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FairSTG: Countering Performance Heterogeneity via
Collaborative Sample-Level Optimization
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Abstract—Spatiotemporal learning plays a crucial role in mobile
computing techniques to empower smart cites. While existing re-
search has made great efforts to achieve accurate predictions on the
overall dataset, they still neglect the significant performance hetero-
geneity across samples. In this work, we designate the performance
heterogeneity as the reason for unfair spatiotemporal learning,
which not only degrades the practical functions of models, but
also brings serious potential risks to real-world urban applications.
To fix this gap, we propose a model-independent Fairness-aware
framework for SpatioTemporal Graph learning (FairSTG), which
inherits the idea of exploiting advantages of well-learned samples to
challenging ones with collaborative mix-up. Specifically, FairSTG
consists of a spatiotemporal feature extractor for model initial-
ization, a collaborative representation enhancement for knowl-
edge transfer between well-learned samples and challenging ones,
and fairness objectives for immediately suppressing sample-level
performance heterogeneity. Experiments on four spatiotemporal
datasets demonstrate that our FairSTG significantly improves the
fairness quality while maintaining comparable forecasting accu-
racy. Case studies show FairSTG can counter both spatial and
temporal performance heterogeneity by our sample-level retrieval
and compensation, and our work can potentially alleviate the risks
on spatiotemporal resource allocation for underrepresented urban
regions.

Index Terms—Fairness learning, spatiotemporal forecasting,
representation learning, self-supervised learning.

I. INTRODUCTION

W ITH the rapid urbanization and increasing number of
urban devices, we are now embracing a new era with
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TABLE I
THE UNFAIRNESS ISSUE IN SPATIOTEMPORAL LEARNING

a vast amount of valuable spatiotemporal data. Actually, spa-
tiotemporal data plays a crucial role in mobile computing ser-
vices for smart cities, including traffic police assignment [1],
[2], [3], urban safety management [4], [5], [6], and numerical
weather forecasting [7]. However, data collected from real-world
is inevitably trapped into bias due to imbalance sampling, inher-
ent low quality or under-representation in gender, race or other
sensitive attributes.

Recently, fairness issue, which calls for equal opportunities on
allocation and assigned has received increasing attention in the
field of mobile computing. Such fairness issue has been studied
for edge computing systems [8], crowdsensing platforms [9] as
well as intelligent traffics [10] to achieve fair task assignment
and computational resource allocation. As an emerging tech-
nique for mobile computing, spatiotemporal learning, mostly
for location-based services, is more prone to suffer unfairness.
Without explicitly considering the fairness issue, machine learn-
ing models will erroneously learn such bias and even exacerbate
the unfairness, leading to misleading decisions on downstream
tasks [11], [12].

Current literature on spatiotemporal learning mostly concen-
trates on the overall performance [3], [13], [14], overlooking
the performance heterogeneity across different samples and re-
gions. As shown in Table I, a preliminary experiment conducted
on two well-known datasets verifies such serious performance
heterogeneity. Consider the expectation of Mean Absolute Error
(MAE) and variance of MAE as the indicator for overall perfor-
mance and sample-level performance heterogeneity, we find that
advanced spatiotemporal learning methods achieve satisfactory
overall performance, but the MAE variance is approximately 14
times of MAE on METR-LA and 9 times of MAE on PEMS-
BAY. We designate such prediction disparity as performance
heterogeneity, resulting in unfair performance over locations and
prediction steps.

Unfortunately, an unfair spatiotemporal model can induce
risks on two aspects. First, overlooking the performance
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disparity among samples can result in misleading guidance
and erroneous decisions for urban management. Second, in
a technical perspective, pure error-based metrics which only
emphasize the average results but neglect the inconsistency in
performance can trap such evaluation into one-sided report. To
empirically explain the significance of performance fairness,
we provide the numerical results in Table I, which illustrates the
performance disparity (MAE/MAPE variance) among testing
samples. The larger disparity, the more unfair performances
among samples, thus the more risks of exploiting the model
for making urban decisions. To this end, a fair spatiotemporal
learning framework is essential to empower non-biased urban
applications. In this work, we dissect the inherent factors
behind unfairness and counter the heterogeneity of prediction
results across spatiotemporal domain to increase the quality of
urban decisions, hence deducing the system risks, especially on
underrepresented groups and individuals.

Concretely, the performance heterogeneity in spatiotemporal
learning can be attributed to two aspects, i.e., the adequacy of
data representation and the inherent regularity within datasets.
First, urban sensors are more concentrated on city centers than
suburban areas, leading to inadequate representation of marginal
areas in the overall dataset and increasing their learning dif-
ficulty. Second, different samples and regions exhibit diverse
patterns, inducing different degrees of learning difficulty. Mean-
while, abundant local contexts in spatiotemporal data, such as
geographical locations, functional regions, and temporal con-
texts, influence the data regularity in a complex and intertwined
manner. To this end, we posit that samples with lower regularity
and high learning difficulty pose a greater challenge for the
model, and exhibit poorer predictive performance. Thus, im-
proving the forecasting performance on these samples is crucial
for countering the unfairness issue in spatiotemporal data.

Existing literature concerning this work can be summarized
as two lines. The line of spatiotemporal learning takes efforts
to model spatial and temporal heterogenerous information on
observations [15], achieving personalized node-level directional
aggregation [16], [17], but has never modeled the heterogeneity
of prediction results, i.e., the prediction disparities on regions
and temporal steps, directly resulting in prediction unfairness.
While the line of fair machine learning investigates how to sepa-
rate the influence of sensitive factors during training, and design
various fairness objectives including inter-group and intra-group
equality [18], all these techniques still have not been advanced
to urban spatiotemporal learning. To this end, we argue that
there are two specific challenges in constructing a fairness-aware
spatiotemporal learning framework.
� Spatiotemporal data is equipped with complex and hetero-

geneous dependencies but lacks explicit sensitive factors
which are considered definitely leading to unfair predic-
tions. Thus the first challenge is how to exploit the implicit
factors which can potentially and jointly result in unfair
predictions, to accurately identify the specific challenging
samples suffering unfair performances.

� On model design aspect, how to devise fairness-aware
learning strategies and maximally exploit the available con-
texts and high-quality spatiotemporal representations to

collaboratively enhance learning of challenging samples,
becomes the second challenge.

To address above challenges, in this work, we propose
a model-independent Fairness-aware SpatioTemporal Graph
learning (FairSTG) to counter the spatiotemporal performance
heterogeneity for fair learning. Our FairSTG takes series of
each region as the minimal sample unit and collaboratively opti-
mizes the spatiotemporal graph representation with an integrated
framework, which allows location-based fairness and joint en-
hancement. Specifically, we design an auxiliary self-supervised
task by additionally taking various external factors as inputs, to
actively identify which samples are prone to unfair treatment.
This solution repairs the lacking of explicit sensitive factors. To
realize fairness-aware learning, FairSTG performs collaborative
optimization from both the representation space and the objec-
tive space. We especially construct the compensatory sample
sets for adaptive representation mix-up, exploiting advantages
of well-learned representations to improve challenging samples.
Regarding learning objectives, a variance-based objective is de-
vised to directly force the model to optimize towards consistent
performance, and a variance-based fairness metrics is introduced
to complement the pure error metrics, which fixes shortcomings
of function degeneration in current metrics. The contributions
can be summarized as below.
� This is the first effort that summarizes the serious out-

comes of spatiotemporal learning without fairness, and
subsequently attributes such performance heterogeneity
into defective objectives and inherent heterogeneity of data
learning difficulty.

