stability.

We can activate the efficient neural disentanglement at the
end of warm-up stage. We characterize the model behavior by
retrieving the accumulated variations of learnable weights at
the stopped training unit tb, i.e., Stb

spΔ,S
tb
tpΔ. The neurons with

τ% smallest values in accumulated variations are disentangled
as neocortex that can be considered as stable neuron structure,
while the complementary neuron set are classified as hippocam-
pus that can be viewed as dynamically updated structure. We can
easily obtain the neural structure divisions, in spatial perspective
W S

ne,W
S
hp, and temporal perspective W T

ne,W
T
hp. With all

the parameters learned during warm up, W s and W T can be
the initialization for following fine-tune process and enable the
model preliminary to adapt spatial-temporal observations.

Self-supervised pre-training: We then construct pair-wise
training samples and exploit the distribution reconstruction to
learn informative semantic spatial-temporal prompts. This al-
lows the prompt learned by only accessing the distribution over
main observations without predicted future observations.

ST prompt-based fine-tune: This stage allows the prompt
as additional inputs of our framework with fine-tuning pro-
cess. We leverage the neocortex to preserve stable weights for
transferring invariant relations across environments, and take
spatial-temporal prompts to guide hippocampus to update with
distribution shifts where the meta information on spatial and
temporal aspects can reflect most data changes. To facilitate the
gradient propagation and semantic information aggregation, we

inject the spatial and temporal prompts separately into the hip-
pocampus structures regarding respective spatial and temporal
learning blocks with careful dimension alignment. Specifically,
we first freeze the neurons within neocortex structure, and inte-
grate well-learned prompts with main observations as input to
hippocampus structure. Given the well-learned spatial prompt
P s and temporal prompt P T , in our fine-tune stage, the input
of spatial learning block becomes,

Xin = X ⊕ (
W al

ps ∗ P s

)
(20)

where ⊕ indicates element-wise addition. W al
ps ∗ P s accounts

for dimension alignment between spatial prompt and main ob-
servations. After that, we freeze neocortex structure W S

ne and
let hippocampus parameters W S

hp update. The output of spatial
blocks can be written as,

XS = FS

(
Xin;W

S
hp|W S

ne

)
(21)

Similarly, we update the input of temporal learning block by
pre-alignment,

XST = XS ⊕
(
W al

pt ∗ P T

)
(22)

Then the output of the temporal blocks can be written as,

Y = ΓT

(
Xint;W

T
hp,W

T
ne

)
(23)

With complementary learning strategy, the neocortex struc-
ture transfers stable relations into OOD scenarios while intro-
duces prompt signals derived from external factors to update
hippocampus structures, allowing the model to be dynamic with
data distribution changing. Our design fixes invariant relations
within spatial-temporal observations, and regress the residual
observations with contexts, which enables fine-tune only re-
quiring limited computations. To this end, the whole architecture
integrates spatial and temporal learning blocks where each block
consists of corresponding neocortex and hippocampus struc-
tures. Formally, the integrated model becomes,

Y = f ∗
(
X,P S ,P T ;

(
W S

hp||W S
ne

) || (W T
hp||W T

ne

))
(24)

The symbol || represents the concatenation between neuron
structures. In addition, to follow up on the latest findings of com-
plementary learning [44], [45], i.e., neocortex can slowly update
to accommodate the new knowledge and dynamic hippocampus
structure, we further devise an alternate learning strategy to up-
date them with different frequencies, i.e., the neocortex regularly
update every Kb batches while hippocampus structure updates
every batch.

Test-time adaptation: To enable a true evolvable model,
we take advantage of self-supervised learning to fine-tune the
prompts during test time, which enables the efficient update on
partial model parameters. When new observations arrive, we
can sample a small number of batches of observations with their
counterpart spatial and temporal descriptions, X̃test ∼Xtest.
Then we can fine-tune the prompt representation W ps and
W pt with new data distribution, and update the intermediate
embedding P̃ S , P̃ T based on (17) and (19). Finally, we can cor-
respondingly obtain the new learning outputs by re-exploiting
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Algorithm 2: Testing Procedure of ComS2T.
Input: Main testing observations Xtest, Observed
environment description Etest, Well-learned parameters
of ComS2T W S

ne,W
T
ne,W

S
hp,W

T
hp;

Output: Prediction results Ŷ test;
1: Sample partial observations from testing set

X̃ ∼Xtest and compute the parameterized
distribution (μ̃, σ̃);

2: Update P S ,P T into P̃ S , P̃ T based on (17) to (19);
3: Implement prediction based on (25) and output Ŷ test.

TABLE I
MODEL EFFICIENCY COMPARISONS ACROSS BASELINES

(24),

Y test = f ∗
(
Xtest, P̃ S , P̃ T ; (W

S
hp||W S

ne)||
(
W T

hp||W T
ne

))
(25)

Learning objective: We take Mean Absolute Error (MAE) as
the main learning objective for training in both warm-up and
fine-tune stages. For self-supervised learning, we exploit the
reconstruction loss Lossself as the objective.

