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MobiMixer: A Multi-Scale Spatiotemporal Mixing
Model for Mobile Traffic Prediction
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Abstract—Understanding mobile traffic data and predicting
future trends are essential for wireless operators and service
providers to allocate resources efficiently and manage energy ef-
fectively. Despite the strong performance of existing models, accu-
rately forecasting mobile traffic remains a challenge due to limited
spatial and temporal modeling capabilities and high computational
complexity. This paper introduces MobiMixer, a lightweight and
efficient multi-scale spatiotemporal mixing model. Its core concept
is to integrate multi-scale information from both spatial and tempo-
ral dimensions to improve performance on mobile traffic data. We
develop a hierarchical interaction module that incorporates super
nodes to enable global high-level feature interactions among nodes
with common patterns. Additionally, we employ a dynamic time
warping strategy to decouple mobile traffic sequences into stable
and seasonal components, which are then modeled at different
scales using a multi-scale temporal mixing module. We conduct
extensive experiments on mobile traffic datasets collected from four
international cities. Compared with 21 state-of-the-art benchmark
models, MobiMixer demonstrates highly competitive performance,
achieving a maximum improvement of 48.49 % on the Milan mobile
dataset. The model achieves an improvement in training efficiency
of up to 10.69 times and reduces memory usage by 33.01%.

Index Terms—Mobility computing, mobile traffic, wireless
network, mobile traffic prediction.

I. INTRODUCTION

A. Background

ECENTLY, with the rapid advancement of mobile network
R technologies, a wide array of new network services have
emerged, including internet of thing applications, as well as
virtual and augmented reality. This dramatic increase in mo-
bile traffic demand poses significant challenges for network
operations and expenditures [1], [2]. To effectively allocate and
optimize network resources, mobile service providers require
accurate predictions of mobile traffic [3], [4]. By predicting fu-
ture business loads, providers can dynamically allocate network
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Fig. 1. Similarity heat maps of 15 regions at different times.

resources, thereby improving the efficiency of spectrum and
energy utilization. Furthermore, many emerging applications
of the Internet of Things rely on precise device-level traffic
predictions to improve the quality of service [5]. Consequently,
mobile traffic prediction has emerged as a promising strategy to
address these challenges, attracting considerable attention from
both industry and academia [6].

Mobile traffic prediction is a subfield of multivariate time
series prediction that focuses on prediction future mobile traffic
values based on observed sequences collected from various
regions, such as network terminals or mobile access points. A
critical aspect of this field is the ability to accurately capture
the heterogeneous mobile traffic patterns inherent in traffic data.
Mobile traffic exhibits varying dynamic distributions in different
time steps, while correlations between traffic distributions in dif-
ferent regions are also present. Consequently, effectively mod-
eling these spatiotemporal correlations is essential to achieve
accurate predictions.

In recent years, driven by advances in deep learning technolo-
gies, researchers have introduced a variety of spatiotemporal
learning models for mobile traffic prediction [7], [8], which have
gradually become dominant in this field. These deep learning
models typically consist of two key components: a spatial mod-
ule designed to capture spatial correlations across regions and
a temporal module aimed at modeling temporal dependencies
across different time intervals.

Early deep learning approaches for mobile traffic prediction
relied on Convolutional Neural Networks (CNNs) to identify
spatial correlations between regions. However, their effective-
ness in spatial modeling is constrained by the challenges asso-
ciated with processing non-Euclidean data [9]. To address this
limitation, researchers [10], [11], [12] introduced Graph Con-
volutional Networks (GCNs) into this domain. In GCN-based
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models, mobile traffic data is represented as graph-structured
data, where regions of interest or WiFi access points are modeled
as nodes. By integrating GCNs with various temporal models,
such as Recurrent Neural Networks (RNNs) or Transformers,
these approaches can effectively capture complex spatiotempo-
ral correlations. Leveraging the robust representational capabil-
ities of GCNs for modeling spatiotemporal relationships, these
models have achieved excellent performance in mobile traffic
prediction tasks [13], [14], [15], [16], [17].

B. Motivation

Despite the promising success of current GCN-based models,
we contend that specific limitations remain that need to be
addressed to further enhance their performance:

@ Short-range and single-level spatial modeling: Current
GCN-based models primarily rely on predefined graphs to rep-
resent spatial dependencies between regions. However, these
predetermined graphs may fail to fully capture the complex
spatial relationships between regions. For instance, some mod-
els construct graphs based on geographical proximity, operat-
ing under the assumption that adjacent regions share similar
traffic patterns. This assumption can be misleading, as func-
tionally similar business districts may exhibit similar mobile
traffic distribution patterns despite being geographically distant.
To capture large-scale correlations between distant nodes, re-
searchers need to stack multiple GCN layers, which encounters
the over-smoothing challenge [18]. Furthermore, these static
graphs remain unchanged throughout the model learning pro-
cess, neglecting the dynamic nature of inter-regional correlations
and potentially leading to misinterpretation of spatial depen-
dencies. Furthermore, static graphs remain unchanged during
the model training process, neglecting the dynamic nature of
inter-regional correlations. Additionally, GCNs typically focus
on modeling spatial features at a single microscopic level,
overlooking the hierarchical structure of urban environments.
Cities are composed not only of microscopic entities such as
streets and blocks but also of macroscopic entities like business
districts or large commercial areas [19], which encompass these
smaller components. These macroscopic entities often experi-
ence more frequent internal movement interactions. Capturing
higher-level macroscopic spatial features can significantly en-
hance the model’s ability to analyze complex mobile traffic
patterns and improve its prediction accuracy.

Using the mobile traffic dataset from Milan, Italy [20] as a case
study, we divide Milan into multiple grids for analysis. Based
on the dynamic time warping (DTW) method [21], we calculate
the similarity of mobile traffic between 15 grids in two distinct
time steps, as illustrated in Fig. 1. Interestingly, our analysis re-
veals dynamic and long-range correlations between regions. For
instance, at the first time step, Region 12 and Region 13 exhibit
a similarity of 0.65, indicating a strong correlation. However,
at the second time step, the traffic correlation between these
two adjacent regions diminishes significantly, with a similarity
score dropping to only 0.31. In contrast, Region 13 demonstrates
higher similarity with non-adjacent regions, such as Regions 4,
6, and 7. Furthermore, Regions 4, 5, and 6 consistently exhibit
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Fig. 2. Mobile traffic series decomposition. We decouple a mobile traffic
series (top) of an area into the long-term pattern (bottom) and short-term pattern
(middle).

strong correlations across both time steps, as these three regions
encompass a shopping mall, which likely contributes to their
shared traffic patterns.

O Unified-scale temporal modeling: Mobile traffic data typ-
ically exhibits multiple patterns, characterized by significant
variations over time dimension, including increases, decreases,
and fluctuations. These changes collectively form a complex
mixture. Traditional mobile traffic prediction models often an-
alyze these patterns at a unified time scale, which can lead to
incorrect learning of mobile traffic patterns. For example, mobile
traffic data recorded on an hourly basis may show noticeable
fluctuations throughout the day. However, when aggregated into
daily samples, these subtle variations may be smoothed out,
while larger-scale fluctuations associated with holidays or week-
ends may become more prominent. Additionally, the unified-
scale analysis approach struggles to address the non-stationary
of mobile traffic sequences. Non-stationary in mobile traffic
data refers to the gradual evolution of its temporal distribution
characteristics (e.g., mean and variance) over time, posing a
significant challenge for prediction.