� We propose a novel fair mobile computing technique
FairSTG, from both inherent factor of low-quality rep-
resentation and direct factor of the absence of fairness
objectives, advancing modeling observation heterogeneity
towards performance heterogeneity. We minimize the vari-
ances across samples and improve prediction performance
of the challenging samples by drawing common patterns
from the well-matched and high-quality representations.

� We design a fairness metric adapting to spatiotemporal
forecasting, which jointly evaluate learning frameworks
with error-based metrics. Experiments show that our so-
lution significantly improves the equality across perfor-
mances, where the fairness metric in FairSTG outperforms
backbones with a large margin, ranging from 0.21% to
20.05% with 16 out of 24 achieving improvement above
4%, and achieves comparable or better accuracy against
baselines. Case studies demonstrate that FairSTG can alle-
viate the risks on urban resource allocation for underrepre-
sented urban regions, and FairSTG can potentially become
a paradigm of fair urban computing for sustainable mobile
computing and urban intelligence.

II. RELATED WORK

A. Spatiotemporal Learning

Spatiotemporal learning is a crucial technique to empower
urban applications. In an early stage, researchers take spatiotem-
poral forecasting tasks as time-series predictions, and introduce
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statistical solutions such as ARIMA [19], VAR [20] to achieve
forecasting. These statistical approaches are easy to implement
with reasonable interpretability, but fail to simultaneously cap-
ture both spatial and temporal dependencies. With the pros-
perity of deep learning and Graph Neural Networks (GNNs),
deep GNNs naturally have the edge on learning non-Euclidean
spatial data and can potentially accommodate to various spa-
tiotemporal learning tasks [21], [22], [23]. Moreover, recent
literature also proposes to rank the related records in dynamic
and heterogeneous graphs [15], [24], [25], and training in a
cooperative manner [26]. In fact, spatiotemporal heterogeneity,
which refers to the varying patterns across different temporal
or spatial ranges, has been widely recognized in such data and
raised more attention in academia [21]. Specifically, ST-SSL [1]
emphasizes the heterogeneity across temporal steps and spatial
regions with a pair-wise learning in a self-supervised manner,
while HA-STGN [27] is proposed by designing a direction-
aware road network and imposing a time-aware graph attention
mechanism to capture such heterogeneity. Even though existing
works have explicitly taken the heterogeneous observations into
account with different aggregation and representation strategies,
the performance heterogeneity along both spatial and temporal
dimensions has never been considered. We designate such im-
balanced prediction performance as the prediction unfairness,
and overcome such issue in this paper.

B. Fairness-Aware Machine Learning

The unfairness in machine learning, which may do harm to
interests of a specific group or individual, has received extensive
attention. The unfairness can primarily stem from the inherent
data imbalance, and the unawareness of fairness in machine
learning algorithms can further aggravate such bias, leading to
severe unfair resource allocation and discrimination.

Plenty of literature has attempted to counteract the bias in both
data and algorithms to achieve fair machine learning. Based three
stages in machine learning systems, fairness-aware learning can
be generally classified into three categories, methods during
pre-processing, in-processing, and post-processing. First, the
pre-processing solutions remove the underlying bias by aug-
menting and adjusting the training data, and then train a model
on debiased data, where it can be considered as the data-aspect
solution. Second, in-processing methods try to incorporate fair-
ness metrics or propose adversarial learning objectives to obtain
fair representations, which can be viewed as the model aspect
paradigm to balance the accuracy and fairness during the learn-
ing process. For example, to protect the interest of minority news
providers, ProFairRec [28] exploits a sensitive attribute discrim-
inator to identify the provider-bias information while generators
make indistinguishable provider-fair representations against the
discriminator. And VFAE [29] investigates a variational autoen-
coder with Maximum Mean Discrepancy to generate regularized
fair representations. The post-processing methods allow trans-
formations on model outputs, such as label re-assignment [30],
[31], re-ranking of output lists [24], [32], [33] and projection of
representations onto debiased subspace [34], [35], to mitigate
unfairness.

Even fair learning systems have been widely investigated, the
unfairness issue in spatiotemporal learning, which directly leads
to unfair resource allocation and underestimated risks, has still
been under-explored. Such under-exploration can be attributed
to two challenges. First, spatiotemporal data lacks definite sen-
sitive information for fairness constraints. Second, this kind of
data exhibits complex spatial and temporal heterogeneity and
dynamic variations [1], contributing to the difficulty in capturing
real statuses of inactive spatial regions and interactions between
active and inactive regions.

C. Fairness in Mobile Computing Community

The trade-off between system efficiency and fairness, is also
an emerging topic in traditional mobile computing community,
where recent researches include fairness-aware resource alloca-
tion [36], [37], fair edge computing [9], [38] and fair routing
for intelligent traffics [10]. More specifically, regarding edge
computing systems, [8] develops a proportionally fair resource
scheme for wireless-powered mobile edge computing system
with time division multiple access and partial offloading. For
a crowdsensing system, [9] proposes a fair assignment strategy
utilizing Lyapunov optimization to achieve a trade-off between
minimizing the assignment cost and satisfying the two fairness
constraints of users and tasks simultaneously. And for intelligent
traffic systems, [10] studies the road pricing in connection with
fair routing for general road networks and develops a new convex
program which interpolates between a fairness-promoting and
an efficiency-promoting traffic-assignment objective. Overall,
these pioneering researches point out that fairness issue is es-
sential for mobile computing and is promising to investigate the
trade-off among performance, fairness and efficiency.

Actually, spatiotemporal learning is also a core technique
benefiting mobile computing community. The general signif-
icance of fairness-aware machine learning is to provide con-
sistent performance for different individuals within a system
while fulfills the global performance requirements. Different
from existing literature [1], [17], our proposed FairSTG is
a model-independent general framework especially designed
for regression tasks in spatiotemporal learning scenarios. It
aims at mitigating the performance disparity of the backbone
model among different samples while maintaining comparable
forecasting performance, thus alleviating the negative edge of
technique and facilitating the sustainable urban computing.

III. MOTIVATION

Fairness issue, which calls for consistent experiences and
system assignment for different individuals or groups, has re-
ceived increasing attention in mobile computing community.
Recent spatiotemporal forecasting solutions only emphasize
the mean performance on the overall dataset while neglect the
performance disparity among different samples. A preliminary
experiment conducted on two well-known datasets verifies such
serious performance heterogeneity from both temporal and
spatial aspect. As illustrated in Fig. 1(a), the model exhibits
inconsistent forecasting performance across different regions,
and the sensors near transportation hubs suffer poorer fore-
casting performance possibly due to the more complex traffic
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Fig. 1. The unfairness across spatial and temporal ranges. (a) The mean
MAPE of each sensor in PEMS-BAY dataset generated by MTGNN, with red
boxes indicating regions with significant errors. (b) The curve shows the traffic
flow data and the corresponding predictions from MTGNN on sensor #64 in
PEMS-BAY dataset. It can be observed that the prediction performance varies
significantly at different timestamps even for the same sensor.

conditions. And in Fig. 1(b), the prediction performance varies
significantly at different timestamps even for the same sensor,
which demonstrates that there exists performance heterogeneity
in temporal aspect.