Model efficiency analysis: We compare model efficiency
against three continuous learners by number of updated param-
eters. First, assuming that each model is equipped with L pa-
rameters, the streaming data will experienceP times of distribu-
tion shifts. The number of parameters regarding prompt update
can be denoted as |W ps|+ |W pt|+ |W P | = EP � L. There
are K temporal environments, above three models will update
γ% parameters, where γ% = 1− τ% in ComS2T. Specifically,
CauSTG learns K submodels across temporal environments
and then updates model during testing scenario. PECPM and
TrafficStream will update the γ% parameters of the whole
model. For PECPM and TrafficStream, PECPM updates partial
parameters of model when the distribution changes while Traf-
ficStream takes an experience-reply strategy for model update.
In contrast, ComS2T only undergoes two stages, i.e., warm-up
learning and prompt-based fine-tune, then only a few parame-
ters of spatial-temporal prompts will update when distribution
changes. The number of updated model parameters have been
listed in Table I. Formally, we assume EP � L as the updated
parameters are a smaller proportion of whole parameters and
the updated coefficient empirically satisfies 0.1 < γ < 0.5. Let
EP = ηL(η < 0.1) where η is the scaling coefficient for all-set
parameters L. When P is increasing, i.e., P → +∞, we can
derive that,

Diff = L× γ × (P − 1)− PEP

= L× γ × (P − 1)− PL× η

TABLE II
DATASET STATISTICS

= L× (γ × P − γ − Pη)

= L(P (γ − η)− γ) (26)

where P (γ − η)− γ > 0. We can arrive L× γ × (P − 1)−
PEP > 0, indicating the efficiency of once training for updates.

Summary: Our ComS2T is efficient and reliable, and its
efficiency lies in its potential of decoupling associations during
training, and the use of prompt modeling to obtain a con-
tinuous mapping function between context environment and
real data distribution over main observations. It allows deliv-
ering the distribution change from observation to prompt and
subsequently the hippocampus of ComS2T. The learning and
testing procedures of our ComS2T are respectively described
in Algorithms 1 and 2, and detailed experiment settings can be
found in Section IV-C.

IV. EXPERIMENT

We collect four types of spatial-temporal data and design
various learning-testing scenarios to imitate distribution shifts
in both spatial and temporal dimensions.

A. Dataset Description

We take different categories of spatiotemporal datasets such
as traffics, air quality and smart grids, for verification of our
data-adaptive learning architecture. The statistics of datasets can
be found in Table II.
� SIP (Traffic): It is the camera surveillance capturing traffic

volumes in Suzhou Industry Park (SIP), Suzhou.
� Metr-LA (Traffic): Traffic attributes such as speed, detected

by highway loop detectors of Los Angeles, USA. We reach
this dataset via literature [18].

� KnowAir (Air quality): PM2.5 concentrations, covering
184 main cities of China [47].

� Temperature (Climate): Urban numerical temperature cov-
ering the same 184 cities as KnowAir [47].

B. Learning With Spatial-Temporal OOD Settings

We construct data distribution shifts on temporal perspective
and imitate structure shifts on spatial aspect, as illustrated in
Fig. 3. First, temporal distribution shift can be imitated by two
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training-testing divisions according to data distribution charac-
teristics over different datasets.
� Interval-level division: For traffic datasets of SIP and

Metr-LA those are highly dynamic, it is observed that
evolution patterns on two half days are totally different,
and we can well imitate the temporal distribution shift.
We thus organize training sets by collecting all the same
day intervals (e.g., every 8:00-16:00) for model learning,
while perform testing on the other unseen day intervals
(e.g., every 1:00-7:00).

� Month-level division: For air quality and climate datasets
those are relatively static within short term but can vary
seasonally, we divide the whole-year records into four
trimesters, where we train with the two trimester while
test on one of the trimesters.

Second, spatial distribution shifts are realized by the in-
volvement of new nodes and removal of existing nodes.
� Node involvement: We actively mask a series of existing

nodes during training and add them back during testing
stage to simulate the new connections of the graph struc-
ture. For inference stage, we propose to fine-tune the spatial
prompts with new locations, and exploit the node copy
strategy [48] from recommendation system to find similar
nodes in existing node sets and copy its neighbors to the
new ones.

� Node removal: Similarly, we remove some existing nodes
during testing stage for imitating the node disappearance in
the dynamic graph structure. For inference stage, we first
re-train the spatial and temporal prompts to fine-tune the
model, and mask the lines and columns of the removed
nodes in adjacent matrix for dimension alignment. Then
the prediction can be implemented.

