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Predicting collective human mobility via
countering spatiotemporal heterogeneity

Zhengyang Zhou, Student Member, IEEE, Kuo Yang, Yuxuan Liang, Binwu Wang,
Hongyang Chen, Senior Member, IEEE, Yang Wang∗, Senior Member, IEEE.

Abstract—Human mobility forecasting is the key to energizing considerable mobile computing services. However, we find that the
collective mobility suffers the spatiotemporal heterogeneity issue and therefore leads to inferior performances of conventional
homogeneous aggregations. Given two fundamental factors, i.e., data and objectives in machine learning, we propose to counter such
heterogeneity by improving data utilization and optimization objectives. 1) From data utilization perspective, we discover that such
heterogeneity is inherently induced by mobility-related context factors and thus these factors can be exploited to learn heterogeneous
mobility patterns. 2) From the optimization perspective, the dependencies among output elements, which give another prior to learning,
can extract heterogeneous correlations within output sequences. Specifically, we propose a novel Context-Directional SpatioTemporal
Graph Network (CD-STGNet), which tackles the above-mentioned heterogeneity, for achieving accurate mobility predictions. Firstly, we
improve data utilization by inputting the encoded context-wise interactions to a direction field learner, which realizes directional spatial
aggregations. Secondly, regarding series learning and optimization objectives, a context-trend highway is designed to enable
context-aware temporal learning while two regularization objectives are proposed to keep the correlations among predicted elements
consistent with the ground-truth. Experiments demonstrate that CD-STGNet surpasses competitive baselines by 13% to 22% and
boosts the interpretability of context-directional learning.

Index Terms—Human mobility prediction, spatiotemporal heterogeneity, graph convolutional network, urban computing.

✦

1 INTRODUCTION

Human mobility, an important index of human-society
interactions, offers great potential to diverse mobile com-
puting services, facilitating efficient traffic scheduling [1],
[2], urban safety [3], [4], and optimizing data transmission
efficiency [5], [6]. Compared to individual mobility, predic-
tion of region-wise collective mobility falls to spatiotempo-
ral learning and can be more valuable for understanding
global real-time citywide statuses in urban management
and general mobile services. Concretely, administrations
can exploit the expected collective mobility to implement
road controlling for avoiding the fatal gathering events
while ride-sharing platforms can investigate the regularity
for taxicab scheduling and order dispatch [7], [8]. In ad-
dition, in the Internet of vehicles of open road networks,
the mobility prediction of vehicles is an important issue
for data transmission scheme to identify the hotspots of
signals that contributes to efficient packet exchange [5].
Off-the-shelf collective mobility predictions have achieved
promising results from abstracting the regularity of routine-
oriented human activities. Technically, the basic idea of ex-
isting mobility learning is to build mapping functions from
historical observations to future targets by leveraging multi-
range [9] and multi-level spatiotemporal correlations [10],
[11]. The specific technologies can be classified into Graph
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Neural Network (GNN) [12], [13] or Convolution Neural
Network (CNN) [1] for spatial aggregations, and Recur-
rent Neural Network (RNN) [14] or Temporal Convolution
Network (TCN) blocks [15] for temporal learning. These
deep learning-based solutions on mobility forecasting have
achieved impressive success.

Actually, we find that the transitions and evolutions
of human mobility are prone to be heterogeneous across
different temporal steps and spatial urban regions, which
significantly impact decisions of urban management and
data transmission services. Such phenomenon is formally
designated as spatiotemporal heterogeneity in our paper.
To this end, the architectures based on homogeneous spa-
tiotemporal aggregations [1], [9], [14], [16], [17] inevitably
fall short in capturing their personalized and heterogeneous
patterns. In addition, recent research argues that the im-
provement of forecasting accuracy induced by modifying
neural network structures has become incremental, it is of
great significance to seek novel perspectives to boost up
the learning performances [18], [19], [20]. Therefore, besides
neural structures, we propose to explicitly counter the het-
erogeneity through two additional perspectives, i.e., data
utilizations and learning objectives to jointly promote pre-
diction quality where data and objectives are considered as
two fundamental factors in machine learning schemes [21].

Firstly, in the data perspective, apart from main mobility
observations, we argue that mobility-related covariates that
include but not limited to daytime, regional functionality,
and weather, can significantly influence the directions of
mobility transitions thereby inducing various spatiotem-
poral patterns of human mobility. More intuitively, the
heterogeneity induced by contexts is illustrated by cases
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Fig. 1: Examples of spatiotemporal heterogeneity and beneficial node selections for directional aggregations

of New York City (taxicab records in NYC) and Suzhou
Industry Park (all-type traffic volumes in SIP). In Figure 1(a),
when the weather of NYC transfers from sunny to rainy,
there exists a sudden decrease of volume transitions from
CBD to night clubs while it shows much stable for volume
transitions from CBD to residential areas. In Figure 1(b),
two regions of A and B experience completely different
trends of volumes at a same temporal period. Based on
above, we summarize these covariates as context factors and
designate various patterns of spatial transitions and tem-
poral evolutions under diverse contexts as spatiotemporal
heterogeneity. In this way, this heterogeneity is attributed to
the dynamic and interactive influences of multiple context
factors on mobility transitions. With this insight, exploiting
context factors to counter the spatiotemporal heterogeneity
becomes an opportunity to close the gap between the max-
imum predictability and existing prediction performances.
Fortunately, some recent approaches [15], [22], [23] have
taken initial steps on involving contexts into neural net-
works to fine-tune predictions, and a pioneering work takes
contexts as meta factors and makes concatenations with
main observations [13] for fine-grained traffic predictions.
However, these methods, which directly aggregate contexts
with main features, have never considered the interactions
of multiple contexts and their explicit impacts on directional
aggregations, hence failing to capture the context-induced
heterogeneity. Therefore, how to effectively improve the
data utilization, i.e., exploiting the contexts to enable dy-
namically context-aware spatial transitions and temporal
trends, still remain unresolved.

Secondly, the learning objective essentially plays sig-
nificant roles in forecasting models. However, almost all
collective mobility learning frameworks [1], [9], [16], [17],
[24] only exploit the trivial objectives such as MAPE or
MAE to realize the regression, neglecting the potential het-
erogeneous correlations and dependencies within predic-
tion outcomes. In contrast, serial works have theoretically
illustrated that modeling dependencies on element-wise
outputs enjoys the benefit of robust prediction by combining
Gaussian process and neural process [25], [26]. In a real case
of Figure 1(b), each sequence reveals distinctive sequential
trends and element-wise dependence, which delivers that

the heterogeneity also exists in outputs. Therefore, captur-
ing correlations among elements in predicted sequence can
explicitly model the heterogeneity within predicted targets
and promote performances for its complements to error-
based objective. To this end, in our work, we emphasize
the consistency of target-wise dependencies between pre-
dictions and groundtruths, to tackle the heterogeneity.

To summarize, given above observations and analysis,
these off-the-shelf mobility forecasting solutions fall short
in modeling the heterogeneity from two perspectives, i.e.,
1) uniform aggregations fail to capture sharp variations
and cannot allow the context factors to interpret heteroge-
neous aggregations, and 2) they never capture the hetero-
geneity and potential dependencies within predicted out-
comes. Considering existing efforts on mobility forecasting
and context-aware learning, two sub-challenges remain to
counter the spatiotemporal heterogeneity, (i) how to max-
imally internalize multiple contexts to guide directional
message passing and temporal trend modeling, and (ii) how
to design informative objectives to capture heterogeneous
correlations among predicted target sequences.