More seriously, in a mobile computing system, the unfairness
can potentially propagate along the processes of information
collection, model learning and decision making [39]. The dis-
tribution of facilities and infrastructures in a city is usually
associated with the socio-economic status. Then the data-driven
models may overfit to strong biases in the source data related
to corresponding socio-economic status and demographics [40].
For example, in a macro view, the deployed sensors for intelli-
gent cities in aging and low-income communities may be fewer
and with less quality than other well-developed communities.
Then models without fairness constraints might ignore the pat-
terns of these underrepresented communities and result in poorer
forecasting performance and misleading guidance for resource
allocation and welfare assignment, which exacerbates the un-
fairness for underrepresented regions and communities [39]. For
a specific application of traffic management, when the task of
traffic volume predictions suffers the performance heterogene-
ity, the underestimated regions tend to be allocated with less
police force for manual management, thus increasing the risks
of accidents and crowd incidents in corresponding regions. Con-
sequently, fairness-aware spatiotemporal forecasting method is
urgently needed to provide unbiased guidance and ensure equal
opportunities for different individuals or groups.

IV. PROBLEM FORMULATION

We focus on countering the unfairness issue in spatiotemporal
learning while maintaining the performance of the backbone
model.

Definition 1 (Spatiotemporal graph): A spatiotemporal graph
(ST Graph) is formulated as G = {G1,G2, · · ·,GT }, to describe
spatiotemporal data, where G = (V, E ,A,X). The node set
V = {v1, v2, · · ·, vN} and edge set E = {eij = (vi, vj)} can be
formulated respectively, where N = |V| is the number of nodes.
It is worth noting that we do not force a predefined adjacency
matrix for spatiotemporal graphs in our tasks, but it can be

learned from input features. We then define A ∈ R
N×N as the

virtual (learnable) adjacency matrix of our spatiotemporal graph
when mentioned.

Besides, let X:,0:T−1 = {X:,0,X:,1, · · ·,X:,T−1} ∈ R
N×T

denote a series of observed spatiotemporal graphs with N nodes
and T time steps, where X:,t = {x0,t, x1,t, · · ·, xN−1,t} ∈ R

N

records the observations of theseN nodes inGt at time step t and
xi,t represents the deterministic value of node i at time step t.

Problem 1 (Spatiotemporal forecasting): GivenX:,t−w:t−1 ∈
R

N×w, spatiotemporal forecasting aims to derive the following
h steps of observations. Then, the spatiotemporal prediction
problem can be formalized as follows,

Ŷ:,t:t+h−1 = fθ(X:,t−w:t−1;G) (1)

where f represents the model for spatiotemporal prediction, and
θ ∈ Θ denotes the learnable parameters.

We refer to the observations of the ith node with a temporal
window of lengthw before time step t as a spatiotemporal sam-
ple, formalized as Xi,t−w:t−1. And the corresponding ground
truth is defined asXi,t:t+h−1. For ease of description, we denote
the set of input spatiotemporal samples as X = {x1,x2, · ·
·,xM}, where xi ∈ R

w represents an individual sample and
M = |X | denotes the number of samples. And the set of ground
truth is formulated as Y = {y1,y2, · · ·,yM}, where yi ∈ R

h.
Then we can explicitly capture the spatial heterogeneity via
our node-level defined spatiotemporal sample. Given above, the
spatiotemporal forecasting problem can be reformulated as,

Ŷ = fθ(X )

In this work, we take MAE as the error metric, and the
objective of the forecasting task is to find an optimal set of
parameters θ∗ ∈ Θ that minimizes the global MAE, i.e.,

θ∗ = argθ∗∈Θ minMAE(Y, Ŷ)

= argθ∗∈Θ minMAE(Y, fθ∗(X )) (2)

Definition 2 (Fairness metrics in spatiotemporal forecasting):
Existing fairness metrics in machine learning usually take an
explicit sensitive attribute, such as gender and racial, as the
grouping standard and evaluate the fairness by measuring the
consistency of model performance across different groups. How-
ever, in spatiotemporal learning, there is lack of such explicit
sensitive attributes and a strategy tailored for regression tasks
is highly required. To fill the gap, we propose a variance-based
fairness metric. We posit that a fair spatiotemporal prediction
model should provide predictions with similar performance for
different spatiotemporal samples, meaning that the prediction
errors for various samples are close. We take the disparity of
errors among different spatiotemporal samples to characterize
the degree of the performance unfairness. And we employ
the variance of errors to quantify such sample-level disparity,
illustrated as D(Y, Ŷ ; θ), where multiple metrics can be chosen
to measure prediction errors. The larger the variance is, the more
unfair the forecasts are.

Problem 2 (Fairness-aware spatiotemporal forecasting): In
this work, we improve the spatiotemporal forecasting model

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 14,2025 at 08:18:19 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: FAIRSTG: COUNTERING PERFORMANCE HETEROGENEITY VIA COLLABORATIVE SAMPLE-LEVEL OPTIMIZATION 4157

Fig. 2. Framework overview of FairSTG. The spatiotemporal feature extractor learns spatiotemporal representations from the original ST Graph. The fairness
recognizer mines the learning difficulty and generates fairness signals in a self-supervised manner, and the collaborative feature enhancement adaptively transfers
advantageous features from easy set to challenging set. Finally, the output module transforms the fused representations and produces the predictions.

fθ∗ to a fairness-aware version, which enforces the model to
treat different spatiotemporal samples fairly and simultaneously
maintains the original prediction performance. It can be formally
formulated as,

θ̃ = argθ̃∈Θ minD(Y, Ŷ ; θ̃)

s.t. MAE(Y, fθ̃(X )) ≤ δ · MAE(Y, fθ∗(X )) (3)

Here, δ > 0 describes the trade-off between mitigating unfair-
ness and the inevitable sacrifice in overall performance of the
spatiotemporal prediction model. It also serves as an evaluation
metric, measuring the overall performance sacrifice incurred by
the alleviating the unfairness issue. If δ > 1, it indicates that the
model sacrifices some accuracy to ensure global fair predictions.
If 0 < δ ≤ 1, it suggests that the model simultaneously improves
both fairness and forecasting performance.

V. METHODOLOGY

To counter the unfairness issue in spatiotemporal forecast-
ing, we propose a novel Fairness-aware SpatioTemporal Graph
learning (FairSTG), which ensures fair global predictions via
collaborative feature transfer and fairness constraints. As illus-
trated in Fig. 2, FairSTG consists of four well-designed compo-
nents, spatiotemporal feature extractor, fairness recognizer, col-
laborative feature enhancement and output module. Specifically,
spatiotemporal feature extractor generates the spatiotemporal
representations from the input ST Graphs. Fairness recognizer
identifies the learning difficulty of samples and generates fair-
ness signals in a self-supervised manner. Then, based on the
fairness signals, we propose a collaborative feature enhancement
to adaptively improve the informativeness of representations
via transferring the advantageous representations from well-
learned samples to those difficult to learn. Finally, we output fair
forecasts.

A. Spatiotemporal Feature Extractor

The spatiotemporal feature extractor captures sequential pat-
terns and spatial correlations from the input ST Graph. Ex-
isting literature designs various models for feature extraction
based on specific application scenarios, such as RNN-based,
CNN-based and GNN-based models. Our FairSTG is a model-
independent framework, allowing different models to work as
the backbone for the extractor, according to different application
scenarios and data characteristics. In our work, we select two
superior spatiotemporal GNN-based models MTGNN [13] and
D2STGNN [14] as the backbone model of the extractor. MT-
GNN designs a graph learning layer to extract uni-directional
relations among nodes, and a novel mix-hop propagation layer
and a dilated inception layer are further proposed to capture
the spatial and temporal dependencies within the time series.
D2STGNN decouples and handles the diffusion and inherent
traffic information separately. Note that in our work, the back-
bone can be easily replaced with any other prevalent models.
For ease of description, we denote the spatiotemporal feature
extractor as gst, and the output spatiotemporal feature as Xst,
illustrated as,

Xst = gst(X )

= T (G(X ;WG),WT ) (4)

where we use T to represent the function capturing temporal
correlations, G to represent the function capturing spatial corre-
lations, andWT andWG denote learnable parameters. Equation
(4) signifies that the feature extractor mines temporal and spatial
correlations and generates spatiotemporal features.