C. Implementation Details

Dataset processing: For each dataset, we organize them as
sample groups following settings in Section IV-B. For SIP
and Metr-LA, we take 1/3 of samples for training, i.e., ev-
ery 8:00-16:00, samples every 16:00-24:00 for validation, and
samples every 0:00-7:00 for testing where 0:00-1:00 periods
are for test-time data adaptation. For air quality and climate
datasets KnowAir and Temperature, we take samples during
every first six months (January to June) for training, samples
during July and August for validation, samples during October to
December for testing where samples of September is considered
for test-time data adaptation. We follow this division for each
baseline to ensure fair comparison.

Regarding data processing, we encode the categorical context
with one-hot embedding and transfer them into fixed-length
vectors. Our target is to construct the data-adaptive model to
predict next 12 slots based on the current 12 frames (τ = 12)
under both spatial and temporal OOD settings.

Deep learning implementation: For general settings, all the
methods are implemented using PyTorch 1.10.0 and evaluated
on one Tesla V100 GPU. To guarantee fair comparison, we
perform grid search to tune the hyperparameters for all baselines
over three datasets. The hyperparameter configurations of our
ComS2T can be found in Table III.

TABLE III
CONFIGURATION OF COMS2T

Prediction details under OOD settings: The training process
of our ComS2T can be three-fold, self-supervised pre-training
for spatial-temporal prompts, model warm up and hippocam-
pus structure disentanglement, and prompt-incorporated model
fine-tune. With the placeholders of prompts, we can deliver
conditional prompts forward to main learning structure, then the
prompts and hippocampus structures will be jointly fine-tuned
to allow the increase of generalization capacity during fine-tune
stage. During testing stages under temporal shifts, we exploit
the temporally nearest samples for test-time model adaptation,
which allows the update of prompts conditional on distribution
shifts.

For structure shifts, when a new node is introduced, we exploit
the distribution-supervised learning scheme to update the spatial
and temporal prompts based on parameterized distribution of
new observations. For adjacent matrix, by inheriting the col-
laborative filtering in recommendation system for overcoming
cold-start issue [48], we impose a node copy strategy, which
finds the most proximal nodes to new ones and copies the
adjacencies of existing similar nodes to new ones. Thus, an
extended relational spatial adjacency is constructed for testing.
When an existing node is removed from the spatiotemporal
graph, we re-train spatial and temporal prompts, and mask the
corresponding line and column of the removed nodes in adjacent
matrix for dimension alignment.

Evaluation metrics: Baselines and our ComS2T are imple-
mented five times and the averaged errors are reported. We take
Mean Absolute Error (MAE) as the main metric for evaluation.
The error can be written as, i.e.,

MAE =
1

TN

T∑
t=1

N∑
j=1

|yti−ŷti | (27)

where ŷti is the predicted observation of node i at time step t,
while yti is corresponding ground-truth.

D. Baseline

Our baselines are three-fold, including five satisfactory ST
learners, three causal-based ST learners, and three Continuous
learning-based ST learners.
� MTGNN: A graph-based multi-variate time series learning

without defining explicit graph topology [5] (ST learner).
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TABLE IV
PERFORMANCE COMPARISONS ON OOD SCENARIOS AGAINST BASELINES (METRIC: MAE)

� GraphWaveNet (GWN): A graph-based traffic prediction
model that integrates TCNs and GCNs [49] (ST learner).

� ST-SSL: A State-of-the-Art learning architecture explicitly
considering discrimination on spatial and temporal dimen-
sions [17] (ST learner).

� TimeMixer: A decomposable multi-scale mixing method
for multi-variate time-series forecasting [50](ST learner).

� HiGP: A graph-based multi-variate time series clustering
solution hierarchical forecasting [51](ST learner).

� CauSTG: An emerging Causal-based invariant learning for
spatial-temporal data [33] (Causal learner).

� CaST: A causal lens spatial-temporal learning framework,
which explicitly models the environments and imposes the
backdoor adjustment [36] (Causal learner).

� IRM+GWN: We especially integrate the invariant risk min-
imization with GraphWaveNet to test the generality of its
framework (Causal learner).

� PECPM: A memory-based continuous learning
via pattern expansion along urban expansion [35]
(Continuous learner).

� TrafficStream: An experience reply-based continuous
learning framework for traffic flow prediction [34]
(Continuous learner).

� TTT-ST: It is the first test-time training framework for
spatiotemporal forecasting [52](Continuous learner).

E. Analysis of Performances Against Competitors

The comprehensive experimental comparisons are shown in
Table IV. Note that the temporal shift, node-level involvement
and node-level removal are abbreviated as ’Temp shift, Node
involve and Node removal’ in our result tables. According to
the characteristics of datasets, we take interval-level division to
imitate the temporal shift on Traffic datasets (SIP and Metr-
LA) while take month-level division for air quality and cli-
mate datasets (KnowAir and Temperature). The improvements

beyond second best baseline are illustrated at the bottom of
Table IV. Overall, our ComS2T achieves consistent superior
performances against baselines under most scenarios, improving
the performances from 0.73% to 10.79% under temporal distri-
bution shifts, and promoting 1.19% to 14.48% under structural
shifts. More specifically, it shows a significant improvement
on Metr-LA, and this may be attributed to the nice regularity
between spatial-temporal prompts and main observations. The
detailed four observations on respective categories of solutions
are elaborated as follows.