In this paper, we first theoretically demonstrate the
necessity of context-aware prediction by information the-
ory, which provides a theoretical guarantee to our sub-
sequent solution. After that, we shed light on a two-
stage Contextual-Directional SpatioTemporal Graph Net-
work (CD-STGNet) to jointly address above two challenges.
In the first stage of CD-STGNet, inspired by the fact that
mobility prediction is to explore how mobility transits
throughout a city associated with context environments, a
Context Directional Spatial Aggregator (CDSA), is designed
to predict the primary evolution direction and perform
directional message passing with context factors. As il-
lustrated in Figure 1(c), ‘increase’ is identified to be the
predicted primary direction of the central node A, then A’s
neighboring nodes whose current values larger than itself
are considered more beneficial for future target-oriented ag-
gregation, and reasonably highlighted for aggregation. The
second stage, Deep Context Temporal Factorization (DCTF),
receives the outputs of CDSA and bridges the gap between
spatial feature maps and predicted future sequences. More
specifically, a context-trend highway capturing mappings
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between context factors and predicted sequence is designed,
and two novel regularization objectives considering the
element-wise correlations and temporal shape-trends are
devised. Such highway mapping and novel regularizations
respectively enable the heterogeneous evolution modeling
and ensure the consistency of element-wise dependencies
between groundtruths and predicted sequences. In addition,
to cohere multiple objectives and optimize the intractable
learning process, we propose an alternate-and-adaptive op-
timization strategy to alternately train auxiliary and main
tasks, and automatically re-weight task-wise importance by
leveraging differences of gradient descents. In a nutshell, we
make the following contributions.

• This work systematically tackles the collective mo-
bility prediction from the perspective of countering
spaptiotemporal heterogeneity, with substantial the-
oretical, empirical and technical contributions. We
first theoretically verify the necessity of context-
aware predictions by deriving an inequality regard-
ing the context-conditioned joint entropy, and visual-
izing three context-aware mobility datasets. Techni-
cally, we attribute the spatiotemporal heterogeneity
in mobility to context factors and a CD-STGNet is
proposed to tackle such heterogeneity.

• We address the spatiotemporal heterogeneity by two
aspects, improving data utilization and learning ob-
jectives. A node-wise direction learner and context-
trend highway by taking contexts as inputs, are
designed to respectively perform directional spatial
aggregation and context-aware temporal learning.
To retain the heterogeneous dependencies among
predicted target sequences, two novel objectives of
Shape-trend and Covariance, are developed to cap-
ture directional temporal trend and heterogeneous
node-level correlations.

• We conduct experiments on three different types
of human mobility datasets, which further verifies
the heterogeneity across different mobility types and
demonstrates our CD-STGNet can achieve at least
13% performance gains against competitive base-
lines. Case studies illustrate the promotion of the in-
terpretability regarding context-induced spatiotem-
poral heterogeneity.

The rest is organized as follows. Sec 2 formally defines
our problem and performs theoretical analysis on the ne-
cessity of context-aware prediction. Sec 3 introduces our
CD-STGNet for capturing the spatiotemporal heterogeneity,
and Sec 4 empirically evaluates our solution. Sec 5 further
discusses our insights and method limitations and Sec 6
reviews the related work. Sec 7 finally concludes our work.

2 PRELIMINARY

In this section, we first formally define the basic concepts
as well as the problem studied in this work, and provide a
theoretical guarantee of our insights and solutions.

2.1 Notations and Problem Definition
Definition 1 (Urban graph and target observations.). The

whole city is discretized into N non-overlapping urban re-
gions and can be constructed as an urban graph G(V, E),

where node set V = {v1, v2, · · · , vN} and edge set E =
{eij |1 ⩽ i, j ⩽ N& i ̸= j} respectively denote specific
urban regions and potential correlations between pair-wise
regions. To define fine-grained spatiotemporal observation of
human mobility, we divide the time domain into equal inter-
vals T = {1, 2, 3..., T,T + 1 , ...}, and formulate the main
observation set as {X = X:,t|t ∈ T }, where the element X:,t

denotes the citywide interval-specific mobility observation
while xi,t ∈ X:,t(1 ⩽ i ⩽ N) represents the specific mobility
intensity at region vi during interval t. The collective mobility
can be instantiated as the number of taxi trip records, volumes
of all-type traffics or other mobility indicators.

Definition 2 (Context factors.). Auxiliary covariates, correlated
with main targets but not for predictions, are defined as con-
text factors. Given M types of context factors, the type names
of context factors are defined by set C = {C1, C2, · · · , CM}.
In our mobility predictions, we can instantiate a three-type
context tuple as {Cloc, Cts, Cw} to represent the factors
of location, timestamp, and weather. More specifically, let
ct = {ct(m,i) ∈ R1×dm |1 ≤ i ≤ N, 1 ≤ m ≤ M}(t ∈ T )

be the time-varying context observations, where ct(m,i) is the
m-th context descriptor regarding region i and time interval
t, and dm is the dimension of the m-th type context factor.

Problem 1 (Collective human mobility prediction).
Given historical T -step spatiotemporal observations X =
{X:,1,X:,2, ...,X:,T }, and the associated time-varying con-
text factors c1, c2, ..., cT , we aim to design a function f(·) to
counter the spatiotemporal heterogeneity challenge, and per-
form collective human mobility prediction in the following
l time steps Ŷ:,T+1, Ŷ:,T+2, ..., Ŷ:,T+l by leveraging context
factors and target dependencies.

{X:,1,X:,2, ...,X:,T ; c
1, c2, ..., cT }

f(·)−−→ Ŷ:,T+1, Ŷ:,T+2, ..., Ŷ:,T+l

2.2 Theoretical Analysis for Context-aware Prediction

We theoretically demonstrate that incorporating the context
condition can exactly increase the predictability, i.e., the
necessity of context-aware prediction, by information theory.
Given the historical and targeted main observations X and
Y, let us begin with considering one mobility-related co-
variate, i.e., context factor C0. The entropy, measuring the
degree of chaos in data, can be viewed as the difficulty
of fitting corresponding data and thus their predictability.
The smaller entropy reflects less discrepancy and larger
predictability. Given the specific value c0 of type C0, the
(x, y) pair will be organized by the category of context factor
c0 and shrink to conditional observations. Correspondingly,
since C0 is the retrieved mobility-related covariate, the regu-
larity of observation pair (x, y) increases due to the filtering
of relative context conditions. Let H(X), H(X|c0) respec-
tively denote as the entropy and conditional entropy of X
and X conditioned on c0. We thus have H(X) > H(X|c0)
and H(Y) > H(Y|c0) according to condition reduction
principle [27].

We further demonstrate that the conditional joint entropy
also conforms to the condition reduction principle. As reducing
one condition will boost chaos of observation Y , we have
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H(X|Y, c0) < H(X|Y). And given H(X,Y) = H(X) +
H(Y|X), we make the following derivation,

H(X,Y|c0) = H(Y|X, c0) +H(X|c0)
< H(Y|X) +H(X|c0)
< H(Y|X) +H(X)

= H(X,Y)

(1)

It delivers that the joint probability distribution of X and
Y can be more regular when they are organized by the
context condition c0, hence increasing the predictability and
predictive power from X to Y 1. By assuming M categories
of context factors and km solid values for each category,
the conditional entropy can be extended to the combined
condition scenario H(X,Y|c1, c2, ..., cM ) < H(X,Y). In

detail, there are totally
M∏

m=1
km types of context-wise com-

binations and the benefits for predictability are determined
by the influential correlations of different contexts on x → y
mappings, where the more informative the contexts are, the
higher predictability. Therefore, we have verified the neces-
sity of context-aware prediction and provided a theoretical
guarantee for our following solutions.