B. Fairness-Aware Spatiotemporal Architecture

With the backbone of spatiotemporal learning well-trained,
we introduce the our fairness-aware spatiotemporal learning
architecture. Current machine learning solutions to fairness usu-
ally disentangle sensitive factors and derive a learning objective
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to learn the representations independent of all sensitive fac-
tors [28], [41], [42]. However, given the tasks of spatiotemporal
learning, they usually lack definite sensitive attributes, increas-
ing the difficulty to identify which samples are prone to suffering
unfair treatment. Therefore, from the representation perspective,
we argue that fairness-aware spatiotemporal learning can be
decomposed into two aspects. First, it is critical to explicitly
identify which samples are easy-to-learn and otherwise, which
are difficult-to-learn. Second, how to sufficiently exploit the ad-
vantages of well-learned representations to improve the quality
of samples which are prone to unfair treatment. To this end,
our fairness-aware spatiotemporal architecture is composed of
two components, the fairness recognizer and the collaborative
feature enhancement to systematically address above issues.

1) Fairness Recognizer: To remedy the lacking sensitive at-
tributes in spatiotemporal datasets, we propose a fairness rec-
ognizer to identify whether the samples are difficult-to-learn.
We first formally introduce the definition of easy samples and
challenging samples.

Definition 3 (Easy samples and challenging samples): We
characterize the learning difficulty of different spatiotemporal
samples through the model’s fitting degree of each sample.
To determine the well-learned easy samples and challenging
samples, given a samplexi, we utilize the error between the pre-
diction and ground truth to quantify the model’s fitting degree.
Specifically, samples with K-smallest errors are categorized
as the easy samples, denoted as Se, while other samples are
categorized as the challenging samples, denoted as Sc.1

To proactively identify the samples into easy ones and chal-
lenging ones, we propose a learnable fairness recognizer, which
is motivated by the concept of computational identifiability [44],
[45]. Given a family of binary functions F , it is said that
a subgroup S is computationally-identifiable if there exists a
function f : X → {0, 1} in F such that f(x) = 1 if and only if
f(x) ∈ S . Building on this definition, we propose a learnable
fairness recognizer to identify the computationally-identifiable
regions with relative high errors. Our learning-based recognizer
establishes the connections between spatiotemporal samples and
the identification of easy or challenging judgement. We therefore
devise a self-supervised task to guide the learning difficulty of
samples and generate the fairness signals, where the fairness
signals indicate whether the given sample is challenging to learn,
correspondingly to whether they are prone to be treated unfairly.

In the training phase, we obtain the prediction error of each
sample where we can rank the samples by MAE errors and make
a partition based on the rankings where easy samples with lower
errors and challenging ones with higher errors. Then we can take
these partition results as self-supervised signals and construct
a self-supervised task via formulating a binary classification.
We assign z = 1 as the self-supervised signal for easy samples,
while assigning the labels for challenging samples as z = 0.

After then, we are going to determine the inputs of learnable
fairness recognizer. First, recent literature has revealed that
the spatiotemporal heterogeneity is mostly associated with the
external factors (such as sampling time, sampling locations,

1Based on Pareto principle [43], we set K to 20%.

weekdays, weather, etc.) [4], [46], we thus introduce these
external factors into fairness recognizer to learn finer-grained
features. Second, since spatiotemporal samples are essentially
time series, adding statistical information of time series (such
as mean, variance, etc.) will bring in informative knowledge
including sequence trends and data distributions, empowering
our framework to better characterize the patterns of time se-
ries. To this end, the auxiliary input of the fairness recognizer
can be summarized as two aspects, the external spatiotempo-
ral factors and statistical information of time series. We con-
catenate all these auxiliary factors into a fixed-length vector
C = {c1, c2, · · ·, cM} as the inputs of our fairness recognizer,
where ci = [xst

i ; ei;μi;σ
2
i ] ∈ R

dc , where xst
i , ei, μi and σ2

i re-
spectively represent the spatiotemporal features, external factor
embedding, sequence mean and sequence variance of a given
spatiotemporal sample xi. We will elaborate on how to process
external factors in the section of experiments.

Architecture design of the fairness recognizer: In fact, the
learning difficulty is also concerned with spatiotemporal pat-
terns, we thus exploit the Graph Convolutional Network (GCN)
blocks as the basic architecture to instantiate our fairness recog-
nizer. To be specific, we do not force our ST Graphs a predefined
adjacency matrix, as the predefined topology may lack a direct
relationship with the task, leading to significant bias. Inspired
by previous study [13], we adopt an adaptive topology learning
method to capture uni-directional relationships and generate the
adjacency matrix as follows,

D− 1
2AD− 1

2 = ReLU(tanh(E1E
�
2 −E2E

�
1 )) (5)

where E1, E2 represent randomly initialized node embedding.
To reduce repeated and redundant calculations during the iter-
ative training process, we directly produce D− 1

2AD− 1
2 rather

than computing A and its Laplacian matrix. Thus, the lth GCN
layer with adaptive topology learning can be formulated as,

H(l) = ReLU(I+ ReLU(tanh(E1E
�
2 −E2E

�
1 )))H

(l−1)Wl

(6)
whereH(l) represents the hidden states in the lth GCN layer,Wl

represents the parameter in the lth GCN layer, where in our work,
the fairness recognizer consists of three stacked GCN layers. By
denoting the fairness recognizer as gfa, the output fairness signal
of a given spatiotemporal sample xi can be formulated as,

ẑi = gfa(ci|G) (7)

It is worth noting that the architecture design of the fairness
recognizer plays an important role in controlling the granular-
ity of computationally-identifiable regions. A more expressive
recognizer architecture leads to a finer-grained identification
but suffers more risks of overfitting to outliers. We will further
analyze the impact of different network architecture designs of
the fairness recognizer in the section of experiments.

2) Collaborative Feature Enhancement: After predicting the
learning difficulty of spatiotemporal samples, the next challenge
is how to proactively compensate for the perceived challenging
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samples and improving the model’s performance on this sub-
group. We posit that spatiotemporal samples with similar pat-
terns also exhibit similar representations. Based on this observa-
tion, for challenging samples, we obtain compensatory samples
with similar patterns but better learning quality and design an
attention-based strategy for advantageous feature transfer and
fusion, which achieves adaptive transfer and enhancement of
advantageous representations between easy set and challenging
set.

Compensatory sample generation: Spatiotemporal samples
with similar observations often exhibit similar patterns in rep-
resentation spaces. In prevailing researches of spatiotemporal
learning, surge of literature derives the node-level similarity via
taking a series of node observations of nodes into similarity
measurement functions or learning time-invariant node embed-
dings [2], [13], which ignores the temporal heterogeneity and
results in indistinguishability between different samples. These
solutions fail to satisfy the representation enhancement in sam-
ple levels. To capture finer-grained sample-level relationships,
we establish a similarity matrix S between sample pairs within
the current batch as follows,

Sij =

{
SIM(xst

i ,xst
j ) for i �= j and xj ∈ Se

0 others
(8)

where xst
i denotes the spatiotemporal feature of sample xi, and

SIM represents the similarity measurement and we instantiate
that as the cosine similarity in our work. We select the top-kc
samples both well-learned and most similar to it by learn-
ing in a collaborative manner, where the selected well-learned
samples are designated as compensatory samples. For a given
challenging sample xi, we select top-kc most similar samples
as its compensatory samples, denoted as {u(i,1), · · ·,u(i,k)}.
Then we aggregate the compensatory samples and denote the
compensatory representation for xi as ui

st as,

ust
i = AGGREGATE({ust

(i,1), · · ·,ust
(i,k)}) (9)

where ust
(i,j) represents the spatiotemporal feature of com-

pensatory sample u(i,j). There are many options for
AGGREGATE function, and we instantiate it as MEAN-
POOLING.