In Fig. 2, we decompose the mobile traffic sequence of an
area in Milan into two components: long-term patterns and
short-term patterns. The long-term pattern displays relatively
stable periodic features, whereas the short-term pattern depicts
trends in sequence changes. These observations highlight the
importance of employing a multi-scale analysis approach to
uncover complex spatiotemporal variations. When modeled on
a unified scale, the model struggles to capture these intricate
patterns effectively.

® Expensive computational complexity: As the performance
of the model improves, the computational complexity increases
dramatically. The time complexity of spatial learners like GCNs
grows quadratically with the number of nodes [22], [23], due
to the message-passing mechanism in GCNs that propagates
and aggregates features between nodes. Similarly, temporal
learning modules such as RNNs or Transformers exhibit high
computational complexity, with advanced architectures like
Transformers showing quadratic scaling with input sequence
length [24], [25]. In 5G networks, the dense deployment of
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mobile cells, access points, and network devices poses signifi-
cant challenges for these computationally intensive models, lim-
iting their practical application in large-scale networks. The high
computational requirements for prediction lead to unsustainable
operational costs.

C. Contribution

To address these challenges, we design a multi-scale spa-
tiotemporal mixing model, named MobiMixer. The detailed
contributions are as follows.

@ In the spatial dimension, we develop a novel hierarchi-
cal interaction module based on urban hierarchy theory: cities
consist not only of microscopic nodes (such as roads or mobile
access points) but also of macroscopic regions (such as business
districts) with similar traffic patterns. To capture these dynamics,
the module incorporates purification and diffusion processes.
During the purification process, fine-grained nodes are clustered
into a smaller number of coarse-grained super nodes, where
the mapping relationships between nodes and super nodes are
adaptively learned from data, enabling precise representation.
Subsequently, these super nodes perceive shared macroscopic
features from their fine-grained constituents. In the diffusion
process, fine-grained nodes access their corresponding super
nodes to extract useful macroscopic features. Through this
hierarchical interaction, MobiMixer generates effective repre-
sentations for each node. It further integrates node embedding
techniques to learn personalized microscopic features for each
fine-grained node. By modeling multi-scale spatial features at
both microscopic and macroscopic levels, MobiMixer achieves
comprehensive spatial learning without relying on predefined
structures. Moreover, it facilitates correlation modeling between
arbitrary (distant) nodes by grouping nodes with similar mobile
traffic patterns into the same super-node, thereby avoiding the
over-smoothing problem that commonly arises with stacked
GCNs.

@ In the temporal dimension, our method employs a multi-
scale temporal fusion module. This module first uses Discrete
Wavelet Transform (DWT) to extract high-frequency and low-
frequency components from the frequency domain of mobile
traffic sequences. These components are then transformed back
into the time domain through a Multilayer Perceptron (MLP)
layer, generating two components: long-term pattern and short-
term pattern. Subsequently, we introduce a temporal prompt
learning strategy to encode temporal prior information (e.g.,
time of day and day of the week). This prior knowledge helps the
model analyze temporal dynamics more accurately. Following
this, we apply a multi-scale modeling technique to extract and
model information at different scales for both long-term and
short-term components. Finally, the temporal fusion module
integrates information from multiple temporal scales to analyze
comprehensive temporal patterns. This multi-scale decoupling
approach has dual advantages: the long-term patterns are rel-
atively stable, which helps improve the model’s robustness to
non-stationary mobile data. In contrast, modeling short-term
fluctuations enables the model to adapt more flexibly to the
non-stationary characteristics of the data.
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Fig.3. Efficiency and performance comparison on the Milan SMS-IN dataset.

A smaller bubble means a smaller memory usage.

® Deviating from computationally expensive graph convo-
Iution operators typically used for capturing spatial features,
the proposed spatial interaction module is designed for linear
computational complexity. Moreover, our model is based on a
lightweight MLP architecture, providing modules with higher
time efficiency. We validated the performance and efficiency of
our model on a real mobile traffic dataset, and the results show
that MobiMixer can achieve highly competitive performance
and efficiency. As shown in Fig. 3, compared to state-of-the-art
models, it achieves highly competitive performance on the Milan
mobile dataset, with a maximum increase of 48.49%. Addition-
ally, training efficiency is improved by 10.69 times, and memory
usage is reduced by 33.01%.

Summary. The strength of MobiMixer lies in its effective
integration of multi-scale information from both spatial and tem-
poral dimensions. We have developed a hierarchical interaction
module that utilizes super nodes, aggregating fine-grained nodes
into macro-level super nodes through a refinement process to ex-
tract shared macroscopic features among nodes. This is followed
by a diffusion process that enhances each node’s representation
by leveraging these macroscopic features. Additionally, we im-
plement a dynamic time warping strategy to decouple mobile
traffic sequences into stable and seasonal components, which
are subsequently modeled at different scales using a multi-scale
temporal mixing module.

D. Overview of the Paper

In the following sections, we will provide a detailed summary
of existing research on mobile traffic prediction. Subsequently,
we will formally define important variables and the mobile traffic
prediction problem in Section III. In Section IV, we will then
elaborate on the details of the designed model. Following that,
we will evaluate the effectiveness of the model on a real mobile
traffic dataset in Section V. Finally, we will conclude our work.

II. RELATED WORK
A. Mobile Traffic Prediction

Early mobile traffic prediction methods relied on matching
historical mobile traffic data with specific mathematical or
statistical models to generate predictions based on probability
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distributions. For instance, works such as [26], [27] employ the
autoregressive integrated moving average or support vector re-
gression to model short-term cellular traffic sequences [27], [28].
Beyond these approaches, ON-OFF models [29], Kalman fil-
ters [30], and Holt-Winters exponential smoothing models [31]
have been applied to characterize the temporal and spatial at-
tributes of mobile traffic loads. While these mathematical mod-
els simplified hyperparameter optimization, they struggled to
capture complex non-linear correlations, leading to suboptimal
performance.

In recent years, researchers have increasingly focused on
designing deep learning techniques for mobile traffic predic-
tion [3], [32]. DeepTP [33], an end-to-end approach, utilized a
sequence-to-sequence model with attention mechanisms to cap-
ture spatial and temporal dependencies. LNTP [34] introduced
an LSTM-based framework for timely and accurate network
traffic prediction, incorporating wavelet transform and LSTM
components. Several models have integrated GCN into mobile
traffic prediction tasks [10], [12], [35], [36], achieving signifi-
cant performance improvements due to the powerful represen-
tation capabilities of GCN. KGDA [37] proposed a graph-based
model that decomposes the influence of static environmental
factors and the dynamic autocorrelation of cellular traffic time
series. SDGNet [15] introduced a switching-aware spatiotempo-
ral graph neural network, leveraging dynamic graph convolution
and gated linear units to predict short-term, medium-term, and
long-term traffic consumption.

B. Multivariate Time Series Prediction

Mobile traffic prediction is a subset of multivariate time
series prediction tasks that has witnessed significant advances
in model development. One branch of multivariate time series
prediction models focuses exclusively on modeling dependen-
cies across multiple time steps. These models employ techniques
such as multi-scale modeling and self-masking to enhance their
temporal representation capabilities. For example, AMD [38]
and TimeMixer [39] extract multi-scale representations through
downsampling and mixing techniques for future data prediction.
However, these models do not explicitly model spatial depen-
dencies, which is essential for mobile traffic prediction tasks
where modeling correlations between sites with similar traffic
distributions is necessary. Our model proposes a novel hierarchi-
cal interaction mechanism to further capture multi-scale spatial
information. Furthermore, our model novelly uses the DWT al-
gorithm to decouple temporal structures and applies multi-scale
modeling techniques for more precise temporal modeling.