3 METHODS

3.1 Framework Overview
Our mobility prediction solution improves existing ones
via countering the spatiotemporal heterogeneity, from two
fundamental perspective of machine learning, data and ob-
jectives. As illustrated in Figure 2, our Context-Directional
Spatiotemporal Graph Network (CD-STGNet) can be de-
composed into two cascaded components, i.e., Context Di-
rectional Spatial Aggregator (CDSA) accounting for im-
proved context utilizations, and Deep Contextual Temporal
Factorization (DCTF) with novel objectives for additional
constraints. In CDSA, we first propose a Semantic Context
Encoder to capture interactions among multiple context
factors. Guided by the direction learner, we generate node-
specific direction-aware vector fields for target-oriented ben-
eficial node selection, which realizes the personalized spa-
tial aggregation and outputs the spatial aggregated feature
maps. For DCTF, it receives spatial feature maps from CDSA
and directly learn the directional transformations from spa-
tial features to multi-step targets. Typically, the context-
trend highway instantiates the learnable mappings between
context factors and predicted sequence, thus capturing the
context-aware latent trends. Besides, the two consistency
objectives constraining target-wise sequential shape-trends
are introduced to tackle the heterogeneity in predicted
outcomes. Finally, an alternate-and-adaptive optimization
seamlessly integrates these tasks into a stabilized and adap-
tive multi-task learning framework.

3.2 Context Directional Spatial Aggregator
Our CDSA aims to efficiently exploit the context factors and
perform immediate directional aggregations to tackle spatial
heterogeneity. We take the citywide observations regarding

1. The detailed derivation of first line in Eq. (1) can be found in the
Appendix.

the most recent τ time steps away from the nearest predic-
tion step T + 1 as inputs, i.e. X0 = X:,(T−(τ−1)):T ∈ RN×τ .
Recall that the essence of mobility aggregation is to investi-
gate how human mobility spread throughout the city from
history to future, and region-specific contextual factors are
critical in spatial aggregations. We thus propose our Context
Directional Spatial Aggregator, to conduct directional spa-
tial aggregation via generating direction-aware vector fields.

3.2.1 Semantic context encoder
Since various context factors usually interact with each
other, building high-quality and interaction-incorporated
context embedding is essential to context-aware mobility
predictions. However, existing methods for context mod-
eling (e.g., embedding) rarely consider such interactions,
leading to a suboptimal modeling of the complex contextual
information. To this end, we propose a Semantic Context En-
coder to explicitly encode both context-wise self correlations
and mutual interactions, transferring discrete context into
continuous and interpretable embedding as spatiotemporal
aggregation guidance.

We illustrate the architecture of our context encoder in
Figure 3. First, for each region i, we concatenate multiple
context vectors and impose a learnable correlation weight
wcs ∈ RD×K to obtain self correlation-enhanced represen-
tation (Zcs)i ∈ R1×K ,

(Zcs)i = Concat[(cm,i|1 ⩽ m ⩽ M)] ∗ (wcs)i (2)

where K is a hyperparameter controlling the dimension of

a semantic context embedding and D =
M∑

m=1
dm. Second, to

capture context-wise interactions, we draw inspiration from
relational GCN [28] and take context factors as separate
entities to quantify their mutual interaction encapsulated
embedding (Zca)i ∈ RN×K by,

(Zca)i =
M∏

m=1

(c(m,i) + bcm)(w(m,m+1)
ca )i (3)

The learnable weight bcm ∈ R1×dm helps achieve continu-
ous vectors and (w

(m,m+1)
ca )i ∈ Rdm×1(m < M) captures

context-wise interactions, which can be explained as the
dynamic context interactions between each context pair. The
last weight w(M,M+1) ∈ RdM×K is a linear transformation
that aligns the context dimension from dM to K .

Thus, we can parallelly perform citywide context en-
coding for N urban regions, and finally fuse both self-
correlations and context-wise interactions with element-
wise additions ⊕, resulting in final semantic context rep-
resentation Zc ∈ RN×K ,

Zc = Zcs ⊕ Zca (4)

where (Zc)i, (Zcs)i, (Zca)i are the i-th row of Zc,Zcs and
Zca, respectively. The context factors will be progressively
aggregated with learnable weights. Note that it is orthog-
onal to the permutation of types of context factors, as
it conforms to a permutation-invariant learning [29] and
semantics can be injected into context-cross weights by
task-oriented optimization. Thus, the encapsulated context-
wise interactions can potentially counter context-driven
spatiotemporal heterogeneity by the subsequent directional
spatiotemporal aggregations.
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3.2.2 Direction-aware vector field generation

We have two observations respectively on mobility flows
and the spatiotemporal learning models. First, different
locations will have various mobility patterns due to context
factor-level interactions. And second, the prediction process
is to unfold how mobility spread across the city from history
to future. Thus, it is necessary to identify node-level person-
alized aggregation directions by improving utilization of the
environmental contexts. Hence, the core idea of our spatial
aggregation is to identify the primary evolving direction
(from history to future) of each node where the most influ-
ential neighbors are aggregated to update the node by virtue
of the learned directions. In detail, we borrow the idea of the
vector field and flow theory in electromagnetism [30], and
propose to generate node-specific direction-aware vector
fields. We first define the flow direction of mobility, as the
temporal evolving direction of mobility intensity from last
historical step T to predicted step T +1, and formulate it as,

Diri = Sign(xi,T+1 − xi,T ) (5)

where Sign(x) = 1 if x ≥ 0 and otherwise Sign(x) =
0. This direction, however, cannot be available during the
testing phase, thus we design a direction learner to infer the
potential variation direction D̂iri for each node i by taking
the semantic context encoding as input features,

D̂iri = tanh((Zc)i ∗wdiri) (6)

We optimize parameters wdiri along with wcs and wca,bcm

based on the following direction guidance loss,

Lossdir =
N∑
i=1

(D̂iri −Diri)
2

(7)

With this direction objective, we are capable of capturing the
mapping regularity from combined context embedding to
the node-wise evolving direction. After that, we can exploit
a direction learner to generate node-specific direction-aware
vector fields and further select beneficial nodes towards
expected aggregation. For a specific node, we consider its
neighboring nodes those value differences (between neigh-
bors and itself) are with the same direction of its own
temporal evolution as the beneficial nodes for aggregation.
We further impose a masking mechanism to filter out those
non-beneficial nodes, which are the complementary set to
beneficial ones. As intuitively shown in Figure 1(c), the
direction learner first predicts the directions of input-to-
target variations, and CDSA calculates the differences of
values between neighbors and node itself. Actually, we
are expected to highlight the variation consistency between
neighbors and next-step observation, and filters out node
values those are at opposite directions from the predicted
targets. Recall that product of numbers with the same sign
and opposite signs can respectively contribute to positive
and negative values. For each time step, we formulate
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the pair-wise masking element in AM with an indicator
function Ind(·) and max-element selection,

(AM)ij = max{Ind(Sign(xj,T − xi,T ) · D̂iri), εj} (8)

where j ∈ {1, 2, ..., N} and εj < 1 is a random noise
approaching 0, which allows a few chances to aggregate
implicit correlated nodes. Ind(x) is an indicator function
that Ind(x) = 1 when x > 0, otherwise Ind(x) = 0. If the
neighbor-self difference and next-step self variation are with
the same sign, Ind will keep as 1 thus we can utilize ′max′

to simultaneously excite the beneficial nodes and mute the
trend-inconsistent nodes for aggregation. Therefore, the ad-
ditional benefit of direction-aware mechanism is that when
there exists a potential sharp trend, the immediate sharp
change can be efficiently captured and preserved with our
direction learner and trend-consistent nodes aggregations.

So far, we take the learned variation direction and di-
rectional masking mechanism to generate directional vec-
tor fields for each node. Considering contexts and node
variation directions, we take the most recent observations
as input and deactivate less correlated elements. To com-
pensate for the sparsity of above masked direction ma-
trix, we also impose a linear transformation on context
encodings to establish explicit context-involved adjacency
for context-aware neighbor selection. We then combine these
two components to generate final direction-aware vector
fields (Bv) ∈ RN×N ,

(Bv)i = ((X0:,−1)
T ⊙AMi + (Zc)i(Wc)i)⊙ (Wv)i (9)

We denote ⊙ as Hadamard product, while (Wc)i ∈ RK×N

and (Wv)i ∈ R1×N are two learnable transformations to
achieve N -dimensional direction field embedding.