Adaptive mix-up for fair representation: We then achieve the
awareness of the learning difficulty of each sample and generate
compensatory representation for each challenging sample. Due
to the spatiotemporal heterogeneity among different samples,
we must devise a personalized fusion method to allow the
adaptive representation aggregation. Therefore, we propose an
attention-based mix-up strategy. Formally, we can derive the
mix-up strategy as follows,

Q = xst
i Wq

K = ust
i Wk

α = softmax

(
QK�
√
dk

)

α′ = MLP(αust
i ) (10)

where xst
i ∈ R

d, ust
i ∈ R

d, Wq ∈ R
d×dk and Wk ∈ R

d×dk

are learnable parameters, and we constrain α′ within the range
(0,0.5) to preserve the intrinsic representation.

Finally, for any challenging sample xi, we obtain the mix-up
representation xcom

i by fusing the intrinsic representation xst
i

and the compensatory representation ust
i by,

xcom
i = (1− α′)xst

i + αust
i (11)

xcom
i is the well-remedied representation generated with

sample-level joint optimization and knowledge transfer.
In summary, at representation level, the fairness recognizer

and the collaborative feature enhancement can work cooper-
atively, initially employing the concept of computationally-
identifiable subgroup to design an auxiliary self-supervised task
for perceiving the learning difficulty of diverse spatiotemporal
samples. Thus our FairSTG can overcome lacking sensitive
attributes. For challenging samples which are prone to suffering
unfairness, samples with similar patterns but well-learned rep-
resentation are selected for compensation, enhancing the overall
performance.

C. Fairness-Aware Learning Objective

Recent literature has demonstrated that incorporating fairness
metrics into learning objective can effectively remove discrim-
ination during the training process [47]. To this end, in addi-
tion to collaboratively enhancing representations of challenging
samples, our FairSTG imposes fairness constraints to improve
the learning objective, which forces the model to provide fair
treatment for diverse samples. After obtaining the compensated
spatiotemporal representations, the output module produces the
final predictions at one forward step, and the fairness-aware
optimization objective constrains the model to optimize towards
treating all samples fairly. Besides, considering the quality of
fairness recognizer is highly relied on the feature extractor, we
thus further devise a two-stage training strategy with a warm-up
phase to pre-generate the extractor parameters. Therefore, in this
subsection, we first introduce our output module and then for-
mally present our optimization objective, and finally provide the
two-stage training strategy, serving for fairness-aware learning.

1) Output Module: The output module is instantiated with
two 1× 1 standard convolutional layers, which transforms the
input channel dimension to the output dimension in an one-step-
forward manner rather than a step-by-step style. For a spatiotem-
poral sample xi ∈ R

w, the resulting output is ŷi ∈ R
h, where

h is the fixed dimension for outputs.
2) Optimization Objective: Given the fairness-aware learn-

ing architecture, we can systematically derive the objective of
our FairSTG, which can be summarized as three aspects, i.e.,
reweighted loss for main spatiotemporal task by emphasizing
the challenging samples, sample-level fairness-aware loss, and
self-supervised objective for learning a fairness recognizer.

Reweighted loss for main task: Actually, from the perspective
of learning difficulty, each sample does not share the same im-
portance in the same training batch towards final optimizations,
e.g., some samples are easy to learn while others suffer higher
errors. We thus introduce a reweighted loss to regularize the
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main task. We first present the initial main task of spatiotemporal
learning, which is instantiated as a regression problem associated
with MAE,

MAE(Y, Ŷ) =
1

M

M∑
i=1

|ŷi − yi| (12)

To increase the emphasis of difficult-to-learn samples, we assign
higher weights to samples with higher errors, which guides the
model to pay more attention on these subgroups. The weights
are normalized within batches to prevent gradient explosions.
Specifically, we perform a normalization step that rescales the
error to [0, 1] and produce the cost-sensitive weight λi, and we
center the weight and add 1 to ensure that all training samples
to make sense to final loss. For any spatiotemporal sample xi,
the corresponding weight λi can be formulated as follows,

λi = 1 +
|ŷi − yi|∑M

j=1 |ŷj − yj |
(13)

Furthermore, we construct the reweighted loss based on the cost-
sensitive weights as,

Lr =
1

M

M∑
i=1

λi · |ŷi − yi| (14)

This reweighted loss can enable the learning objective more
sensitive to challenging samples, thus increasing the attention for
modeling challenging ones. With the process of model training,
the λ will be dynamic with learning process and adjust the
learning in fine-grained manner.

Fairness loss: Second, to explicitly ensure the fairness of
prediction performance across different samples, we exploit the
variance of MAE as the fairness constraint term to directly guide
the model’s learning process, i.e.,

Lf =
1

M

M−1∑
i=0

[|ŷi − yi| − 1

M

M−1∑
j=0

|ŷj − yj |]2 (15)

With this fairness loss, we actually introduce the awareness
of fairness into our training process from the perspective of
immediate strategy, which guarantees the equitable performance
across samples.

Self-supervised loss: Third, the self-supervised learning ob-
jective of our fairness recognizer is instantiated with the Bal-
anced Cross-Entropy loss (BCE Loss). To be specific, we take
the ranking of prediction performance as the self-supervised
signals by assigning z = 1 and z = 0 for easy and challenging
samples respectively. Then the fairness recognizer output ẑ can
be compared with self-supervised signal z with the following
contrastive loss, i.e.,

Ls(ẑ, z) = −ω ∗ (z ∗ ln ẑ) + (1− z) ∗ ln(1− ẑ) (16)

where ω represents the weight for positive samples, which is set
based on the proportion of easy and challenging samples set. In
our work, we set ω = 4 via experimental trials.

Overall fairness-aware learning loss: By summarizing the
above loss terms, the final loss function can be written as,

L = μrLr + μfLf + μsLs (17)

TABLE II
THE STATISTICS OF DATASETS

where μr, μf and μs are hyper-parameters.
It is worth highlighting that we introduce fairness constraints

at the level of optimization objectives. On the one hand, we
design a reweighted loss for the main task based on cost-sensitive
weight, to emphasize more attention on challenging samples
which are prone to unfair treatment and make timely adjust-
ment. On the other hand, we devise a fairness loss term to
directly minimize the performance difference across samples
during the whole learning pipeline. These two objectives can
work cooperatively to improve prediction fairness technically,
not only making necessary adjustment to sample weights, but
also minimizing the performance heterogeneity with an explicit
objective constraint.

3) Training Strategy: Given that the accuracy of fairness
recognizer is highly relied on the quality of the representations
generated by the spatiotemporal feature extractor, we design a
two-stage training strategy with a warm-up phase and a fairness-
aware learning phase.
� Warm-up phase: We only train the spatiotemporal feature

extractor and output module. In this phase, we set μr �= 0,
μf = 0, μs = 0, and λi = 1 for all samples.