Another branch of architecture for multivariate time series
prediction tasks is the spatiotemporal learning model, which
emphasizes the joint modeling of temporal and spatial aspects.
Initially, CNN is used to extract local spatial features [40]. These
models typically combine CNN with RNN or its variants to
effectively capture temporal dependencies, improving predic-
tion accuracy by integrating spatial and temporal patterns. For
instance, ST-ResNet, based on CNN architecture with residual
layers [41], has demonstrated promising results. Recent stud-
ies [35], [42], [43], [44] have explored the integration of GCN,
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Fig. 4. Mobile graph and mobile traffic prediction. We consider access points
or regions containing multiple access points as nodes, and characterize the
mobile graph through its structure and traffic sequence.

TABLE I
SOME IMPORTANT VARIABLES WITH THEIR DEFINITIONS

Notation Definition
X/Y Historical observation input/Future values
T/P History / Predicted time steps
N The number of nodes
K The number of super nodes
] The number of temporal modules
18} The number of temporal scales
ﬁ? /HY The input representation of short-term / long-term components
H./ Hj  The representation of short-term / long-term components after hierarchical spatial interaction
5[’ / f‘: The representation after multi-scale temporal mixing of short-term / long-term components
Z Output representation
Y Predicted value

GAT, and their variants with RNN, CNN, or Transformers to
capture complex spatial and temporal dependencies in graph-
structured spatiotemporal data. Models like DCRNN [45] utilize
bidirectional random walks on graphs to handle spatial depen-
dencies and adopt an encoder-decoder framework to address
temporal dependencies. D 2 STGNN [46] introduces an estima-
tion gate to separate traffic signals into diffusion and inherent
components, thus improving the precision of multivariate time
series prediction.

III. PROBLEM FORMULATION

In this section, we introduce specific notations and provide a
formal definition of the mobile traffic prediction problem.

A. Mobile Network Unit of Interest

A mobile access point or a cell tower used to process and
transmit mobile user data can be defined as a network unit of
interest. Typically, considering the dense deployment of 5G or
6G base stations, we can also define a region containing multiple
access points or cell towers as a network unit of interest to
reduce the complexity of the research, as shown in Fig. 4. Some
important variables are defined in Table 1.

B. Mobile Graph

We use G = {V, A} to represent a mobile graph, where V =
{v1,...,vy} means N network units of interest (i.e., nodes) in
the graph. A € RV*V is the adjacency matrix of the graph G
to describe the connections between nodes. if there is a directed
edge from node v; to node v;, the ith row and the jth column,
Al(i, j) are equal to 1. The vector of features of the node X; =
{x%,..., 2N} denotes the mobile traffic volume of all the nodes
at the time step ¢, where :cj; € R? denotes the traffic volume
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to model temporal dynamics.

of the node v; at the time step ¢, and d means the number of
observed traffic features.

C. Mobile Traffic Prediction

Given a mobile graph G with T' past historical observed
traffic volume matrix X = {X1,..., Xy,..., X7} € RT*Nxd
and the graph G, the mobile traffic prediction task aims to
effectively predict the future P time steps traffic volume matrix
Y = {XT+17 . 7XT+P} € RPxNxd,

IV. METHOD
A. Overview

As shown in Fig. 5, MobiMixer utilizes DWT to decompose
mobile traffic time series into long-term pattern sequence X;
and short-term pattern sequence Xg. Then, our spatiotemporal
prompt embedding technique integrates prior knowledge into

two sequences, with outputs denoted as H, and HY. Subse-
quently, we use the hierarchical spatial interaction module to
model the spatial features of mobile traffic, with the output de-
noted as ﬁz and Hj . Following this, we employ the multi-scale
temporal mixing module to model temporal dependencies across
multiple time scales. The short-term component is denoted as
?Z and the long-term component output is denoted as élJ .
Finally, we use a fusion module for the output representation Z,
and then we use MLP layers as decoder to generate predictions
Y.

B. Wavelet Transform for Mobile Decomposition

For complex data from multiple sources, decomposing them
into different interpretable sources can enhance the resilience
of the model to structurally rich variables. Drawing inspiration
from temporal series structural decomposition techniques, we
decompose mobile traffic sequences into stable patterns and
fluctuating trend patterns. Mainstream approaches involve using
mean kernel functions for decomposition [25], [39]. In this
study, we propose an alternative approach by introducing the
DWT to decompose the original mobile traffic data into multiple
frequency sequences, enabling multi-resolution analysis. DWT
involves two key processes [47], [48]. First, it transforms the
time domain into the frequency domain and extracts different
frequency components. Subsequently, in the second phase, it
combines the extracted components and reconstructs them into

s
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Fig. 6.

long-term and short-term patterns in the time domain, as shown
in Fig. 6.

Specifically, DWT is used to transform the mobile traffic
series X € RT*N*4 into a low-frequency component X} e
RLTIXN*d and two high-frequency components_including
X} € RUzI*Nxd in the first process and X3 € RLT*N*d jn
the second process. Typically, low-frequency signal components
capture slow-varying characteristics, whereas high-frequency
components represent fine-grained changes. This process can
be formulated as:

jv(? = (Z * (Z * X)(u))(ﬂ)

5(% = (h * (z * X)(u))(ﬂ)

X} = (h* X)) (1)

where z is low-pass filter and h represent high-pass filter of a
wavelet. * is the convolution operation and | 2 means that the
output is down-sampled by 2. Next, the frequency components
of the mobile traffic sequence are then mapped back to the time
domain. In this process, we use upsampling techniques to align
with the length of the input time series.

X, = MLP [ £ <f* (X%)m)

X, = MLP | f % (g* <ii)¢2>

12

e (%) m) @
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where g and f represent the up-sampled kernel. MLP(-) means a
multilayer perceptron layer. X; € R7*N*d and X, € RT*Nxd
represent the long-term and short-term pattern components,
respectively.

C. Spatiotemporal Prompt Embedding Learning

To enhance modeling capabilities, we incorporated the in-
novative concept of meta-learning, a strategy widely used in
computer vision and natural language processing fields. This
strategy utilizes various prior knowledge as supplements to
improve the model’s accuracy. To this end, we designed a series
of embedding techniques specifically tailored for encoding time
and space priors related to mobile traffic data. By integrating
these embeddings into our framework, our aim is to enhance
the model’s ability to leverage prior knowledge and contextual
cues, thereby facilitating a more detailed analysis of the inherent
complex spatiotemporal dynamics in mobile traffic patterns.

To keep the native information in the raw data, we first utilize
a MLP to map X; and X into the high dimensional space and
obtain the feature embedding:

E] = MLP (X;) € RT*/Vxde
E; = MLP (X,) € RT*Vxde (3)

1) Temporal Embedding: We need to integrate temporal in-
formation into the model, which includes information about
time step of day, days of week, and holiday data. This prior
information is crucial for accurately mining temporal patterns.

Time step of day: We use a learnable embedding vector &; €
RN:xde (g encode the information of each time step in a weak,
where Ny indicates the number of data points in a day, and &
can adaptively represent fine-scale temporal information. For
example, if the sampling frequency is one hour, then there will
be 24 data points in a day, hence NV, is set to 24.

Denote W' € RT to denote the time step-of-day data in-
formation from the first time step to the 7'th time step in the
input X, then W is used as indices to extract the corresponding
day-of-week embedding from &, denoted as E; € R de,

Holiday information: We also use W € R” to denote the
holiday information from the first time step to the 7'th time step
in the input X. Wh is a 0-1 vector, and a value of 1 means
that the location time step is on a holiday. Finally, we use ont-
hot embedding method to encode Wh and get the output E;, €
RNaxde to integrate holiday information.