3.2.3 Context directional graph neural network

Given the directional vector fields Bv , we can construct our
context directional spatial aggregator by feeding the last τ -
step historical observations X0, and stacking a two-layer
graph neural network,

H=Bv(BvX0W
0
s)W

1
s (10)

where H ∈ RN×p is the aggregated spatial feature maps,
and W0

s ∈ Rτ×q , W1
s ∈ Rq×p are two learnable parameters

for aligning feature dimensions.
Distinctions. We distinguish our context-aware direction

learner from attention layers [12] and other adaptive adja-
cent matrix-based spatiotemporal learning [17], [24], [31],
[32] as follows. First, the attention layers cannot identify the
evolving direction of each node with an explicit criterion.
Second, we advance the adaptive adjacent matrix generation
in previous studies, which were usually generated by matrix
multiplication, towards a directional and context factor-
guided manner. This goal is achieved by exploiting context
factors and considering node-specific temporal evolving
direction as intermediate learnable objectives for guidance,
contributing to the improved data utilization for mobility
forecasting.

3.3 Deep Contextual Temporal Factorization

Instead of utilizing traditional sequential learning tech-
niques that suffer recursive computations and temporal er-
ror accumulation (e.g., RNN-based and Convolution-based
methods), inspired by AGCRN [24], we propose a Deep
Contextual Temporal Factorization (DCTF) to directly make
projections from spatial feature maps to multi-step pre-
dictions. To endow the learning capacity, DCTF factorizes
three learnable transformations to respectively learn the
intensity corrections, context-trend patterns and step-wise
transformation. In DCTF, the context-trend highway en-
ables our framework to capture the context-induced latent
trend patterns. We specifically introduce a novel element-
wise shape-trend objective to model the temporal trends of
output sequences thus constraining their intra- and inter-
sequence correlation consistent with groundtruth. Further,
an alternate-and-adaptive parameter optimization strategy
is proposed to seamlessly cohere multiple learning objec-
tives and resolve the issues of both task entanglement and
task-wise importance weighting.

3.3.1 Context-assisted temporal factorization
To accommodate the context-related patterns, we factorize
the spatial-to-temporal mappings into three learnable trans-
formations, regarding intensity correction, context-trend
modeling and step transformations where the multiple
groups of trainable parameters are dedicated to improve the
fitting capacity. Given aggregated spatial feature maps H,
we can obtain the predicted spatiotemporal results Ŷ by,

Ŷ = H ∗ I ∗V ∗ S (11)

To be specific, since the learnable matrix I ∈ Rp∗N is
aimed at correcting intensity from spatial features, thus it is
initialized with an identity matrix E with Gaussian noise κ,
i.e., I=E + κ where κ ∼ N(0, δ) 2, and it can be trained in
a position-sensitive manner. This small modification allows
the learnable I to be easily trained with final objectives. To
explicitly incorporate the combined context conditions, the
trend pattern matrix V ∈ RN∗r is designed by establish-
ing the highway between combined context and the latent
compressed temporal trends, where the compressed trend
represents a customized latent transformation, and r is the
dimension for the latent pattern. In this way, we formulate
V as a function of semantic context encoding (Zc)i by,

V[(Zc)i] = g((Zc)i) = (Zc)iw
i
tr (12)

where wi
tr ∈ RK×l is the learnable weight for capturing

the sequential trend regarding node i. Finally, the step-wise
pattern matrix S ∈ Rr∗l is to directly transfer the latent
compressed context-trend representation to targeted l steps,
where we constrain r, l ≪ N .

Although the temporal learning process seems non-
trivial, three strategies above essentially guarantee the learn-
ing quality. First, the total parameters for in DCTF is
O(pN + Nr + lr) ≈ O(λN) with λ = p + r, acceptable
for our training. Second, the modifications of the noise in-
corporated identity matrix allows for tiny corrections in our
training meanwhile retaining the main patterns. Thirdly, the

2. δ is set to 0.1 according to repetitive experiments.
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context conditioned temporal trend learning can enhance
the context guidance of parameter learning.

Eventually, we denote element Ŷi(j) in Ŷ as the pre-
dicted spatiotemporal element at i-th node during interval
j, and so does Yi(j). More specific objectives that further
enhance temporal trend modeling and address the spa-
tiotemporal heterogeneity will be dissected as follows.

3.3.2 Multiple objectives for target-wise dependency learn-
ing
Existing methods usually capture spatiotemporal correla-
tions from input feature perspectives, ignoring potential
dependencies among targets. Given the opportunity that
explicitly constraining consistency of element-wise depen-
dencies among targets can imitate conditional neural pro-
cess thus enabling the neural network to be more robust
to noise [25], [26], designing novel objectives modeling
target-wise dependencies can potentially elevate prediction
performances where it is further empirically demonstrated
in ablation studies. From a spatial-temporal perspective,
we decompose such dependencies into variable-wise spatial
correlations and temporal trend variations.

Covariance objective. Since covariance measures how
each pair of variables moves together from their mean, and
reflects variable-wise dependencies, we employ Covariance
to calculate node-wise spatial correlations by,

σij = (Yi − Y i)(Yj − Y j)
T (13)

where Yi is a sequence-shape vector of targeted i-th node
sequence, while Y i is a scalar value denoting mean of Yi.
We impose the dot product of two difference sequences
to achieve σij , which can be viewed as the proximity be-
tween nodes i and j, corresponding to reflecting pair-wise
spatial dependencies. Similarly, we can perform the same
calculation to obtain covariance of predicted targets σ̂ij . To
maintain the consistency of target-wise spatial dependencies
between predictions and groundtruth, we minimize the
MSE between these two equally computed items, realizing
our Spatial Covariance Loss,

Losscov =
1

N2

N∑
i=1

N∑
j=1

(σij − σ̂ij)
2 (14)

Shape-trend objective. The directions and intensities of
element-wise variations can characterize the overall shape
and sequential trend for each sequence. We then propose
a shape-trend vector, computed by the difference of con-
secutive element values among targets, to capture temporal
trend variation directions. Each element in a trend vector
Ŷi(j )diff can be calculated by,

Ŷi(j )diff = Ŷi(j)− Ŷi(j − 1), 1 < j < l (15)

Similarly, we can obtain the shape-trend vector sequence
of groundtruth Yi(j )diff . As cosine similarity is direction-
oriented and intensity-agnostic, we thus minimize their
sequence-wise cosine similarities to constrain the trend con-
sistency between predictions and groundtruth,

Losstr(Ydiff , Ŷdiff ) =
1

N

N∑
i=1

exp(−
(Yi)diff (Ŷi)diff

||(Yi)diff ||||(̂Yi)diff ||
) (16)

We also integrate the traditional element-wise MAPE loss
Lossmape into our multiple objectives to encourage the
intensity consistency, and finally achieve our multi-objective
learning. To enhance the intuitive understanding of our
multi-objective losses, we illustrate the execution process of
our spatial covariance and shape-trend losses in Figure 4.

In fact, these two novel constraints can be complemen-
tary to traditional error-based objectives to tackle target-
wise heterogeneity. For covariance loss, the covariance itself
indicates node-wise inter-correlations by product operation
when i ̸= j, while it represents intra-node self-correlations
when i = j, contributing to an imitated CNP for robustness.
And the shape-trend loss can consistently constrain the
temporal trend similarity between predicted targets and
groundtruth, resulting in a directional temporal trend learn-
ing in our CD-STGNet.
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Fig. 4: Multiple objectives constraining target-wise depen-
dencies. The losses constitutes of total objectives are high-
lighted in three blue boxes.