Obs1. Comparison against traditional ST learners: Although
traditional ST learners reveal satisfactory performances on
settings of consecutive sequence forecasting, but they still
fall short under distribution shifts, especially on two traffic
datasets. Promisingly, TimeMixer shows superiority under tem-
poral shifts, while MTGNN and ST-SSL reveal some robustness
to structral shifts. It is mostly because that 1) TimeMixer is
well-designed from temporal dependence learning, 2) for spatial
shifts, the learnable adjacencies are well-transferred to new
nodes with node copy while the step-wise and node-wise self-
supervised signals may play vital role in obtaining distinguished
patterns for generalization. Thus, the potential advantage of SSL
learning is the self supervision, which is also inherited into
ComS2T.

Obs2. Comparison with ST model with invariant learning:
Some pioneering models have taken invariance and transfer-
ability across environments into consideration to counteract the
temporal distribution shifts, e.g., CauSTG, and IRM+GWN. The
empirical results show that they can exactly improve the OOD
learning capacity but they are still inferior to our ComS2T. The
underlying reason can lie in that they only transfer the invariance
to OOD scenarios while no specific solutions for model update
and data adaptation. These two methods reasonably trap into
suboptimal performances.

Obs3. Comparison with ST continuous learning: Fur-
ther, for those prediction models explicitly considering
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environment variations, e.g., CauSTG, CaST, and TrafficStream,
which either exploits the closed environment division [33]
and codebooks [36], or employs experience reply to re-train
the model [34]. Even so, they still fail to fully exploit the
available environment information to improve the adaptation
capacity. In contrast, our ComS2T leverages both advantages of
self-supervised prompts and complementary learning to accom-
modate spatial and temporal prompts by establishing bridges
between main observations and environment prompts, contribut-
ing mostly above 3% improvement under temporal shifts and at
least 3.63% improvement under structural shifts.

Obs4. Comparison under structural shifts: Finally, even
though CauSTG has considered the spatial shifts and PECPM
focuses on the issue of road network expansion and achieves
several second-best results under structural shifts, it is still
empirically inferior to ComS2T. Our work explicitly involves
spatial structural contexts by updating spatial prompts with
new observations. It is observed that our solution can signifi-
cantly outperform both CauSTG and PECPM, for instance, it
accounts for the improvement of 3.01% against CauSTG under
temporal shift of SIP, and 17.30% promption against PECPM
under node removal of Metr-LA. Besides, these mentioned
solutions still suffer the efficiency issue for multiple train-
ing of submodels (CauSTG) and computation of pattern-level
matching (PECPM). In our ComS2T, when the urban struc-
ture changes, we only require preliminarily update on spatial-
temporal prompts with a few observations, and then it can be
well-generalized on testing set with new structures, inclusion or
exclusion of new nodes.

In summary, we can conclude that our ComS2T is superior
to all other baselines on two aspects, i.e., 1) Without sacri-
ficing the memory storage for new pattern preservation and
computational burden on sequence-level pattern matching, our
ComS2T directly disentangle the stable and dynamic neural ar-
chitectures and actively update the neural networks in an overall
pipeline, resulting in its superior efficiency. 2) Our ComS2T
takes both advantage of self-supervised prompt with distribution
reconstruction and the complementary learning architecture,
which allows flexible prompt updates with new observations
and exactly realizes the data adaptation spatiotemporal learning
framework.

F. Ablation Study

In ablation studies, we remove each well-designed module or
learning strategy in our ComS2T to verify their contributions.
We conduct experiments on two OOD scenarios regarding both
temporal shifts and structural node-level shifts, where the results
are illustrated as two sub-columns for each dataset in Table V.
To ensure comprehensive evaluation, we specifically investigate
the decoupled influence of each module on respective spatial
and temporal blocks. Therefore, our evaluation is divided into
overall strategy removal, removing specific strategy on spatial
block (S-) and removing specific strategy on temporal block
(T-). The detailed descriptions of ablative variants are elaborated
according to learning stages as below. When perform these
ablation studies, other settings still follow the original ComS2T
where best hyperparameters settings are adopted for this testing.

TABLE V
PERFORMANCE COMPARISONS ON VARIANTS OF COMS2T (METRIC: MAE)

Investigation on hippocampus structure: For stage 1, we
first remove the overall hippocampus structure and take the
architecture without efficient neural disentanglement for OOD
inference. We train and update the whole neural architecture
with prompts without explicitly identifying the hippocampus
and neocortex structures, which helps verify the effectiveness
of hippocampus structure. We name such variant as Non-Hip.
For influence of spatial and temporal blocks, we ablate the
neural disentanglement on GCN and retain only stable neuron
disentanglement in TCN, and ablate it on TCN with GCN neuron
disentangled. We respectively designate the S-Hip and T-Hip for
ablation of removing neural disentanglement for spatial block
and temporal block.