2) Spatial Embedding: Due to the fact that the geographical
properties of different nodes may lead to variations in their traffic
patterns, for instance, mobile traffic patterns in shopping malls
differ from those in residential areas, it is essential to integrate
these prior features into the model. However, acquiring these
geographical attribute features may pose challenges due to data
privacy or policy restrictions. To overcome this limitation, we
employ an adaptive node embedding approach that analyzes
data to capture the traffic distribution characteristics of differ-
ent nodes. Specifically, we use a learnable node embedding
E, € RV*de (o represent features of N nodes in graph. This
embedding can be updated end-to-end with the model, which
can capture the personalized traffic patterns of each node from
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The details of our hierarchical interaction module.

Fig. 7.

the data, thereby enhancing generalization without relying on
specific geographical location information.

3) Output of Embedding Module: We extend the dimensions
of Ey, Ej,, and E; to (T' x N x d.). Finally, we splice three
matrices with two input embedding Elto get the output:

H, = Eq||Bs||B} € RT3
ﬁ() _ Ef||ESHEi c IRT><N><3de )

0 ~
where H, and H} represent the short - and long-term output

representation, respectively.

D. Hierarchical Interaction Module

GCNs have been widely used in spatiotemporal learning due
to their powerful representation capabilities, primarily stemming
from their execution of global message passing and aggregation
mechanisms. However, their time complexity grows quadrati-
cally with the number of nodes. Additionally, the feature aggre-
gation properties within the adjacency matrix limit their ability
to capture short-range node relationships while also overlooking
shared mobile traffic patterns between nodes.

To tackle these obstacles, we introduce a Hierarchical In-
teraction Module (HIM) for high-level spatial feature interac-
tion. This novel concept takes inspiration from urban hierarchy
principles. While the inter-dependencies among micro-nodes
can be intricate, patterns tend to exhibit similarities between
locations within a given region at a broader scale. HIM addresses
this by defining coarse-scale super nodes that encapsulate sets
of fine-grained nodes. The module incorporates a purification
process to capture nuanced node-sharing features for refining
super node representations and a diffusion process to diffuse
super node features to fine-grained nodes, as illustrated in Fig. 7.

Specifically, HIM contains K super nodes, where K is a
hyperparameter and X' < N.then we also adopt a feature vector
M € RE%ds for these K super nodes, where d, means the
number of channels. M is a learnable parameter that adaptively
represents macroscopic context features. Then if given the input
embedding Hy, we use it as query vector to calculate the affinity
of each node and super nodes. This purification process can be
denoted as follows:

exp (M(k), @(m))

A (k,m) =
o) SN exp ((M(k), Q(m)))

(&)
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where A (k,m) records the affinity between the mth node and
kth super node. M (k) means the kth row in M. Q(m) means
the mth row in the query vector @ € RV*%_ (.) represents the
dot product of two matrices to calculate the attention coefficient.
Finally, we can get an attention matrix A, € R*% that records
the attention coefficients of NV nodes and K super nodes.

Then we extract shared patterns from N nodes to update the
features of super nodes, which represent coarse-scale macro-
scopic features shared among nodes:

H, = A, (HW,) € Rf*d (6)

where W is the learnable parameter. Based on the extracted
shared features H,,, we adopt a diffusion process to diffuse these
shared features to fine-scale nodes to achieve spatial feature
interaction. Specifically, we compute the diffusion matrix:

. exp ((Q(m), M(k)))
D=1 exp ((Q(m), M(K")))
where A € RV*K represents the mapping coefficient from

super nodes to fine-grained nodes, then we diffuse H,, to every
node as follows,

H, =A;(H,W,) € RV*da (8)

(N

where Wy, is learnable parameter. We add the output H,, and
the input H through a residual connection to obtain the final
output vector that incorporates spatial information. For both
short-term and long-term components, H. € RT*N*3de and
ﬁ? e RT*Nx3de e first compress their time series and feature
dimensions, and then input them into two independent HIM,
generating input representations denoted as H, € RN*7* and
qu c RN xT'xd; .

Computational complexity: Traditional mobile traffic predic-
tion models utilize GCN for spatial feature extraction, with a
time complexity of O(N?), which has a quadratic relationship
with the number of nodes [22], [43]. Some spatiotemporal learn-
ing models use Transformer, which can essentially be viewed as
graph convolution operation on a fully graph. The computa-
tional complexity of the self-attention mechanism it uses is also
O(N?). These methods pose an intensive computational burden,
especially when N is large. The complexity of calculating
attention coefficients of our method in (5) and (7) are O(K N),
typically, we set K to be much smaller than /N. Therefore, the
computational complexity is effectively approximated as O (V).
This linear complexity significantly improves the efficiency of
spatial feature extraction.

E. Multi-Scale Temporal Mixing

Time series data (such as mobile traffic sequences) inherently
exhibit different characteristics at different scales [25], [49].
Fine scales excel at capturing intricate details, while coarse
scales highlight broader macroscopic changes. This multi-scale
perspective effectively reveals complex patterns in the data,
thereby enhancing the modeling of temporal variations. Follow-
ing the pioneer multi-scale temporal modeling works [39], [50],
we introduce a multi-scale temporal mixing module for temporal
features learning.
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Fig. 8. Multi-scale temporal mixing.

Specifically, we first perform pooling operations along the
temporal dimension to decompose long-term pattern sequences
or short-term pattern sequences into time series at different
scales. We use the long-term sequence H; as an example, and we
first mix node and feature dimensions of the input, i.e., H, €
RT*¢, where C' = N x d;. Then, we use the average pooling
kernels with U scales to down-sample the H and finally obtain
a set of multi-scale time representation Z; = {Zo,...,zy},
where z, € RL%JXC, u € {0,...,U}. The lowest-level se-
quence zg = ﬁs represents the input sequence containing the
most subtle time variations, while the highest-level sequence
Zy captures macro changes. Similarly, we can get short-term
pattern series with multiple scales Z; = {Zo, ..., %y}, where
Zy = H,. These two sequences, Z = {Zo,...,Zy} and Z =
{Zo,...,Zu}, are fed into J temporal modules, each of which
contains 2U MLP layers to independently model U scales for
both long-term and short-term components. The use of multiple
modules enables the model to capture more precise representa-
tions at different scales, thereby facilitating an accurate analysis
of the complex temporal dynamics inherent in mobile traffic.
We take ith layer as an example, and the input is denoted as
Zi={Z},..., 7 and Z; = {Z}, ..., 7y }.

1) Long-Term Temporal Modeling: Long-term patterns play
a crucial role in spatiotemporal learning, showcasing periodic
characteristics that reflect human mobility patterns. For instance,
the weekly cycle of mobile traffic formed by daily variations.
Accurately identifying these long-term patterns can assist in
more precise predictions of future traffic conditions.

After decomposing the time series into information of dif-
ferent scales, such as Zl’ = {Eé@ o ,E@}, we first use two
layers of MLP to map the multi-scale information, and then
we fuse the information of different scales. Specifically, for the

uth temporal scale of long-term representation z’, € RlzwT/xC
can be formalized as,
7, =7, +MLP (7_,) € Rlz7/xC )

As shown in Fig. 8, following the work [39], we aggregate
information scale by scale from low level to high level. The
output after aggregating information from different scales is
denoted as 2, ™' = {z},...,2}}, which will be input to the
next multi-scale temporal mixing module.
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2) Short-Term Temporal Modeling: To model short-term pat-
terns at varying scales, we progressively aggregate the mul-
tiple time series with various scales from high level to low
level. Specifically, for the uth scale of short-term representation
A L3z IxC
z,, € Rlz , we aggregate features scale by scale as follows,

7, =7, +MLP (Z,) € Rlzw]xC (10)

The output after aggregating information from different scales
is denoted as Z’jl ={Z,....,Z}}.