By assuming all learnable parameters as Θ and combin-
ing both multi-objective deep factorization and intermediate
direction guidance, we arrive our final integrated objectives,

LossMO(Θ) = γ1Lossmape + γ2Losstr + γ3Losscov + γ4Lossdir
(17)

where γi(i = 1, 2, 3, 4) are four weighting parameters bal-
ancing the losses among different objectives.

Distinctions. Our work can be an improved version
of the decoders in existing literature, i.e., fully-connected
layers for temporal prediction, but with two dedicated mod-
ifications. One is the context-trend highway that endows the
framework to learn context-specific latent temporal patterns
of each node. And the other is the two novel objectives
that preserve the heterogeneous node-wise spatiotemporal
correlations among target-wise elements, not only realiz-
ing the directional trend modeling but also possessing the
property of anti-noise in predictions. These objective-based
modifications can be deemed as an improved contribution
to accurate and robust models from a fundamental machine
learning view.

3.3.3 Alternate-adaptive optimization strategy
Given four tasks and corresponding task-wise weightings,
the issues of task disentanglement and task-wise impor-
tance optimization can be intricate and non-trivial, as the
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loss functions of different tasks usually experience various
patterns during optimization process while performing grid
searching is highly expensive. To cohere these multiple
tasks smoothly and tackle the intractable optimization chal-
lenges, we devise an alternate-and-adaptive optimization
strategy. The intuition is that the optimization process can
be decomposed by different stages by freezing specified
tasks and parameters, and the task-wise importance can
be balanced by the relative gradient difference among total
descents. Particularly, since the direction learner for vector
field generation can be separated from main tasks, inspired
by coordinate gradient descent [33], we introduce an alter-
nate training strategy. It imposes optimization on direction
learner only with four groups of parameters wdiri , wcs,
wca, bcm by freezing other parameters in the first stage,
which intends to achieve a satisfactory direction learner and
vector field-based aggregation. And then we train the full
parameters in the second stage, simultaneously fine-tuning
the above direction learner-specific parameters. This process
can be implemented alternately and further allows a well-
learned direction guidance and semantic context embedding
to generate vector fields.

Secondly, to tackle the non-trivial task-wise weighting
issue during joint learning process, we devise an adaptive
weight updating strategy. It is formulated by assigning
subscripts 1 ∼ 4 to above four losses, representing MAPE,
shape-trend, covariance and direction losses. We initialize
each weight as the proportion of corresponding absolute
loss value to the their summations,

γi =
|Lossi|∑
i
|Lossi|

(18)

Then we can dynamically re-weight the losses according
to the task-specific relative gradient difference among total
four descents at last epoch,

γ
′

i =
∇θLossi∑
i
∇θLossi

(19)

In this way, all learnable parameters in our CD-STGNet can
be optimized alternately and adaptively. We apply Adam as
the gradient optimizer for our task [34].

3.4 Complexity Analysis of CD-STGNet

We analyze the time complexity of training our framework.
Since the context encoding dimension K and context-wise
embedding dm satisfy dm,K ≪ N , our training complexity
becomes the summation of total trainable parameters of
(Wc)i ∈ RK∗N , (Wv)i ∈ R1∗N , I ∈ Rp∗N , V ∈ RN∗r, S ∈
Rr∗l. Hence, it can be simplified to O(λN), which is linear
times of node number N and acceptable for training.

4 EXPERIMENT

We collect three types of human mobility datasets and their
contextual factors. We perform diverse experiments on base-
line comparisons, ablative studies, visualized case studies
to verify the intuition of our context-induced heterogeneity
and our context-guided aggregations.

TABLE 1: Dataset statistics (m: million, k: thousand)

Dataset
Category

of datasets
# of

records
Time Span

# of
regions

SIP
Surveillance 2.7 m 01/01/2017-

03/31/2017
108

Weather 4.3k

NYC
Taxi trips 7.5 m 01/01/2017-

05/31/2017
354

Weather 7.4k

Metr-LA
Loop

detectors
4.9 m 03/01/2012-

06/30/2012
207

Weather 5.7k

4.1 Dataset Description

We collect three types of real-world human mobility
datasets from perspectives of all-type traffic surveillance
volumes of Suzhou Industry Park (SIP), taxicab trip volumes
of NYC (NYC)3, and highway mobility of Metr-LA loop
detectors (Metr-LA)4. The statistical descriptions of datasets
are figured in Table 1. Particularly, to perform context-
directional learning, we incorporate multiple context fac-
tors, i.e., region descriptions, timestamps (day of week, hour
of day and holiday indicators), numerical weathers (weather
categories, precipitation, dew, visibility, et, al)5 associated
with corresponding spatiotemporal scopes. Therefore, our
CD-STGNet is not only capable of capturing both period-
icity and closeness patterns, but also explicitly encourages
more efficient utilization of these widely available contexts.

4.2 Implementation Details

For each dataset, we organize them as groups of samples
and divide them into 60%, 30% and 10% for training, test-
ing and validation, respectively. We encode the categorical
context with one-hot embeddings and transfer them into
fixed-length vectors. Our target is to predict the mobility of
the next 6 slots based on the current 12 frames (τ = 12)
following empirical settings [9], [15], [17]. Each baseline and
our network are implemented five times and the averaged
errors are reported.

Regarding implementation of context factor learning,
we encode the numerical weather into fixed-length vec-
tors c(w,i) ∈ R1×dw , transfer the day intervals and day
types into integer values and compress them into a vector
c(ts,i) ∈ R1×dts . The implementation of semantic context en-
coder is three-fold. First, we encode the numerical weather
into fixed-length vectors c(w,i) ∈ R1×dw , and secondly, we
transfer the day intervals and day types into integer values,
where vector c(ts,i) ∈ R1×dts . Third, we initialize random
embedding c(loc,i) ∈ R1×dloc for each region to capture per-
sonalized location-based patterns. In our work, these three
types of contexts will be fed into the semantic encoder and
achieve the context-wise interaction learning. For baselines,
we directly feed the concatenated context embedding into
placeholders of baselines if they have. Noted that the urban
graph in our solution is a virtual topology that is derived by
the adjacent matrix and the evolving direction learner.

3. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4. https://github.com/liyaguang/DCRNN
5. Collected from API: https://api.weather.com
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For general settings, all the methods are implemented
using Tensorflow 1.14.0 or Pytorch 1.10.0 and evaluated
on one Tesla V100 GPU. To guarantee fair comparison, we
perform grid search to tune the hyperparameters for all
baselines over the three datasets. For ours, we stack 3 GCN
layers on SIP and Metr-LA, and 2 GCN layers on NYC, and
set 1 LSTM layer across all datasets. More specifically, for
SIP, we instantiate location dimension dloc = 16, context
embedding K = 64, for NYC, dloc = 6,K = 8 and for Metr-
LA, dloc = 32,K = 32. The initial learning rate is set to
0.0001 with an 0.98 attenuation rate every 10 epochs.

4.3 Performance Comparisons

4.3.1 Baselines
We categorize baselines into context-incorporated and
context-agnostic solutions. All baselines except MDL follow
the setting of 12 step inputting while MDL follows the
setting of three segments of closeness, periodicity and trend.
For each baseline, we explicitly provide the loss functions
they utilized for further discussion. Besides, to test the
model generalization and pluggability, we also modify our
network by plugging other GNN-based solutions.

(1) Context-incorporated Baselines:

• Traffic transformer is inspired from Google’s Trans-
former and proposed to capture the continuity and
periodicity of time series, as well as the spatial de-
pendency [35].

• STG2Seq is a hierarchical graph convolution for taxi-
cab passenger demand prediction, considering con-
text factor fusion with element-wise additions [15].