Investigation on self-supervised prompt learning: Regarding
stage 2, we remove the self-supervision signals of learning both
spatial and temporal prompts, and take random initialization to
replace the prompt training process. The overall ablative variant
is called Non-SSL. We also enable spatial prompt to learn with
distribution parameters and let temporal prompt be an embed-
ding associated with corresponding timestamps, where we name
this variant as T-SSL. Similarly, we ablate the learnable spatial
prompts with fixed embedding and name it as S-SSL. Since how
reconstruct the series determines the quality of self-supervised
learning, we devise an SSL-KL by measuring the series-level
distance with KL divergence in self-supervised reconstruction
instead of parameterized regression.

Disentangling impacts of w/w.o. Prompts: Regarding stage 3,
we construct the ablative variant via updating the hippocampus
structure without any spatial-temporal prompts, just with pair-
wise {(X,Y )}. The variant ablating both spatial and temporal
aspects is called Non-Prompt. Also, we remove fine-tune pro-
cess for spatial and temporal blocks as S-Prompt and T-Prompt.
Further, to verify prompt fusion design, we take concatenation
to fuse main representations with spatial or temporal prompt,
instead of element-wise addition, and name such variant as
Prompt-Con.

Disentangling impacts of prompt update during testing: Re-
garding the last stage, we conduct the ablation research without
updating both spatial and temporal prompts during testing
stage, and name this overall ablative variant as Non-TTF. Its
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TABLE VI
PERFORMANCE COMPARISONS ON MIXED FREEZE/UPDATE VARIANTS AND

RANDOM NEURON UPDATES. (METRIC: MAE) THE BEST RESULTS ARE BOLD

AND THE SECOND BEST ARE UNDERLINED

variant versions on spatial and temporal prompt are designated
as S-TTF and T-TTF for description.

Investigation on semantic function of hippocampus structure:
To validate whether the disentangled ‘hippocampus’ and ‘neo-
cortex’ correspondingly responsible for their semantic func-
tions, we implement the experiment for validation, i.e., respec-
tively freezing/updating the hippocampus/neocortex for testing.
Moreover, we implement a test to isolate the effectiveness
of Efficient Neural Disentanglement, i.e., randomly freezing
the same scale of parameters in spatial and temporal learning
blocks, which can be viewed as randomly selecting updatable
hippocampus neurons, and then observe the performance vari-
ation. The proportion of neocortex structures τ is set to range
among {50%, 60%, 70%, 80%} for tests. We provide the testing
results of mixed matrix and random freezing on Metr-LA and
Temperature in Table VI.

Findings on ablation studies: As shown in results of
Tables V and VI, our ComS2T clearly beat against all variants
and achieves the best performances. First, regarding the ablative
variants, the performance experiences a prominent drop when
the hippocampus structure is disabled on traffic datasets (SIP
and Metr-LA), verifying the exact effectiveness of our comple-
mentary architecture. For KnowAir and Temperature, these two
datasets are respectively sensitive to prompt description and test-
stage adaptation, which are also served as two vital components
for data adaptation. The reason for the heterogeneous sensitivity
of components to datasets may be the different characteristics
of datasets, where traffics are with extensive dynamic patterns,
while air quality and climate observations are more regular by
with seasonal and location-based prompts. Second, regarding
how specified designs on spatial or temporal blocks influence the
final generalization, it is reasonable that variants with specific
fine-tuning process under spatial or temporal prompts tend to be
with more powerful generalization capacity in corresponding
scenarios, i.e., remaining spatial fine-tune results in acceptance
performances on node involvement, where ’S/T-FTP, S/T-TTF’
mostly satisfy such regularity. However, the results are not
always supporting such viewpoint (e.g., ’S/T-Hip, S/T-SSL’),
and we speculate it can be attributed to that both temporal
and spatial blocks are coupled altogether and play important
jointed roles for final prediction. Third, on how parameterized
regression guides the reconstruction, and how prompt fusion

influence results, we find that given two parameters, such regres-
sion in self-supervised manner is more easier to learn than KL
divergence-based one. And compared to concatenation-based
prompt fusion, the element-wise addition can easily complete
the fusion without dimension increase and redundancy. To this
end, the above results and corresponding analysis verifies the
effectiveness and superiority of our original designs. Fourth,
when mixingly freezing or updating hippocampus and neocor-
tex structures, the results become inferior to ComS2T, and if
we randomly select the neurons as neocortex for freezing, the
performances also decrease. These results further verify the
rationales of selecting most fluctuated neurons as hippocampus
structures while maintaining stable neurons as neocortex. More
concretely, the frozen weights fail to fit the OOD patterns of
Metr-LA due to extensive gaps of fluctuations and temporal
patterns between training and testing sets. On the contrast, with
fine-tuning process, ablative variants can consistently obtain
moderate performances as they still allow partial parameters
updates to fit for new patterns. To conclude, the consistent drops
in variants and better performances of ComS2T confirm the
designs and intuitions of coupling complementary learning with
spatiotemporal forecasting.