3) Short-Term and Long-Term Temporal Fusion: After J
layers of neural network modeling, we add the long-term

component Z{ = {z],... ,Z{,} and the short-term component

z/ =z, ..
follows:

. ,Zé}. For uth temporal scale, we aggregate as

z,, = FeedForward (z;, + Z;))

(1)

where FeedForward(-) contains two MLP layers with GELU
activation. The output with U scales is denoted as Z =
{z0,...,2v}.

Computational complexity: Recurrent Neural Networks such
as RNN and LSTM are notorious for their inefficiency in mod-
eling temporal dependencies due to their sequential nature, and
their performance is often suboptimal [24], [39]. The Trans-
former architecture, which has gained popularity for time series
modeling, overcomes this inefficiency by utilizing self-attention
mechanisms to model dependencies at arbitrary time steps,
resulting in excellent long-term modeling capabilities. However,
the time complexity of Transformers grows quadratically with
the length of the input sequence, O(7"?). In this paper, we use
MLP for time series modeling, which is a lightweight architec-
ture with a time complexity of O(T).

F. Future Prediction

Finally, we have temporal representations at different scales
Z ={zp,...,zy}, then, we integrate these time series infor-
mation at different scales to predict future mobile traffic,

U
Y =Y MLP,(z,),u € {0,...,U} € RPN

u=0

(12)

where MLP,, (-) denotes the predictor for the uth scale sequence.
This predictor initially employs a single linear layer to directly
extract historical information from z,, with a length of LQ%J time
steps. Then it forecasts this information over the subsequent
P time steps and maps the resulting deep representation to N
nodes. Because distinct predictors are configured for different
scale time information because each scale encapsulates unique
historical data with varying significance in generating the pre-
diction Y.

V. EXPERIMENT

In this section, we assess the efficacy of our model on two
mobile traffic datasets from two cities. We answer the following
potential concerns:

® Q.1. How effective is MobiMixer compared to advanced

models? Refer to Section V-C.
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® Q.2. Does each proposed component of MobiMixer con-
tribute to the performance? Refer to Section V-D.

® (.3. What is the computational complexity of the model?
Refer to Section V-E.

® Q.4. How do hyperparameters affect the model’s perfor-
mance? Refer to Section V-F.

® (Q.5. How scalability is the model in large-scale mobile
networks? Refer to Section V-G.

® Q.6. Is MobiMixer effective for predicting peak mobile
traffic and weekends? Refer to Section V-H.

e (Q.7. How robust is MobileMixer to the time interval of
mobile traffic data? Refer to Section V-1.

A. Mobile Traffic Datasets

We utilize mobile traffic datasets from four cities: Milan
and Trentino in Italy, and Shanghai and Beijing, two modern
metropolises in China. The Milan and Trentino datasets were
provided by Telecom Italia, a well-known European telecom-
munications service provider [20].

® Milan dataset includes multiple mobile traffic features:
outgoing calls (CALLOut), incoming calls (CALLIn), sent
text messages (SMSOut), and received text messages (SMSIn).
These features encompass mobility records collected over two
months, from November 1, 2013, to January 1, 2014, across 400
regions. The data time interval is 1 h.

® Trentino dataset contains three mobile traffic features:
SMS, calls (CALL), and Internet usage (Internet). This dataset
covers data from 11466 regions spanning 62 days, from Novem-
ber 1, 2013, to January 1, 2014, at 23:00. The data time interval
is also setto 1 h.

® Beijing dataset contains blog check-in data received from
528 regions in Beijing through the Weibo application from Jan-
uary to December 2023. The Weibo application is a mainstream
social media platform in China, with 590 million monthly active
users as of 2024, offering extensive coverage. The data points
are aggregated at 5-minute intervals.

® Shanghai dataset [51], [52], [53] comprises over 7.2 mil-
lion call records generated by 9,481 mobile phones accessing
the Internet via 3,233 base stations from June 2014 to November
2014. The data time interval is 10 minutes.

1) Data Process: Each region or base station is treated as
a node. Missing values are filled with 0. We primarily report
the performance of various models in the Milan dataset because
of its moderate size, which allows the majority of models to
run freely. Subsequently, the Trentino dataset, which contains
10,000 nodes, is used to evaluate the scalability of the models in
large-scale mobile networks; some complex models encounter
memory complexity challenges and could not run. The Beijing
and Shanghai datasets, representing two cities with completely
different administrative functions in China, are used to assess the
robustness and generalization of the models under fine-grained
sampling rates. All datasets are split along the time axis into
training, validation, and test sets in a 6:2:2 ratio, with missing
values imputed as zero. The summary of four datasets is shown
in Table II.
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TABLE II
THE SUMMARY OF FOUR DATASETS

City Milan  Trentino Beijing Shanghai
Node 400 11466 528 3233
Time Interval 1 Hour 1 Hour 5 mins 10 mins
Time Span 62 days 62days 12months 6 months

B. Experimental Setups

1) Settings and Hyperparameters: All datasets are split into
training, validation, and testing sets in a 6:2:2 ratio along the
time axis. Experiments are conducted three times, implemented
in PyTorch with Python 3.11.5, and run on an NVIDIA H100
80 GB GPU. We employ 24 time steps observation window
to forecast the mobile traffic for the subsequent 24 time steps,
ie., T'= P = 24. We make predictions for each mobile traffic
feature separately. For fair comparison, time step of day and day
of week information are also integrated into baselines as input
features.

We use the Adam optimizer [54] with initial learning rate
10~%. The learning rate is halved after each gradient descent. We
use the Lo loss optimization function with early-stopping tech-
nique with a patience of 10 to prevent models from overfitting.
All the hidden dimensions including d., dy, d; in the Mobimixer
are 16. In the hierarchical interaction module, the number of
super nodes K is equal to 8. In the temporal learning module,
we set up two different timescales (i.e., U = 2). The number of
layers of multi-scale temporal mixing .J is equal to 5.

2) Metrics: We use three metrics to assess the gap be-
tween predicted Y € RP*N*4 and ground-truth values Y €
RP*Nxd “including Mean Square Error (MAE), Root Mean
Square Error (RMSE), and Bit Error Rate (BER) which are
defined as,

1 PxNxd N
MAE = ————— ; Y, — Y, (13)
RMSE = |~ PXZN:Xd(Yi -Y.)? (14
PxNxd P
BER = M x 100% (15)

3) Baseline: To compare the performance of MobiMixer
with SOTA models, we select open-source models specif-
ically designed for mobile traffic prediction and general
spatiotemporal prediction models, including: ConvLSTM,
MVSTGN [13], STDenseNet [55], ST-Tran [56], AHST-
GNN [57], AGCRN [58], ASTGCN [59], BigST [60], D 2
STGNN [46], DCRNN [45], D 2 STGNN [46], DGCRN [61],
DLiner [62], AMD [50], TimeMixer [39], DSTAGNN [63],
GWNet [64], STAEformer [65], STGCN [66], STGODE [67],
STID [68], STNorm [69], STNN [70].
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C. Prediction Performance Comparison (Q.1)

Tables IIT and IV show the predictive performance of different
models at time granularity on Milan dataset.