• ST-SSL is a spatiotemporal forecasting solution from
contrastive learning perspective, which also injects
geographical contexts into regional embedding [36].

• CD-STGNet+GraphWave is a variant of our ap-
proach which replaces our GNN with Graph-
WaveNet as a variant [37].

• CD-STGNet+MixHop is a variant of our approach
which replaces our GNN with an advanced MixHop
that leverages weighted layer fusion [38].

(2) Context-agnostic Baselines:

• HA refers to historical averaging solution for se-
quence forecasting.

• AGCRN is a combination of adaptive GCN and GRU
for spatiotemporal forecasting [24].

• STFGNN is a GNN-based framework that jointly
learns localized heterogeneity and global homogene-
ity with data-driven graph generation [16].

• MDL is a state-of-the-art collective human mobil-
ity forecasting method, which is inherited from ST-
ResNet [1] and simultaneously models nodes and
edges with multiple deep learning tasks. [39].

• Graph-WaveNet, is an improved version of
DCRNN [14], which designs a learnable dynamic
region-wise proximity and dilated convolutions for
spatial-temporal learning [37].

• MTGNN couples GNN and temporal convolutions
to capture underlying series-wise spatial-temporal
dependencies in implicit graph structures [17].

• MRA-BGCN jointly learns edge-wise and node-wise
graphs with a bicomponent graph and multi-range
attention [9].

4.3.2 Analysis of performances against competitors
The averaged numerical error results are reported in Table 2.
Our framework outperforms the best competitor by 13.52%
(traffic transformer), 22.92% (STG2Seq) on SIP and NYC
respectively, and achieves comparable performance as traffic
transformer on well-studied dataset Metr-LA.

Context-aware and context-agnostic solution compar-
isons. Although STG2Seq and traffic transformer have in-
corporated timestamps and weather contexts into learning
schemes based on MLP, they still fail to exploit the guid-
ance role of context, resulting in unsatisfactory results. In
contrast, thanks to context-aware adaptive topology and
target-wise correlation constraints, our CD-STGNet achieves
exciting performances almost on all datasets for next 6-
step predictions. To test the generality of our framework,
we replace the GNN in our CD-STGNet with another two
popular graph neural modules, GraphWaveNet and Mix-
Hop, for addressing our learning tasks. The superior results
of these two modifications to other baselines can verify
the generality of our well-designed direction learner and
temporal learning modules. The context-agnostic solutions
perform relatively inferior to context-aware methods on SIP
and NYC, while the seemingly reasonable results haven’t
achieved on Metr-LA. We ascribe this phenomenon to that
different datasets may be suitable for distinctive fusion
mechanisms which will be elaborated in followings sections.

Different performances across baselines and loss func-
tions. Another interesting observation is that baselines may
perform diversely across different datasets since these solu-
tions may be designed based on specific tasks and datasets.
Specifically, MRA-BGCN performs worse than other base-
lines on SIP and NYC, due to this model may highly depend
on the predefined graph structure, while there is no such
groundtruth on these two datasets. And STG2Seq, which is
tailored for taxi demand prediction, only obtains the best
results on NYC trip records. Besides, noted that our CD-
STGNet achieves much more superior results than MDL on
Metr-LA/SIP and comparable performances on NYC. The
reason may lie in that 1) Metr-LA with less variations are
more prone to be affected by closeness observations rather
than weekly/daily periodicity, 2) our context-aware strategy
exactly makes sense. Thus, the heterogeneous performance
improvements across datasets can be attributed to the model
sensitivity to different data properties. Furthermore, regard-
ing loss functions, we find that even though our integrated
loss can prominently improve performances, the types of
loss functions do not play significant roles during learning
process but the designed auxiliary tasks and additional data
utilization do, e.g. transformer-based sequence learning and
contextual factor incorporation. Actually, the learning tasks
and covariate datasets separated from main targets can be
viewed as regularization and complementary prior to main
tasks, which leads to a superior optimization. Therefore,
benefiting from the exploiting of context factors for direc-
tional spatial aggregation and temporal trend learning, our
CD-STGNet achieves superior performances over almost all
baselines.
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TABLE 2: Performance comparisons on three datasets. The best results are in bold and the second best are underlined.

Loss function
SIP NYC Metr-LA

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
Traffic Transformer MAE 37.76 23.29% 83.50 32.19 34.67% 76.64 3.52 9.71% 6.33
STG2Seq MSE 64.80 31.66% 144.23 11.08 14.61% 22.16 5.86 22.20% 10.87
ST-SSL MAE 90.30 25.10% 170.98 15.38 25.29% 32.73 4.14 22.34% 8.13
HA MAE 81.24 40.25% 150.23 16.12 33.14% 34.41 6.49 26.41% 12.74
AGCRN MAE 57.74 25.37% 120.76 11.72 15.85% 24.94 5.88 21.55% 11.54
STFGNN Huber Loss 36.60 24.45% 84.96 11.76 15.50% 24.98 3.34 10.67% 6.55
MDL RMSE 82.56 34.55% 192.40 12.48 18.62% 27.62 3.27 36.67% 6.52
GraphWaveNet MAE 95.96 45.91% 218.11 14.45 27.39% 30.68 3.82 12.06% 7.49
MTGNN MAE with L2 41.71 32.61% 92.28 16.27 30.98% 34.63 3.14 8.19% 6.17
MRA-BGCN MAE 92.48 42.20% 203.73 17.85 34.23% 36.25 3.19 8.32% 6.27
CD-STGNet

Hybrid Loss
33.17 20.14% 74.01 11.36 11.26% 22.07 3.13 8.32% 6.15

CD-STGNet+WaveNet 36.12 22.00% 80.26 11.94 18.60% 25.42 3.12 10.50% 6.22
CD-STGNet+MixHop 32.60 19.80% 72.45 10.88 13.40% 23.16 3.28 11.15% 6.45

TABLE 3: Performances on ablative spatiotemporal learning

Variants
MAPE

SIP NYC Metr-LA
CDSTG-SC 21.48% 23.12% 14.92%
CDSTG-DL 21.22% 18.45% 14.73%

CDSTG-ConIn 21.85% 19.23% 15.06%
CDSTG-CT 24.62% 17.22% 11.48%

CDSTG-SDT 26.28% 15.20% 12.56%
CDSTG-TDT 24.81% 17.44% 14.10%

CDSTG-AdaWeg 26.47% 17.32% 11.25%
CDSTGNet 20.14% 11.26% 8.32%

Multi-step prediction performances. Since we aim at
predicting sequential mobility, the citywide forecasting per-
formances of next 6 steps (average the MAPE errors to the
city level) are illustrated in Figure 5, by comparing ours
with several selected high-quality baselines. In particular,
MTGNN are observed to be limited in predicting only two
or four steps on SIP and NYC, respectively, leading to
lower overall performances than ours. Traffic transformer
and STFGNN, which are dedicated for traffic forecasting,
achieve barely satisfactory performances due to the context-
encoded mechanism and modified DTW for sequential pat-
tern extraction. Also promisingly, our CD-STGNet surpasses
all of them with a significant margin, especially on farther
horizons, which verifies the success of our novel objectives
in constraining the trend and target-wise consistency be-
tween groundtruth and predictions.

Finally, even diverse performances, we can still conclude
that the context-directional learning not only promotes the
data utilization, also leads to improved performance with
learnable and directional spatiotemporal aggregations.