G. Hyperparameter Analysis

To test the sensitivity of our ComS2T, we select two crucial
hyperparameters to observe how the model behave along with
the parameter changes. Our experiments are conducted over tem-
poral distribution shift on all datasets, and empirically optimized
hyperparamters are listed as below,
� Percentage accounting for stable neocortex τ , we let it

range from {50%, 60%, 70%, 80%}.
� The dimensions of spatial and temporal prompts, we con-

sider them as the same dimension E, and let it change
within {16, 32, 64, 128}.

The model performance variations can be found in Fig. 4. For
temporal shift scenarios, Metr-LA and KnowAir both achieve
best at 60% proportion of neocortex with the prompt dimension
of 16. SIP reaches its best with 60% proportion of neocortex and
prompt dimension of 64, while Temperature reaches its best with
70% proportion of neocortex and dimension of 32. The higher
stable proportion on Temperature suggests that temperature
observations are with higher regularity and stability than other
urban attributes such as traffics and air quality under temporal
shifts. And the larger hidden dimension for SIP demonstrates the
potential dynamics of corresponding set requires more fitting
capacity of neural networks. Regarding structural shifts, four
datasets respectively adapt the preserved stable ratios to 80%,
70%, 50% and 60% at the best performances. For the dimension
of prompts, we observe that SIP and Metr-LA both achieve
the best performance at the hidden dimension of 128, while
KnowAir and Temperature both perform best at the dimension
of 16. This is because the dynamics of traffics requires more
fitting capacity. In summary, in this subsection, we not only
achieve satisfactory results with our hyperparameter studies, but
provide insightful urban analysis for further research on cities.
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Fig. 3. Experimental settings of four OOD scenarios.

H. Detailed Case Study and Model Exploration

Our case studies are provided to answer the following two
Research Questions (RQ), with empirical and visualized results
on specific cases and detailed analysis. RQ1: How prompts
interpret the dynamic spatial and temporal contexts, and can
the prompts adapt to changes in the distribution of main obser-
vations? RQ2: How the learnable parameters of main ComS2T
architecture behave along with the learning process, whether the
disentanglement and partial update of neural structures are ef-
fective for performance improvement and model generalization.

Visualization on prompts with distinctiveness: We first illus-
trate the truncated adjacency with 19 nodes from the whole node
set on Metr-LA 2 in Fig. 5(a), since it is difficult to visualize all
node-level adjacency with limited space. From this subfigure, we
observe node 2 and 11 are highly correlated with each other and
then we visualize the well-learned spatial and temporal prompts
at node 2 and 11 for illustration. The prompts are representations
and visualized in the formation of heatmaps, while the corre-
sponding sequential 12-step observations of traffic speed (time
series in figure), are plotted with different lines. The selected
periods, i.e., 8:00-9:00 a.m. and 21:00-22:00 for visualization
are workday morning peak hours and evening hours, where
observations at different timestamps are shown as respective
two lines separated by a dotted line.

In Fig. 5(b)–(c), it is observed that the two sequences are
with distinctive patterns, where the former peak hours expe-
rience larger speed variations with underlying high volumes
across all steps while the latter one shows relatively stability
with time goes on. And also deliver that partial similarity of
prompts is also obtained when series reveal similarities, e.g.,
two nodes share similarity on corresponding peak hours. These
visualized intermediate results with reasonable distinctiveness
and similarity demonstrate that our self-supervised learning
signals can effectively guide the optimization process of prompts
and obtain distinguished prompts against different distributions,
allowing data adaptation to be delivered forward to update of
hippocampus structures.

Training process visualization: Second, we illustrate the pa-
rameter behaviors and corresponding performance variations
along with the training procedure on Metr-LA and Temperature
in Figs. 6 to 7. To be specific, the parameter behaviors are
demonstrated in two ways, i.e., the collective behavior and

2It is a dataset of traffic speed.

individual behaviors. 1) We visualize the variations of expec-
tation of the parameters within neocortex and hippocampus
neural structures, as collective parameter behaviors, and take
performance indicator of MAE errors along with the number
of training epochs in Fig. 6. We have marked the knee point of
the beginning of prompt-conditioned hippocampus update with
dashed line in our Fig. 2) To investigate how individual parame-
ters behave, we visualize fine-grained parameters regarding both
spatial and temporal prompts during learning process in Figs. 7
and 8. For collective parameter behaviors, it is observed that
the hippocampus structure experiences a heavy fluctuation at
the knee point while fluctuation slows down as the learning
process continues. For performances, the errors first increase
and then decrease to reach the stability, where the increases of
errors and fluctuation of parameters reflect the adaptation and
adjustment process of neural architecture with incorporation of
spatial-temporal prompts. With progressive learning reaching
informative prompt signals, the errors are decreasing and even-
tually outperforming the performance of warm-up stage. For
individual ones, the prompt parameters show distinctiveness
during each stage, where it also shows inter-stage similarity
between warm-up and prompt training stages, as well as between
hippocampus update and testing stages. To provide a more
intuitive similarity measurement among these prompt param-
eters, we especially propose to adopt the correlation coefficient
for quantifying their relationship. Specifically, we flatten the
elements of matrix into the vector, and adopt the Pearson corre-
lation coefficient to measure the similarity between matrices. By
denoting the vector in spatial prompt parameters at step t and q as
W t