� Fairness-aware learning: All modules are trained and we set
μr �= 0, μf �= 0 and μs �= 0. We will discuss the selection
of hyper-parameters in detail in the experiment section.

With such two-stage training strategy, we can formulate a
well-learned fairness recognizer to produce accurate fairness
signals and then the representations can be collaboratively en-
hanced with our fairness-aware learning architecture.

VI. EXPERIMENTS

A. Dataset

We select four real-world mobility-related spatiotemporal
datasets, from human mobility, air quality to smart grids, to
evaluate the effectiveness and generality of our FairSTG. We
summarize statistics of benchmark datasets in Table II, where
the samples refer to the input-output pair for the model.
� METR-LA [13]: It indicates the traffics and inter-city

human mobility, containing the average traffic speed mea-
sured by 207 loop sensors on the highways of Los Angeles
County, from Mar 2012 to Jun 2012.

� PEMS-BAY [13]: It is the mobility dataset, composed of
average traffic speed measured by 325 sensors in the Bay
Area, ranging from Jan 2017 to May 2017.

� KnowAir [48]: This dataset records the PM2.5 concentra-
tions, one of the important air quality index, in 184 main
cities in China, where it is collected every 3 hours from
Sep 2016 to Jan 2017.
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� ETT [49]: The ETT (Electricity Transformer Temperature)
is a crucial indicator of electric power in cities. The dataset
is collected every 1 h from July 2016 to July 2018 where
it consists of 7 features, and each consumer is considered
as a distinct node.

B. Implementation Details and Evaluation Metrics

Implementation details: Following practices of classical time-
series data split [3], [13], we split all the available data into
training, validation, and testing parts with the ratio of 7:2:1
in chronological order. We normalize the data with standard
normalization to ensure the stability of training process. We set
the input window w = 12 and the output window h = 12. The
model is trained by the Adam optimizer with gradient clip 5. The
learning rate is set as 0.001. In our experiments, the dimension of
the spatiotemporal representations and compensatory represen-
tations is fixed to 64. We examine the number of compensatory
samples kc in range of {5, 10, 20} and choose 5 for all datasets.
Regarding optimization objective, the parameter μr is fixed to 1
while μs is fixed to 0.1, and we examine the trade-off fairness
parameter μf in range of {0.01, 0.1, 0.5, 1.0, 1.5} for different
datasets, we finally set 0.5 for METR-LA and PEMS-BAY, 0.1
for KnowAir and ETT.

Regarding some baselines requiring the predefined adjacent
matrix, we extract the pairwise distances to measure the node-
wise proximity as the adjacencies. For METR-LA and PEMS-
BAY, following previous work [3], we compute distances be-
tween sensors within the road network and build the adjacency
matrix using thresholded Gaussian kernel. For KnowAir, we
compute the geographical distance between sampling points to
create an adjacency matrix, and retain the top 20% of nodes
with the highest weights as neighbors for each node to ensure
the adjacency sparsity. For ETT, we take the most recent month
to construct the adjacency with cosine similarity.

Concerning external factors, we separate them into two
groups, i.e., continuous and categorical features. Continuous
factors including temperature and timestamps are directly con-
catenated into a vector econ. Categorical factors including
weekday, weather conditions are separately projected into a
low-dimensional continuous vector space through embedding
layers. These embeddings are then concatenated to form the
vector ecat. Specifically, to enable the fairness recognizer to
characterize the learning difficulty more accurately, we combine
not only spatiotemporal external factors but also the sequence
statistical information. Without loss of generality, for each sam-
ple xi and the corresponding spatiotemporal representation xi

st,
we compute the statistical information, mean μi and variance
σ2
i of corresponding sample xi in the element level. And we

convert the timestamps of day into continuous values as econ.
For indicator of day of week and node indexes, we organize
them as categorical vector ecat. And continuous embedding
econ and categorical embedding ecat are concatenated to form
the external embedding ei for the corresponding sample. In
addition, those vectors are concatenated as the input of our
fairness recognizer, denoted as C = {c1, c2, · · ·, cM}, where
ci = [xi

st; ei;μi;σ
2
i ] ∈ R

dc .

Evaluation metrics: The goal of FairSTG is to improve the
sample-level prediction fairness with simultaneously retaining
the overall performances, and we also argue that the error-based
metrics without considering prediction heterogeneity deduce
the practical function of model evaluation. To this end, we
incorporate five evaluation metrics that can be divided into two
aspects, prediction accuracy evaluation and quality of fairness
learning, where the fairness quality evaluation helps remedy the
function degeneration of only error metrics.

We take Mean Absolute Error (MAE), Mean Absolute Per-
centage Error (MAPE), and Root Mean Squared Error (RMSE)
as evaluation metrics for accuracy, while introduce the variance
of sample-level errors over the testing set, i.e., sample-level
MAE-var and MAPE-var, as the fairness metrics.

C. Baselines

We compare our proposed framework with 6 state-of-the-art
baselines as follows.
� DCRNN [3]: A graph-based recurrent neural network,

which combines graph diffusion convolutions with recur-
rent neural network.

� STGCN [22]: A spatiotemporal graph convolutional net-
work, incorporating graph convolutions with 1D convolu-
tions.

� AGCRN [2]: A spaiotemporal graph convolutional net-
work, which captures node-specific patterns and infers the
inter-dependencies among time series automatically.

� MTGNN [13]: A spatiotemporal graph convolutional net-
work, which integrates adaptive graph learning, graph con-
volutions and temporal convolutions.

� D2STGNN [14]: A decoupled dynamic spatiotemporal
neural networks, which decouples and handles the diffu-
sion and inherent information separately.

� ST-SSL [1]: A spaiotemporal learning traffic prediction
framework, which designs two self-supervised auxiliary
tasks with a contrastive learning objective, to gain aware-
ness of spatial-temporal heterogeneity and supplement the
main forecasting task.

D. Experimental Results

Since our FairSTG is a general pluggable spatiotemporal
learning framework alleviating the unfairness issue, we choose
two advanced spatiotemporal learning models, MTGNN and
D2STGNN, as the backbones for the spatiotemporal feature
extractor. We implement 3-step, 6-step and 12-step prediction,
which is illustrated as horizons in our result tables, and all the
solutions are evaluated based on five metrics regarding both
fairness metrics and forecasting performance. Table III elab-
orates the forecasting performance and fairness metrics across
different models. The best results are bolded and the runner-up
are underlined. And to further illustrate the improvements of
our FairSTG over the corresponding backbone model, we cal-
culate the fairness and forecasting performance improvements
of FairSTG to the corresponding backbone model in Table IV.

Performance on fairness metrics: Our FairSTG significantly
surpasses all other baselines on fairness metrics across all
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TABLE III
MAIN COMPARISON RESULTS

TABLE IV
THE PERFORMANCE AND FAIRNESS COMPARISON BETWEEN FAIRSTG AND ITS CORRESPONDING BACKBONE
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Fig. 3. Forecasting and fairness performance comparison at each horizon. The top and bottom lines respectively indicate the prediction accuracy and fairness
performances.

tasks. Overall, as illustrated in Table IV, FairSTG improves
fairness metric ranging from 0.21% to 20.05% with 16 out of
24 achieving improvement above 4%. Specifically, for the far-
thest step prediction, the MAE-var improvements at horizon-12
over the best baseline are 5.59%, 8.15%, 4.43% and 2.76% on
METR-LA, PEMS-BAY, KnowAir and ETT, respectively, and
the improvements on MAPE-var are 12.36%, 12.01%, 5.77%
and 12.98% on METR-LA, PEMS-BAY, KnowAir and ETT. We
attribute such superiority to two aspects, i.e., 1) Baseline models
primarily focus on improving overall performance, inducing
the overfitting of samples with lower difficulty and neglecting
the challenging subgroup. 2) Our FairSTG is equipped with
advantageous compensation mechanism and introduces fairness
constraints on both representation space and optimization objec-
tive, thereby enhancing the model’s fairness performance.