4.4 Ablative Study

To test the effectiveness of each component, we successively
remove following components or replace them with ordi-
nary modules as ablative variants,

(1) CDSTG-SC: Remove the Semantic Context encoder
and utilize original context embedding for prediction. (2)

(a) SIP (b) NYC (c) Metr-LA

Fig. 5: Comparisons on multi-step prediction performances

CDSTG-DL: Remove the direction learner loss. (3) CDSTG-
ConIn: Remove the context-involved adjacency in Bv . We
separate the contributions of context-involved adjacency
and the directional masked matrix AM to test the neces-
sity of context-based adjacency design in Bv . (4) CDSTG-
CT: Replace the Context-Trend highway with plain fully-
connected layers. (5) CDSTG-SDT: Remove the objective of
spatial covariance of targets. (6) CDSTG-TDT: Remove the
objective of shape-trend dependence of targets. (7) CDSTG-
AdaWeg: Replace the adaptive weighting scheme in multi-
task learning with equal weights.

Ablation results demonstration. The quantitative results
are shown in Table 3. As illustrated, the guidance of con-
textual factors consistently plays the most significant role
in performance gains. Specifically, the spatial dependency
of target-wise constraints, semantic context encoding and
adaptive weights respectively play the most significant role
on three types of datasets. This observation also manifests
that homogeneous aggregations without direction guidance
can lead to suboptimal performances and further verify
the rationality of our solution. The performance of CD-
STGNet-ConIn has a slight downtrend, which indicates that
the context-involved aggregation can exactly compensate
for the sparsity of vector field matrix to enhance perfor-
mance. Furthermore, with the adaptive multi-task weight-
ing, we observe a more stable and faster convergence rate
as well as improved performance. Numerically, on SIP,
our CD-STGNet gets convergence at the epoch of 70 on
non-adaptive optimization while obtains convergence at 40
epoch on the adaptive one. To sum up, we have corrobo-
rated the effectiveness of the intuitions and designs of above
six component designs.
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Module sensitivity across cities. We further observe
that different cities are with heterogeneous sensitivity to
different sub-modules in our CD-STGNet. The reason can be
summarized as that, from the data science view, the prop-
erty of dataset (nature of the city) dominates how models
and different modules impact the predictability of corre-
sponding data, i.e., the performance quality. Specifically, the
property can be diverse, such as the dependence degree of
context factors, the degree of data fluctuations, the consis-
tent correlations between nodes, and so on. For instance,
the semantic context embedding and Context-involved ad-
jacency can be more friendly to datasets which are more
dependent on contexts, while the spatial covariance module
tends to enable more improvements on the datasets with
more causal node-level correlations. Therefore, the potential
reason of higher improvements with Spatial Covariance on
SIP may be the more consistent node-wise correlation, while
the more dependence of contexts on NYC may contribute to
better performances with semantic context embedding and
context-involved adjacency in Bv.

4.5 Case Study

In this section, we will demonstrate some real-world cases
and prediction results, to verify the rationality of our intu-
itions and solutions from diverse perspectives.

Various patterns of mobility types. We visualize the
mobility density of three consecutive steps on three datasets
in Figure 6, where each set represents one typical mobility
type. We also highlight the trends of two selected regions on
each set to enhance an intuitive comparison. It is observed
that 1) For each set, different regions reveal non-similar
patterns for their specific functionalities and interactions be-
tween contexts, 2) The heterogeneity across various mobility
types is indicated, e.g., taxicabs tend to be concentrated
on downtown while all-type vehicle volumes will be more
evenly and widely distributed throughout the whole city.
This observation can inspire vehicle-aware management for
urban traffics and context-aware urban data transmission
schemes among vehicles. 3) The regional mobility intensities
evolve dynamically and diversely, thus the diversity can
further interprets the necessity of directional spatial-and-
temporal aggregation in a qualitative and intuitive manner.

Visualization of context embedding. Figure 7 (a)
demonstrates the learned adjacent matrix of one step on SIP.
In subfigure (b)(c), we select three representative frames of
context embedding (learned with the guidance of direction
learner) on near steps of above adjacent matrix. As ob-
served, due to daily commutes and human routines, context
embedding during morning share similar patterns with
those of evening while they show fully different patterns
from noon hours, verifying the dynamics and heteroge-
neous mappings from context to spatiotemporal targets. In
this way, the node-specific and context-aware patterns are
exactly captured in the context embedding with our target-
oriented objectives and directional aggregation filters.

Visualization of predicted sequences. The predicted
sequences of two correlated nodes (68, 73) are shown in
Figure 7 (d), and we also visualize the predicted sequences
of our solution as well as the best baseline (Traffic Trans-
former) on SIP for comparison. Three observations are

17:00-17:30 18:00-18:30 19:00-19:30

(a) All-type traffic volumes on SIP
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Fig. 6: Various patterns of mobility types

achieved. 1) The correlations among neighboring nodes can
be well-learned in the adjacent matrix. 2) Our solution
makes better initialization and obtains narrower margins
between groundtruth and predictions than the transformer-
based model does, where the improved performances can
be attributed to our direction designer and target-wise
directional temporal trend objectives. 3) Previous mod-
els tend to forecast the smoothed results with the aver-
aged MAPE objectives, e.g., traffic transformer is inclined
to achieve smooth predictions with hysteresis, while CD-
STGNet can capture accurate sharp changes and relatively
well-informed of sharp changes. This observation indicates
the rationality of our core idea, anti-smooth and distinguish-
able prediction by exploiting context factors for capturing
changes in trends.

Prediction comparisons on holiday and non-holiday.
Since emerging events such as holidays can better reflect
the interpretation of model outputs, we exploit our CD-
STGNet to predict two series of intervals in SIP, respectively
on non-holidays and the Lantern Festival (a traditional
Chinese Festival after Chinese New Year) for comparison.
The visualized prediction results are in Figure 8. Specifi-
cally, we select two consecutive intervals during 10:00-11:00
a.m., and showcase the pairwise mobility intensity maps at
both non-holiday day (Jan 19th) and holiday (Feb 11th, the
Lantern Festival). It is explicitly observed that the human
mobility during holiday covers a larger scale than that on
non-holiday, and the mobility intensity also reveals higher
values when compared with intensity on non-holiday. The
circles outlined with dashed and continuous lines respec-
tively highlight observations for comparison, and such ob-
servation can exactly reflect the inherent mobility regularity
in popular holidays, which enhance the understanding and
interpretation of our model outputs.

4.6 Efficiency issue
Overall, our solution engages a new loss function and a
novel neural structure regarding temporal evolution learner,
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and in fact, this solution will not introduce more computa-
tion burdens. To reveal the training costs across different
models, we calculate the parameter volumes of each deep
model trained on Metr-LA and present the comparison
in Table 4. We can observe that our solution is with less
parameters than 6 of 10 deep learning methods, thus we
believe our solution can remain efficient with superior per-
formances.

4.7 Hyperparameter study
The hyperparameters in our work are three-fold, i.e., loca-
tion embedding dimensions dloc, context embedding dimen-
sion K , as well as task-wise weight tuple γi(i = 1, 2, 3, 4)
balancing importances and magnitude orders of four op-

TABLE 4: Parameter comparisons on different models (Unit:
Million (M))

Models
Traffic

Transformer
ST-SSL STG2Seq AGCRN STFGNN

Parameter # 0.22M 0.22M 1.42M 0.75M 0.84M

Models MDL
Graph-

WaveNet
MTGNN

MRA-
BGCN

Ours

Parameter # 0.44M 0.28M 0.41M 0.73M 0.37M

TABLE 5: Performance on various dimensions of context
embedding K

K 16 32 64 96 128
SIP 0.255 0.244 0.228 0.255 0.289
K 4 8 16 32 64

NYC 0.135 0.113 0.122 0.136 0.145
Metr-LA 0.175 0.163 0.143 0.103 0.123

TABLE 6: Performance on various dimensions of location
embedding dloc

dloc 8 16 32 64
SIP 0.243 0.225 0.238 0.265
dloc 6 8 16 32
NYC 0.113 0.145 0.165 0.167

Metr-LA 0.126 0.121 0.114 0.084
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Fig. 9: Averaged task-wise loss weighting along the number
of training epochs

timization objectives. Note that numbers of GCN layers
and LSTM layer are followed with some recent work [4].
We demonstrate the tuning process of the dimension of
semantic context embedding K and location encoding dloc
in Table 5 and 6, respectively. Considering the above
results, we choose dloc = (16, 6, 32) and K = (64, 8, 32)
respectively for SIP, NYC and Metr-LA datasets.