S and W q
S where w(i)tS ∈W t

S , w(j)
q
S ∈W q

S are elements
in respective prompts, we can derive the similarity between
them,

r(W t
S ,W

q
S)=

∑
i (w

t
S(i)−W t

S)(W
q
S(i)−W q

S)√∑
i (w

t
S(i)−W t

S)
2
√∑

i (w
q
S(i)−W q

S)
2

(28)
where W t

S ,W
q
S are the averaged value of respective vectors. To

this end, we can compute the similarity of above four groups of
similarity on Metr-LA and Temperature in Fig. 9, and explicitly
mark them in Figs. 7 and 8. From above, it suggests that each up-
date process reveals distinguishment between (warm up, prompt
training) and (hippocampus update, testing update) stages, while
shows similarity within corresponding adjacent pairs. Thus,
we can conclude that ComS2T achieves data adaption and
the hippocampus updates during two-stage fine-tune process
and exactly impose sufficient data-driven impacts for data
adaptation.

The above two cases jointly illustrate the distinctiveness of
spatial-temporal prompt representation, and the effectiveness of
our disentanglement and update process in ComS2T. In essence,
the coupling of the prompt-hippocampus for update and gen-
eralization, can work cooperatively to construct the mappings
between spatial-temporal contexts and the prediction residuals
in traditional learning process.
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Fig. 4. Hyperparameter study under both spatial and temporal shifts.

Fig. 5. Visualization of spatial-temporal prompts under different contexts.

TABLE VII
SPACE AND TIME COMPLEXITY COMPARISONS

Empirical analysis of time and space complexity: We choose
several comparative baselines, i.e., having comparable predic-
tion performances with ComS2T, and conduct further experi-
ments on the time complexity and space complexity. Specifi-
cally, the time complexity is defined as the time cost per epoch
(second/epoch) at model update, and the space complexity is
the number of total updated parameters when model updates.
The comparison results are provided in Table VII. According to
the results, we can observe that our proposed ComS2T arrives
the smallest MAE with the least time and space complexity for
model update.

V. RELATED WORK

Spatiotemporal learning: Great efforts have been made to
empower diverse exciting spatiotemporal applications from traf-
fic prediction [35], [53], [54], [55], [56], [57], environmental
modeling [24], [25], [58], to housing price prediction [59],
[60]. Among them, various grid convolution [61], [62] or graph
convolution networks [5], [16], [63] are devised to capture
spatial correlations while temporal convolution [5] or variants
of RNN [6], [64], [65], [65], [66], [67] are well-designed to
explicitly model temporal dependencies. Actually, the urban
elements and city structures are never static, but almost all of
existing spatiotemporal models assume the same data distribu-
tion between training and testing sets. Therefore, it poses great
challenges to maintain same performances with the expansion
of cities as well as the increases of vehicles.

OOD generalization on spatiotemporal learning: There are
two research lines to counteract the OOD challenges in spa-
tiotemporal forecasting, i.e., continuous learning based and
the causal perspective based [28], [33], [34], [35], [36], [37],
[68], [69], [70], [71]. Continuous spatiotemporal learning up-
dates model with new data instance with experience reply [34],
[35], [69] where they re-train the partial neural architecture by
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Fig. 6. Learning behavior visualization of ComS2T.

Fig. 7. Fine-grained prompt parameter visualization during learning stages on
Metr-LA.

Fig. 8. Fine-grained prompt parameter visualization during learning stages on
Temperature.

re-arranging the training set. Specifically, Wang, et al. proposes
a historical-data replay strategy, TrafficStream, to update the
neural network with all nodes [34], while PECPM dynamically
manages a spatiotemporal pattern bank with conflict nodes,
which reduces the memory storage burdens [35]. Unfortunately,
memory-based methods will inevitably increase the storage
space when the network expands and new pattern occurs. To

Fig. 9. Mixed matrices for prompt parameter visualization during learning
stage on Metr-LA and Temperature.

this end, causal-based learning models temporal environments
and captures invariant stable correlations or representations
across environments by observing model behaviors. CauSTG
reflects complex spatial-temporal dependencies via learnable
parameters and transfer the relatively stable weights from his-
torical environment to unseen scenarios [33]. CaST [36] and
EAGLE [37] explicitly model the environment by disentangling
the environment-aware representation and imitate the OOD
scenarios via generating new environments. Even prosperity,
CauSTG requires multiple training of same neural architectures,
while CaST, EAGLE and sUrban [71] mimic the perturbation
and extends the boundary of well-learned data with environ-
ment reconstruction-sampling strategy. However, the unseen
environments are infinite and the boundary of sample space
cannot be unlimitedly extended, thus these solutions are still
short of adapting model to brand-new data and environments.
To summarize, methods for spatiotemporal OOD generalization
either requires high computational resources, or fail to deal
with new distribution instances, thus lacking capacity in model
evolution.