@ MobileMixer vs Time Series Model: ConvLSTM exhibits
the poorest performance as it relies exclusively on LSTM for
modeling temporal dependencies. In contrast, AMD achieves
improved predictive performance through its dual-dependency
interaction module and adaptive multi-predictor synthesis,
which effectively capture long-range sequence dependencies.
DLinear performs relatively well among time series models due
to its simpler architecture, which reduces the risk of overfitting
the training data. However, these models struggle to adequately
model spatial dependencies, resulting in significantly lower
performance compared to MobileMixer. Our model addresses
this limitation by introducing a hierarchical spatial interaction
network that facilitates efficient spatial dependency learning.

® MobileMixer vs Spatiotemporal Graph Learning Model:
Compared to STGCN and DGCRN, which integrate traditional
graph convolutional networks, AHSTGNN and GWNet utilize
static adaptive graph learning and dynamic graph learning mod-
ules to capture complex spatiotemporal dependencies, demon-
strating superior performance. BigST and STID are spatiotem-
poral graph prediction models based on MLP architecture, and
despite their simple structure, they surprisingly achieve results
close to those of GCN-based models. STAEformer, STNN, and
D 2 STGNN leverage Transformers to capture mobile traffic pat-
terns, but their performance is unsatisfactory, possibly because
Transformers use a uniform scale for temporal modeling, which
may not effectively address the non-stationary characteristics
of mobile traffic data. DCRNN achieves good predictive per-
formance due to the representation power of its diffusion graph
convolutional network for spatiotemporal graph data. In contrast
to these models, the significant advantage of our model lies in
its ability capture different granularities of temporal and spatial
features. Spatial patterns are decomposed into fine-scale nodes
and coarse-scale regions, and learning is performed separately
for different granularities. This method mitigates the complexity
of spatial features across different nodes, thereby reducing the
complexity.

MobiMixer achieves the best performance across all metrics
on all datasets. Impressively, in the SMS dataset, MobiMixer
demonstrates a relative performance improvement of 11.98% to
48.49% compared to advanced models. In the CALL dataset,
MobiMixer achieves a performance boost ranging from 13.33%
to 43.30%.

D. Ablation Experiment (Q.2)

We evaluate the effectiveness of each component on the SMS-
IN dataset. And we create the following variants by removing
the individual components:

® w/o promeans that we remove the temporal prompt module

of MobiMixer.

e w/o HIM means that we remove the hierarchical interac-

tion module of MobiMixer.

* w/o nemb means that we remove the node embedding of

MobiMixer.
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TABLE III
SHORT-TERM PREDICTION PERFORMANCE FOR SMS-IN AND SMS-OUT

SMS-IN SMS-Out
Model 6 Horizons 18 Horizons 24 Horizons 6 Horizons 18 Horizons 24 Horizons
MAE RMSE MAE RMSE MAE RMSE BER ~ MAE RMSE MAE RMSE MAE RMSE  BER

ConvLSTM  63.77 13467 7073 14614 7227 14407 05520  39.08 84.40 40.81 88.40 42.06 88.82  0.4951
MVSTGN 50.29 10398  56.47 12744 6234 12496 0.6849  32.75 68.67 33.00 74.92 35.27 7466 07161
STDenseNet  57.11 11534  66.48 13348  62.31 12821  0.7068  34.94 72.79 33.88 76.26 37.67 76.96  0.7239
AHSTGNN  45.00 91.48 48.75 98.10 49.63 10415 0.6886  26.82 59.32 28.70 60.04 29.94 62.68  0.6894
AGCRN 45.48 96.91 51.34  106.15 50.17 10511 0.6863  31.71 65.01 31.40 62.46 32.10 6233  0.7012
ASTGCN 42.99 89.95 46.11 94.92 46.91 96.48  0.6879  26.22 51.34 27.80 53.97 28.36 53.97  0.7515
BigST 36.40 74.93 40.34 81.69 40.06 81.77  0.7058  27.46 52.21 27.68 52.69 30.10 55.65  0.6862
D2STGNN 38.24 85.50 42.73 93.15 43.38 92.77  0.6562  23.87 50.84 25.13 52.76 27.72 57.86  0.7005
DCRNN 28.07 66.12 32.22 72.78 32.30 7540  0.5178 19.05 41.40 20.75 43.26 21.03 45.05  0.5247
DGCRN 70.21 11520 69.99 11177 6570  108.84 0.5557  34.94 54.46 34.52 57.51 34.30 57.61 0.6126
DLinear 35.64 76.66 38.14 81.03 38.55 82.35 05469  21.07 45.83 21.57 46.42 21.95 47.02  0.5036
AMD 30.18 71.65 35.69 77.68 36.10 81.05  0.5374  20.98 49.35 21.12 50.96 21.76 51.45  0.5763
TimeMixer 31.94 72.65 35.28 76.13 36.35 82.51 0.5413  20.16 48.86 20.90 49.63 21.54 51.28  0.5687
DSTAGNN  51.15 101.92  51.31 101.06 5194  106.63 0.6498  26.51 55.74 30.24 61.42 29.62 58.17  0.6984
GWNet 40.30 82.92 44.67 90.32 44.48 9255  0.7594  24.44 53.81 25.61 55.35 26.95 56.93  0.6432
STAEformer  42.40 81.45 46.57 90.48 51.09 95.06  0.8170  27.69 54.26 29.17 56.57 31.35 59.88  0.7752
STGCN 49.06 105.08  51.21 109.00 5878  120.14 0.6894  27.75 59.04 29.28 61.62 32.87 65.92  0.6817
STGODE 39.32 84.50 42.23 88.49 43.46 90.77  0.6569  25.41 54.85 27.28 57.96 27.35 57.86  0.6142

STID 40.72 83.80 41.08 84.58 43.33 88.35  0.6900 2391 49.31 26.65 53.66 27.83 54.45  0.6606
STNorm 56.19 11529 4955 10151  46.22 91.90  0.7200  31.35 64.35 30.28 61.34 27.39 5446  0.7185
STTN 46.77 94.76 57.03  109.37  48.09 98.22  0.7309  27.18 57.56 36.18 71.27 32.13 64.53  0.6931

MobiMixer  22.52 34.06 24.12 40.68 28.08 52.00  0.3884 14.49 28.37 16.22 31.37 18.51 30.42  0.3265
Improvement +19.77% +48.49% +25.14% +44.11% +13.07% +31.03% +24.99% +23.94% +31.47% +21.83% +27.48% +11.98% +32.48% +34.05%

Value indicates the best performance, while value indicates the second-best performance. *Improvement’ represents the percentage improvement of the best performance relative to the
second-best performance.

TABLE IV
SHORT-TERM PREDICTION PERFORMANCE FOR CALL-IN AND CALL-OUT

CALL-IN CALL-Out

Model 6 Horizons 18 Horizons 24 Horizons 6 Horizons 18 Horizons 24 Horizons
MAE RMSE MAE RMSE MAE RMSE DBER  MAE RMSE MAE RMSE MAE RMSE  BER