Performance on forecasting metrics: We observe that our
FairSTG framework achieves comparable forecasting accuracy
in all datasets, noting that there usually exists a trade-off between
fairness and accuracy [50], [51], [52]. Particularly, our FairSTG
achieves optimal forecasting performance at horizon-12 on all
datasets. As illustrated in Table IV, the forecasting achieves bet-
ter performances in several horizons, with improvements from
0.43% to 9.79%, while slightly declines ranging from 0.52%
to 2.90% with only one 7.23% sacrifice on ETT-horizon-3.
Given the satisfactory improvement on fairness, we believe the
performance loss is exactly within an acceptable range. The
superiority of forecasting metrics can be two-folded. First, as the
forecasting horizon increases, the regularity between predictions
and inputs weakens and the learning difficulty increases. Thus,
learning without fairness can be trapped into a lazy learning
mode, directly neglecting the samples with higher learning
difficulty. Second, in addition to fairness-aware learning ob-
jective, our FairSTG is capable of suppressing the prediction
accuracy diversity via the joint optimization of sample-level rep-
resentation. i.e., collaborative feature enhancement and adaptive

mix-up for fair representation. Therefore, our FairSTG rea-
sonably achieves superior performance on both evaluations of
accuracy and fairness.

Generality and plug-ability of FairSTG: It is worth noting that
our FairSTG is a model-independent fairness guarantee frame-
work where its performance is constrained by the backbone
model, thus we should pay more attention on the improvement
against the corresponding backbone. We further compare the
empirical prediction performances of our FairSTG with two
backbone models. As shown in Fig. 3, the fairness metrics are
consistently superior to backbones along with the increases of
forecasting horizons. Besides, we observe that our FairSTGs
carrying with different backbones can achieve similar and com-
parable performance with corresponding backbones, illustrating
the stability of the whole architecture of of FairSTG. It is worth
noting that our FairSTG achieves optimal performance in both
KnowAir and ETT datasets. The reason behind this phenomenon
lies in that these two datasets have relatively small scales, where
the collaborative feature enhancement of FairSTG can exactly
alleviate data sparsity and improve the overall performance.
Such satisfactory joint enhancement further validates the intu-
ition that mitigating forecasting heterogeneity contributes to the
promotion of overall performance. In summary, our integrated
FairSTG can enable the fairness for different backbone models
and maintain comparable forecasting performance, which veri-
fies the generality of our FairSTG framework.

E. The Improvement in Challenging Samples

One of the goals of our FairSTG is to alleviate the unfairness
on challenging samples which are difficult to learn, thus it is
necessary to verify whether FairSTG improves the forecasting
performance on such subgroup. For an explicit comparison,
we select samples with performance at the top 30% as easy
ones, and samples with performance at the bottom 30% as
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TABLE V
THE COMPARISON ON EASY SET AND CHALLENGING SET

challenging ones. We then compare the integrated FairSTGs
with corresponding vanilla backbones. As shown in Table V,
our FairSTG outperforms all baseline models on challenging
set at both accuracy metric MAE and fairness metric MAE-
var, while maintaining comparable performance on easy set
with satisfactory MAE and MAE-var. Additionally, for each
group learned by FairSTG, performances on the challenging set
overwhelmingly surpass the corresponding backbone models on
accuracy metric, i.e., MAE, which refers to that our FairSTG
indeed improves model’s expressive capacity on challenging
samples which are prone to suffer unfair treatment, and thus
mitigating the forecasting heterogeneity and unfairness issue
in spatiotemporal learning. Moreover, on datasets of KnowAir
and ETT, our FairSTG simultaneously achieves optimal results
on forecasting accuracy and fairness metrics, on both easy set
and challenging set. As analyzed earlier, since KnowAir and
ETT are with a relatively small scale, the collaborative feature
enhancement in our FairSTG can alleviate the data sparsity and
thus improving the overall forecasting and fairness performance.
In brief, through the analysis on inter-group and intra-group pre-
diction performance and fairness learning quality, we can further
verify that FairSTG is equipped with the capacity of alleviating
unfairness on challenging samples. Therefore, our FairSTG
can exactly compensate the samples with lower regularity and
under-representation, potentially suppressing the discrimination
in urban intelligent system.

F. The Analysis of Fairness Recognizer

The effectiveness of the fairness recognizer: We first verify
the correctness of our intuition, i.e., the learning difficulty of
a spatiotemporal sample should be associated with its sequen-
tial features and external factors. Even though spatiotemporal
datasets lack explicit supervision of annotations on challenging
samples, we design a fairness recognizer, to learn the difficulty
of different spatiotemporal samples during training and make

Fig. 4. The accuracy of fairness recognizer in self-supervised classification.

TABLE VI
THE RESULTS OF DIFFERENT ARCHITECTURES FOR THE FAIRNESS RECOGNIZER

inference during testing. Due to the self-supervised design
without explicit labels in both training and testing phases, in
Fig. 4, we report the accuracy of the self-supervised binary
classification task on both training set and testing set in FairSTG
with the backbone D2STGNN, as the accuracy on both sets
not only provides empirical guarantee, but also confirms the
consistent results of our proposed fairness recognizer between
training and testing sets.

The accuracy of fairness recognizer ranges from 72.20% to
87.40% on the training set, while accounts for the ranges from
66.19% to 81.49% on the test set. The accurate and high-quality
predictions on all four datasets indicate that challenging samples
can be well-identified in the absence of explicitly labeled sensi-
tive attributes and can exactly satisfy further fair predictions.

The architecture of fairness recognizer: We investigate how
the neural network architecture influences the performance of
fairness recognizer. In our main experiments, we utilize a three-
layer GCN as the architecture to capture the spatiotemporal cor-
relations. We then take a linear three-layer MLP as an alternative
for the impact analysis, where the initialized and modified one
are designated as FairSTG-GCN(3) and FairSTG-Linear(3). Our
implementation is based on D2STGNN at horizon = 12 and
the results are reported in Table VI. In terms of the accuracy
of self-supervised classification, FairSTG-GCN(3) surpasses
FairSTG-Linear(3) in almost all scenarios. This is probably
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TABLE VII
THE DETAILED INFORMATION ABOUT THE TOP FIVE NODES WITH THE

LARGEST IMPROVEMENT

Fig. 5. Case study in compensatory samples. (a) The raw time series of a
challenging sample and its compensatory samples. (b) The list of sampled
timestamps and nodes.

because the GCN structure excels in capturing correlations
in graph structures, thus perceiving the learning difficulty of
different samples more accurately. Moreover, for forecasting
performance and fairness metrics, FairSTG-GCN(3) slightly
outperforms FairSTG-Linear(3), which further delivers that the
GCN-based fairness recognizer should be more suitable for fair
spatiotemporal forecasting as the inherent regularity of obser-
vations are associated with underlying spatial dependencies.

G. Case Study

In this subsection, we investigate how compensatory sam-
ples generate and collaboratively enhance the representation of
challenging-to-learn samples through a toy case.