Learning from neuroscience: Neuroscience is a discipline in-
vestigating how human brain works for remembering, learning,
and consolidation [72], [73], [74], [75], [76]. Early researches
have revealed the similarity between machine learning and hu-
man studying behavior, where the neural network is initially
developed by imitating the brain neural architectures [77] and
it will be activated when the information flow exceeds a fixed
threshold [75]. Biological neural networks can be capable of
flexibly modulating synaptic plastic to respond to dynamic in-
puts. The inspired strategies can be summarized as weight regu-
larization [76] from stabilization of previously-learned synaptic
changes, memory extension and formation from the number
expansion and pruning of functional connections [35], [78],
[79], as well as meta-learning, stemmed from activity-dependent
synaptic plasticity [11]. However, these methods cannot well
interpret what exact to remember and forget along the learning
process. As for a collaborative strategy, the complementary
learning system (CLS) theory uncovers that regions in brain con-
sist of complementary functions for remembering knowledge,
the hippocampus space learns new skills quickly, whereas the
neocortex structure progressively learns stable and long-term
knowledge [39]. Various machine learning methods are devel-
oped from CLS [42], to enable a more generalizable model and
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research evidence shows that it shares similarity with continuous
learning [80], [81] to adapt multi-task learning. To this end, the
structure of the biological brain is sophisticated and informative,
exploring the potential structure-reaction of biological brains are
valuable to improve machine learning efficiency and potentially
address the challenges unsolved currently.

Our work: Rather than taking efforts on series-level pattern
computation [34] and pattern expansion [35], or repeated train-
ing on divided datasets [33], we couple the complementary
learning of neuroscience theory, with spatiotemporal neural
architecture to accommodate the streaming and dynamic series
observations. This design simultaneously preserves the trans-
ferrable stable knowledge from existing data and quickly adapts
our model to new arrival instances with new patterns via respec-
tively updating neocortex and hippocampus neural structures. As
a result, our ComS2T can efficiently and effectively empower
the ST learner with the capacity of evolving with spatiotemporal
shifts in a unified framework.

VI. CONCLUSION AND DISCUSSION

In this work, motivated by neuroscience, we couple the
complementary learning with spatiotemporal forecasting as a
ComS2T, to equip the model with data adaptation and evolution
capacity. We first decouple the spatial-temporal learning neural
network into two disjoint architectures, stable neocortex and
dynamic hippocampus. To enable efficient model evolution,
we instantiate additional environments with spatial-temporal
prompts to characterize the data distribution and enable prompts
learnable with self-supervision. Then we disentangle the neural
architecture and incorporate informative prompts into dynamic
hippocampus for fine-tuning. ComS2T allows model adaptation
conditioned on environment prompts during training stage, thus
the fine-tune of prompts can be extended to testing stages when
environments change, which empowers model evolution upon
new data arrives. Extensive experiments have been conducted
on four urban datasets with spatial and temporal shifts. The
empirical results demonstrate that ComS2T counteracts the
OOD challenges over streaming urban data, improving perfor-
mances 0.73%∼10.79% and 1.19%∼14.48% respectively under
temporal and structural shifts. The substantial visualized case
studies illustrate the semantic intermediate results and effective
disentanglement learning scheme, enhancing the interpretability
of ComS2T.

Discussion of coupling neuroscience and computer science:
Neuroscience is a discipline full of mystery and values. Our
ComS2T can be an initial practice of incorporating neuroscience
into machine learning system, which takes advantage of the
learning schemes in both human brain and ANNs. The suc-
cess of this coupling scheme provides insights into developing
more generalizable machine learning systems by investigating
interesting and practical mechanisms in neuroscience, e.g., how
learning new skills and retrieving consolidated memory interact
with each other to improve learning generalization, how to
exploit the signal activation scheme to prompt memories. We
believe these inherent mechanisms can benefit better designs of
both artificial neural architecture and training strategies.

Future works can be divided on two-fold. First, we will
continue to improve the spatiotemporal complementary learning
by further promoting the training-testing efficiency and tackling
semantic alignment between environment and main observa-
tions. Second, we are going to find more interesting mechanism
in brains such as relations between memory and learning, and
facilitate model designs to enable more intelligent machine
learning systems countering learning challenges.
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