ConvLSTM  46.56 92.78 46.89 99.34 45.92 89.21 0.5688  46.40 95.99 52.30 103.07 51.51 98.79  0.5092
MVSTGN 37.01 73.34 34.55 78.59 33.78 7297  0.7130  35.99 70.79 38.29 79.57  37.69 75.89  0.6891
STDenseNet — 42.70 90.74 45.56 86.91 4224 87.84  0.7015  41.89 94.54 49.6 98.38  49.31 9529  0.6792
AHSTGNN  34.99 71.32 37.56 72.60 35.23 69.07  0.7165  33.59 75.57 38.43 77.23  39.30 7796  0.7254
AGCRN 36.33 72.94 36.72 75.63 35.61 70.91 0.7035  35.60 75.37 39.76  82.08  40.29 79.31  0.6766
ASTGCN 31.34 66.33 35.05 70.78 34.48 7012  0.7562  36.39 73.60 3723 7526  39.43 76.85  0.7106
BigST 26.07 49.53 31.16 60.01 30.01 59.36 0.7333  27.40 52.80 3319 6319 3227 63.02  0.7269
D2STGNN 28.07 62.39 33.65 74.59 33.29 73.76 ~ 0.7165  30.35 68.95 36.34 78.88  33.85 7412 0.6269
DCRNN 18.22 41.82 21.95 48.30 22.20 50.72  0.5019  21.65 48.68 25.15 54.68  28.29 57.56  0.5041
DGCRN 54.55 81.64 43.09 73.76 39.09 71.08  0.6128  58.40 92.79 52.68 87.24  47.85 83.43  0.5746
DLinear 25.44 53.80 27.78 59.21 27.79 59.81 0.5412  28.58 58.70 31.34 6482 31.27 65.01  0.5701
AMD 22.45 50.56 26.18 60.79 26.44 60.88  0.7080  27.89 51.89 3247 5823 3541 65.79  0.6389
TimeMixer 21.13 47.89 24.46 58.09 24.56 58.14  0.6689  25.46 50.10 29.68 56.78  30.48 59.16  0.5598
DSTAGNN  33.07 67.75 37.17 74.45 37.77 7433  0.6742  33.41 70.10 41.07  80.33  41.94 8249  0.6523
GWNet 31.41 62.07 33.00 67.82 31.17 66.57  0.7182  33.00 6.65 37.68 7827 3522 7414  0.7172
STAEformer  29.48 56.77 33.76 65.81 37.60 7230  0.6956  34.80 66.52 38.61 7547  42.86 81.71  0.6962
STGCN 35.47 71.56 38.79 79.01 44.52 86.85  0.6984  37.85 79.09 4097 8595 4649 9298  0.7159
STGODE 27.26 57.09 28.60 60.21 28.57 60.38  0.6485  31.02 62.08 3438 69.20 36.38 7498  0.6990

STID 26.74 52.23 29.02 58.38 29.43 59.83  0.6874  33.78 66.83 3412 69.14  37.68 76.55  0.6797
STNorm 35.04 71.61 37.12 73.66 35.76 68.78  0.7223  37.17 75.03 39.96 7892  33.24 67.93  0.6998
STTN 29.14 59.23 43.16 81.68 34.05 66.69  0.7431 30.98 63.51 38.77 79.23  36.74 73.53  0.6899

MobiMixer  14.86 23.71 17.36 29.81 19.24 39.01 0.3691 15.66 27.30 19.94 35.06 23.93 49.48  0.3555
Improvement +18.44% +43.30% +20.91% +38.28% +13.33% +23.09% +26.45% +27.67% +43.92% +20.72% +35.88 +15.41% +14.04% +29.47%

® w/o TD means that we remove the temporal decomposition — accurately capture mobile traffic patterns. For example, in-

mechanism of MobiMixer. tegrating day-of-the-week information into the model helps
e w/o MT means that we remove the multi-scale timing capture periodic dynamics. On the other hand, “w/o nemb”
modeling mechanism of MobiMixer. achieves higher prediction errors because node embeddings can

The experimental results are shown in Figs. 9 and 10, and adaptively capture the fine-scale spatial features of each node.
we find that every component of MobiMixer is effective. “w/o  “w/o HIM” shows poorer predictive performance, highlight-
pro” achieves higher prediction errors, indicating that encod- ing the necessity of extracting spatial features. This module
ing various temporal priors is beneficial for the model to enhances predictions by extracting high-level features shared

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 14,2025 at 08:31:41 UTC from IEEE Xplore. Restrictions apply.



11982

s

<30

i
= o
25 LA il
e 45 ok
AARA Ao
LA A x
Adid Py

20 4

w/o pro w/o HIMw/o nemb w/o TD w/o MT  Ours w/o pro w/o HIMw/o nemb w/o TD w/o MT  Ours

Fig. 9. Ablation experiments on the Milan SMS-IN dataset.
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Fig. 10.  Ablation experiments on the Milan CALL-IN dataset.
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Fig. 11.  Efficiency comparison on the Milan SMS-IN dataset.
TABLE V
EFFICIENCY COMPARISON ON CALL-IN DATASET
Performance  Training speed  Memory footprint

Model RMSE (s/epoch) (MB)
AGCRN 105.11 12.15 4,686
ASTGCN 96.48 8.81 5,906
D2STGNN 92.77 58.12 23,078
DSTAGNN 106.63 13.54 8,066
STAEformer 95.06 16.51 12,738
STGODE 60.38 90/77 5,560
STTN 98.22 18.03 7,140
DCRNN 75.40 95.63 4,604
MobiMixer 52.00 8.18 3,084

‘We report the RMSE of 24 time step.

among nodes. Additionally, “w/o TD” results in larger prediction
errors, as decomposing traffic sequences into long-term and
short-term patterns and modeling them separately helps the
model capture comprehensive temporal dynamic. The mixture of
multi-granularity temporal features further enhances modeling
accuracy.

E. Efficiency Comparison (Q.3)

‘We compare the computational complexity of the models and
report the training time per epoch and memory usage of several
advanced models on the SMS-IN dataset. We run each model
on the same device and environment. The results are shown in
Fig. 11 and Table V. We find that Transformer-based models
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Fig. 12.  Parameter sensitivity experiment on the Milan CALL-IN dataset.

require more memory due to their complex model parame-
ters, which also introduce a quadratic computational burden.
The top-performing baseline DCRNN uses a recurrent struc-
ture, sequentially predicting future values, consuming the most
computation time. Our model eschews graph convolution
operators and primarily utilizes MLP as the underlying archi-
tecture. Therefore, while maintaining high performance, Mo-
biMixer achieves the lowest computational burden. Compared
to DCRNN, the training speed also improves by 10.69X, and
memory usage decreased by 33.01%.

F. Hyperparameter Experiment (Q.4)

Using CALL-IN dataset as example, we evaluate the impact
of two important parameters on the model performance: the
number of super nodes K and the number of layers of the
multi-scale temporal mixing module J. As shown in Fig. 12,
we find that the best predictive performance was achieved when
K isequalto 8. When K exceeds this value, an excessive number
of super nodes hinder the model’s ability to effectively extract
shared spatial features. When the number of temporal layers J
is set to 5, the model exhibits good predictive performance. A
smaller value may result in the model being unable to effectively
fit complex mobile traffic patterns, leading to underfitting. Con-
versely, a larger value may cause the parameter scale to become
excessively large, resulting in overfitting.

G. Scalability in Large-Scale Mobile Networks (Q.5)

We evaluate the scalability performance of the model on the
Trentino dataset, which consists of 11,466 nodes in a large-scale
mobile network. Notably, some models, such as D 2 STGNN,
are absent from the results due to exceeding memory limits.
The results are presented in Table VI. STID employs several
embedding techniques to capture mobile traffic patterns, re-
sulting in excellent predictive performance. GWNet achieves
high accuracy by utilizing graph convolutional networks to learn
spatiotemporal correlations, but introduces significant compu-
tational complexity. In contrast, our model demonstrates out-
standing predictive performance on large-scale networks, with
a maximum performance improvement of 54.5%.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 14,2025 at 08:31:41 UTC from IEEE Xplore. Restrictions apply.