The generation of compensatory samples: Given a challeng-
ing sample, the compensatory samples are derived by comput-
ing the similarity between challenging ones and well-learned
ones, where the compensatory set is extracted from different
spatiotemporal graphs. We first plot the original time series of
a challenging sample and the generated compensatory samples
derived by our FairSTG. As shown in Fig. 5(a), all compen-
satory samples exhibit similar patterns with the challenging one,
indicating that our FairSTG can capture effective samples with
in a high-quality manner. Besides, we further investigate the
sampling timestamps and nodes of these samples. As shown in
Fig. 5(b), for compensatory samples 1, 2, and 5, where they come
from the same spatiotemporal graph to the challenging sample,
while compensatory samples 3 and 4 are sampled at other
timestamps. It delivers that our compensatory sample generation
can span the search space of advantageous representations from
a single ST Graph to the samples within whole batch and
significantly extends the scope of advantageous representation
transfer. Consequently, the model can delve deeper into explor-
ing and leveraging the cross-step spatiotemporal correlations
within observations, alleviating the unfairness across temporal

Fig. 6. Case study on challenging samples. (a) The forecasting performance
(MAPE) of each sensor in PEMS-BAY dataset. (b) The improvement value of
each sensor, and only sensors with improvement are plotted.

perspective. Actually, generating more informative represen-
tations from compensatory set for challenging samples can
compensate for the insufficiency of model’s expressive power,
and further gain both fairness quality and prediction accuracy
within spatiotemporal learning.

Visualization of performance improvement on challenging
samples: We visualize the spatial distribution of prediction
results based on our FairSTG, to evaluate its capability in im-
proving performance of the challenging subgroup. We first plot
the error (here we exploit MAPE) of each sensor at horizon 12
based on MTGNN in PEMS-BAY, where the red boxes highlight
regions with greater errors. In Fig. 6(a), it can be observed that
sensors located at transportation hubs often suffer more serious
prediction errors, possibly due to their complex traffic patterns
and higher learning difficulty, inducing susceptibility to unfair
treatment. Additionally, we further visualize the improvement
of an error metric in Fig. 6(b). To be specific, the improvement of
MAPE on ith sensor can be illustrated as Δei = ei − e′i, where
ei and e′i respectively indicate the MAPE of the backbone and
our FairSTG. Noting that Δei > 0 means FairSTG outperforms
the backbone model in making more accurate predictions. We
also provide detailed information about the top five nodes with
the largest improvement in (Table VII). As shown, sensors
accounting for significant improvement are also concentrated
at transportation hubs, consistent with the spatial distribution of
sensors with larger errors. If the prediction performance is not
fair, e.g., the predicted results are with much higher volumes
than real-world ground-truth, the assigned officers on duty will
be a waste of human resources. With our fair prediction, such
waste will be significantly avoided on these regions and more
informed decisions can be made. This case delivers us that
our FairSTG can distinguish the challenging samples from the
spatial perspective by constraining the samples into node-levels,
while simultaneously enhance the performance of the backbone
model on challenging subgroup. Therefore, in a real-world urban
applications, such as traffic status or road risk prediction sys-
tems, with our FairSTG, the prediction system can emphasize
more on underrepresented urban regions, which reflects more
consistency with facts, and allocate the resources in a positively
fairness-aware manner.
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TABLE VIII
ABLATION EXPERIMENTS

H. Ablation Experiments

We conduct an ablation study to validate the effectiveness
of key components that contribute to the improved outcomes
of our proposed framework. We name FairSTG without dif-
ferent components as follows. 1) FairSTG-w/o-FE (FairSTG
without feature enhancement): We remove our fairness recog-
nizer and collaborative feature enhancement from FairSTG, and
only remain fairness constraints in the optimization objective.
2) FairSTG-w/o-FO (FairSTG without fairness objective): We
remove the fairness constraints from the optimization objective
in our FairSTG and only take the original MAE loss and self-
supervised BCE loss as the overall objective.

We choose MTGNN as the backbone and report the accu-
racy performance and fairness quality in Table VIII. We can
observe that, 1) The fairness metrics of FairSTG-w/o-FE and
FairSTG-w/o-FO both exhibit a decrease, indicating that col-
laborative feature enhancement at the representation level and
fairness constraints at objective level can work collaboratively
to mitigate the unfairness issue in backbone models. 2) For rel-
atively large-scale datasets such as METR-LA and PEMS-BAY,
FairSTG-w/o-FO exhibits a more prominent decrease in fairness
quality. This suggests that fairness-aware learning objectives
play a more crucial role by directly guiding the model’s learning
process for these large-scale datasets with complex topology and
spatiotemporal contexts. 3) In contrast, for relatively small-scale
datasets such as KnowAir and ETT, FairSTG-w/o-FE exhibits
a noticeable decrease in fairness metrics, which suggests that
extracting compensatory representations at the representation
level plays a more pivotal role. Such contrastive phenomenon
can be attributed to that small-scale datasets are with limited
spatiotemporal information where collaborative enhancement
becomes more significant, while large-scale datasets are more
informative and fairness constraints is more dominated during
learning process. Even so, our solution is a general and plug-and-
play solution to spatiotemporal learning, where the collabora-
tive enhancement and fairness-aware objective can respectively
make sense under different scenarios.

Fig. 7. Hyper-parameter study. (a) Performance variation on different µl.
(b) Performance variation on different kc.

I. Hyper-Parameters Analysis

We conduct the parameter study on two core hyper-parameters
in our proposed FairSTG, μf within a range of {0.01, 0.1,
0.5, 1.0, 1.5}, which controls the proportion of fairness con-
straint in the learning objective, and kc within a range of
{5, 10, 20} that defines the number of compensatory samples
in collaborative representation enhancement.

We adjust the specific parameter and fix the others in each
experiment. Fig. 7 reports the results of our hyper-parameter
study. As shown in Fig. 7(a), the forecasting accuracy decreases
while fairness quality increases with the increases of emphasis
of fairness μf . This implies that the model tends to generate
fair predictions for different samples, but at the cost of decline
in overall performance. And it is further verified that there
exists an inevitable trade-off between fairness and accuracy in
fairness-aware learning. Besides, Fig. 7(b) demonstrates that
a small number of compensatory samples will result in bet-
ter forecasting performance and fairness degree. It is rational
because increasing the number of compensatory samples will
unavoidably introduce noises to the mix-up representations and
leads to a performance degradation. Overall, we are required to
adjust the parameters to achieve a tradeoff between the fairness
and accuracy.

VII. CONCLUSION AND DISCUSSION

In this work, we uncover a new heterogeneity phenomenon
designated prediction unfairness in spatiotemporal forecasting,
and attribute such performance heterogeneity to data sufficiency
and inherent regularity within observations. We then propose
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a model-independent framework named FairSTG to systemati-
cally mitigate sample-level unfairness in spatiotemporal graph
learning tasks, where the core idea is to conduct a joint op-
timization from both the representation space and optimization
objectives. The substantial experimental results demonstrate that
our FairSTG improves the fairness metrics significantly and en-
sures the comparable forecasting performance simultaneously.
We believe our FairSTG, which provides more reliable guid-
ance for decision-making process thus ensures the consistent
treatments for different individuals and groups, can be a new
paradigm of data-driven sustainable mobile computing.

For future work, we will design the approximate estimation
algorithm of sample-pair similarity for a more computationally
efficient paradigm and explore adaptive forecasting strategies
based on different horizons to better balance performance and
fairness. And it would be worthwhile to further explore the
root causes of prediction unfairness from both model and data
aspects, and develop data-adaptive fairness learning to accom-
modate different datasets.
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