MA et al.: MOBIMIXER: A MULTI-SCALE SPATIOTEMPORAL MIXING MODEL FOR MOBILE TRAFFIC PREDICTION

11983

TABLE VI
PERFORMANCE EVALUATION ON TRENTINO DATASET WITH TEN THOUSAND NODES

SMS CALL Internet
Model 6 Horizons 18 Horizons 24 Horizons 6 Horizons 18 Horizons 24 Horizons 6 Horizons 18 Horizons 24 Horizons
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
BigST 6.74 21.67 712 2220 756 2417 3.00 1320 3.30 15.66 3.62 1693 2047 60.38 23.39 69.77 24.69 74.03
DLinear 7.19 2423 738 2476 725 2434 353 1657 371 18.07 3.76 18.01 1742 59.13 1830 6255 19.68 66.03
GWNet 645 20.22 6.69 20.63 697 2259 3.03 1236 3.39 15.61 343 15.84 1854 60.66 20.15 66.69 23.09 72.36
STGCN 699 2828 716 2785 748 2857 4.08 2025 421 2140 4.62 2246 30.70 113.32 32.26 116.43 34.79 124.06
STGODE 8.08 2541 8.67 2644 886 2658 451 3221 520 35.08 519 3277 2398 80.34 28.07 9091 2892 95.28
STID 6.28 20.09 6.84 2158 7.17 2274 292 1247 312 1512 339 1621 16.97 54.17 1851 62.06 19.99 65.25
STNorm 829 28.76 825 26.67 814 2628 378 1570 3.81 1487 4.09 1648 2457 96.42 2481 93.89 23.17 73.96
MobiMixer 4.83 19.99 4.89 19.51 3.17 13.26 1.91 12.08 1.93 11.87 1.61 9.68 11.67 47.83 12.76 51.85 9.56 44.46
Some models do not appear because they run out of memory.
TABLE VII TABLE VIII
PERFORMANCE COMPARISON OF PEAK TRAFFIC PREDICTION PERFORMANCE COMPARISON IN WEEKEND
SMS-IN CALL-IN SMS-IN CALL-IN
Model "\fAE RMSE MAE RMSE Model "\fAE RMSE MAE RMSE
DCRNN 32.71 76.59  33.62 48.84 DCRNN 56.71 104.34 36.21 72.41
MobiMixer  25.49 38.10 19.24 27.33 MobiMixer  41.73 73.61 25.98 49.96
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Fig. 13.  Visualization of peak prediction results.

H. Case Study (Q.6)

1) Peak Traffic Prediction: Peak traffic situations may be of
greater concern to mobile management personnel in order to
timely formulate network prevention policies. We compare the
prediction performance of MobiMixer and DCRNN for peak
traffic. Taking the Milan SMS-IN dataset as an example, we
select the top 90% of traffic values for each node in the test
dataset, and the predictive performance is shown in Table VII.

We further visualize the prediction results of MobiMixer and
the top-performing baseline DCRNN in Fig. 13. We can find that
MobiMixer can effectively predict future mobile traffic peaks.
This is attributed to the multi-scale temporal modeling capability
of MobiMixer, which can efficiently capture periodic peaks.
Accurately predicting peaks can better assist network managers
in formulating traffic management policies.

2) Weekend Traffic Prediction: We further compare the pre-
diction performance on weekends. During weekends, due to
travel or tourism activities, the mobile traffic patterns may ex-
hibit non-stationary distributions, posing challenges for accurate
prediction. The results, as shown in Table VIII and Fig. 14,
indicate that MobiMixer still achieves outstanding predictive
performance. This can be attributed to the decoupled temporal

Fig. 14.  Visualization of weekend prediction results.

modeling, which enables a better fit for non-stationary mobile
patterns. The multi-scale temporal modeling can sensitively
perceive trend changes, while the periodic long-term patterns
assist in making accurate predictions during weekend scenarios.

1. Robustness of Data Time Interval (Q.7)

We evaluate the robustness of the models under various time
interval. In datasets with high sampling frequencies, such as
the Beijing dataset (5 minutes) and the Shanghai dataset (10
minutes), mobile traffic data often contain a significant number
of zero values, which complicates the models’ ability to learn ac-
curate spatiotemporal correlations from sparse data. The results,
presented in Table IX, indicate that STGODE achieves relatively
good predictive performance, likely due to its incorporation
of partial differential equation techniques, which are effective
in capturing high-level spatiotemporal correlations. However,
MobileMixer demonstrates competitive predictive performance
as well, thanks to its multi-scale spatiotemporal modeling capa-
bility, which helps mitigate the adverse effects of data sparsity.
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TABLE IX
PREDICTION PERFORMANCE FOR SHANGHAI AND BEIJING DATASETS

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

Shanghai (10 mins)

Beijing (5 mins)

6 Horizons 18 Horizons 24 Horizons 6 Horizons 18 Horizons 24 Horizons
Model MAE RMSE MAE RMSE MAE RMSE BER MAE RMSE MAE RMSE MAE RMSE BER
ConvLSTM  0.2145 0.5798 0.2151 0.6011 0.2454 0.5923  0.0057 0.1889 0.5801 0.1899 0.5888 0.1918 0.5879  0.0051
AGCRN - - - - - - - 0.1907  0.5737  0.1936 0.5819 0.1925 0.5815 0.0068
ASTGCN - - - - - - - 01987 05914 02021 0.6024 02031 0.6052  0.0071
BigST 0.2153 0.5723 0.2160 0.5910 0.2143  0.5836 0.0068 | 0.1879 0.5664 0.1900 0.5753 0.1910 0.5795 0.0058
D2STGNN - - - - - - - 01991 05792 02050 05922 02036 05878  0.0062
DCRNN - - - - - - - 0.2616 0.6900 0.2837  0.7003 0.2328 0.6331 0.0059
DGCRN - - - - - - - 01930 05960 02001 05952 02136  0.6043  0.0056
Dlinear 0.2220 0.5769 0.2222 0.5946 0.2204 0.5888 0.0059 0.2151 0.6373 0.2140 0.6388 0.2139 0.6367 0.0068
AMD 0.2196 0.5931 0.2204 0.5916 0.2108 0.5928 0.0071 0.1935 0.5813 0.1943 0.5831 0.1950 0.5846 0.0068
TimeMixer 0.2188 0.5864 0.2189 0.5946 0.2193 0.5922 0.0066 0.1915 0.5731 0.1921 0.5763 0.1938 0.5756 0.0062
GWNET 0.2147  0.5812  0.2142 0.5994  0.2141 0.5927  0.0059 0.1904 0.5690 0.1975 0.5715 0.1983 0.5781 0.0061
STAEformer - - - - - - - 01880 05679 0.891 05733 01908 05786  0.0063
STGCN 0.2175 0.5958 0.2165 0.6155 0.2174 0.5847 0.0063 0.1907  0.5666 0.1941 0.5765 0.1948 0.5798 0.0073
STGODE 0.2150  0.5722 0.2165  0.5896 0.2146 0.5853 0.0064 0.1908  0.5661 0.1921  0.5703 0.2031  0.5700 0.0068
STID 0.2159 0.5807  0.2188 0.5976 0.2164 0.5918 0.0063 0.1892 0.5669 0.1898 0.5680 0.1903 0.5799 0.0064
STNorm 0.2198 0.5851 0.2202 0.6013 0.2198 0.5970 0.0072 0.2013 0.5913 0.1956 0.5828 0.1897 0.5895 0.0070
STTN - - - - - - - 0.1894 0.5671 0.1911 0.5710  0.1888 0.5754 0.0064
MobiMixer 0.1581 0.4493 0.1587 0.4754 0.1556 0.4761 0.0038 0.1355 0.4678 0.1408 0.4818 0.1455 0.4761 0.0047
Some models marked with ”-” are missing due to out-of-memory issue.
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