To analyze our adaptive optimization scheme, we report
the dynamic task-wise weights during the stage of full
parameter optimization in Figure 9. It is illustrated, in SIP,
four tasks of MAPE, Shape-trend, Direction and Covariance,
are initialized as a real-valued weight and then be updated
along the learning process. The weights finally become
stable at 0.51, 0.34, 0.0004 and 0.00017 after approximate 12
epochs. The weights of the direction learner and covariance
are far less than others, because the direction learning task
has been well trained during the first stage, and the smaller
weight of covariance loss are imposed to balance each
other as the graph-level covariance is usually a very large
value. Instead of employing a computation costly parame-
ter searching strategy, our adaptive optimization strategy
can exactly seamlessly integrate four tasks and stabilize
the learning process efficiently, resulting in tackling the
intractable but ubiquitous multi-task training challenge.

5 DISCUSSION

5.1 Insights of discovering human mobility regularity

Human mobility is partially predictable due to daily rou-
tines of human, however, the various context influences and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

human random behavior can be root causes of spatiotem-
poral heterogeneity in dynamic mobility. Investigating how
context factors influence human daily routines and hence
mobility patterns, offers insights on designing policies to
optimize the urban operations and invigorate the mobile
computing in a context-aware manner. Specifically, admin-
istrations can figure out personalized scheduling or control-
ling strategies to avoid congestions and gathering events
in different context scenarios. It is also interesting to dis-
cover the heterogeneity across different mobility types that
taxicabs tend to focus on downtown while all-type vehicles
are distributed more evenly and widely. Hence, it provides
implications on type-specific transportation system opti-
mization, e.g., ride-sharing system can leverage collective
mobility to decide the order assignment and plan cruising
routes, while administrations can exploit the regularity of
type-specific mobility to formulate the vehicle-aware traffic
limitations. For a general mobile computing, the Internet of
vehicles can exploit the regularity of mobility to maximize
the V2V transmission efficiency and balance the transmis-
sion offloading with context awareness, and the automatic
pilots can optimize their routes to avoid congestions and
difficult road segments in open road networks. Therefore,
our findings can significantly facilitate the human-centered
data mining in mobile computing community.

5.2 Technical novelty and mobile computing insights

CD-STGNet is a systematical work that not only demon-
strates the necessity of context-aware prediction, but tack-
les spatiotemporal heterogeneity in mobility by maximally
improving context utilization, contributing insights to data
mining and mobile computing.

Regarding technical contributions, first, we theoreti-
cally analyze the necessity of exploiting task-related covari-
ates to assist predictions, provides a paradigm to a series
of context-sensitive learning tasks. Secondly, we summarize
the discovery that the essence of spatiotemporal prediction
is to explore how contexts influence historical spatial tran-
sitions to achieve future observations. Thus, CD-STGNet
investigates novel neural modules and objectives to predict
the initial variation direction of sequences, and exploit het-
erogeneous target-wise dependencies to advance the multi-
step learning. Thirdly, we devise an alternate-and-adaptive
parameter optimization strategy, which allows the task dis-
entanglement and task-wise importance re-weighting for
adaptively multiple task coherence.

The mobile computing insights can be delivered on
two aspects. (i) Data source and utilization (application).
The human mobility trajectories inherently come from mo-
bile devices and traffics are indicators of vehicle density and
volumes in road networks. Besides, vehicle volumes can
also be exploited to transmit data package to enable V2V
communication. Therefore, our proposal can be deemed
as tackling the application challenge in mobile computing,
i.e., how to effectively exploit the data collected from mo-
bile devices. (ii) Technical insights. The main characteristic
of mobile computing data is dynamic and heterogeneous,
correspondingly, the context-directional data aggregation
mechanism in CD-STGNet opportunely models these two
features in mobile data. Such learning-based prediction can

facilitate the development of mobile computing techniques
in communications, e.g., modeling the heterogeneity to bal-
ance the task/computation offloading. Therefore, we can
provide new technologies for the communication optimiza-
tion at bottom layer of mobile computing, to enable efficient
and predictable communication. To summarize, we believe
CD-STGNet can benefit the broad audience of mobile com-
puting community.

5.3 Limitations
CD-STGNet has answered the question of which direction
should each node propagate, as well as how to exploit mul-
tiple contexts and their interactions to perform personalized
spatial-and-temporal aggregations. Such solution will gain
more bonus when the temporal fluctuation is larger. To this
end, CD-STGNet doesn’t compete against MTGNN on Metr-
LA, which is mostly because that the data fluctuation of
Metr-LA tends to be more moderate than other two datasets.
Therefore, the first underlying weakness of our solution
is that the optimization process of learnable parameters
must depend on the temporal evolution where lower tem-
poral dynamics can lead to similar node selection pattern
and indistinguishable aggregation. Secondly, this solution
still cannot quantify the node propagation steps on spatial
learning, and cannot avoid the inherent cascaded errors
between spatial aggregations and temporal learning. For
this, the promising solution is to realize a dynamic network
to control the propagation depth by exploiting auxiliary
information, and a collaboration strategy with information
sharing can be further studied for cascaded error alleviation.

6 RELATED WORK

6.1 Human Mobility Prediction
Human mobility prediction. Human beings are routine-
oriented, which enables high predictability in daily mobility
patterns [40]. Research of human mobility predictions can
be categorized into two levels, individual-level trajectories
and collective mobility. Individual-level prediction aims to
forecast the user-specific mobility and activity by investigat-
ing their historical records. Specifically, traditional Markov
Chain [41], variants of RNN, e.g., GRU [42] and LSTM [43]
are modified to capture individual transition regularity.
Nevertheless, these works cannot identify the overall status
of POIs for avoiding collective urban events, and these solu-
tions consider all users equally, consequently failing to ex-
plicitly take user personalization and spatiotemporal hetero-
geneity in predictions. Collective human mobility is highly
concerning with predictions of traffic volumes [1], [12], [24],
taxicab trips [7], [22] and collective urban events [3], [31].
These tasks have been resolved with advanced CNN [1], [22]
or GNN [12], [14], [15]. In particular, [3] devises a model-
ensemble solution to address the spatial heterogeneity in
state-wide risk predictions, while [31] introduces a dynamic
adjacent matrix and difference operator to perceive the time-
varying changes of collective mobility. Even though, the
context-induced heterogeneity of human mobility has been
less explored, regardless of collective or individual ones.
Promisingly, as environmental context factors can signifi-
cantly influence human daily routines [44], [45], the uncer-
tainty in individual-level predictions inspires us to leverage
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context factors for further improving the predictability of
collective mobility.

6.2 Spatiotemporal Forecasting
Collective mobility prediction is a typical spatiotemporal
learning task. Existing techniques of spatiotemporal learn-
ing can be classified into context-agnostic and context-
involved solutions. Within the former class, literature [16],
[46] introduce multi-view graphs to encode cross-view spa-
tial correlations, while [12] and [47] design an attention-
based spatiotemporal encoder to capture the spatial hetero-
geneity. Unfortunately, both of them ignore the critical roles
of informative contexts in forecasting and yield suboptimal
performance. With the increasing awareness of contexts,
recent context-involved solutions employ a two-layer fully
connected neural network to encode the contextual infor-
mation and then aggregate them with main features, where
the fusion mechanisms can be particularly classified into
element-wise addition [1], [15], [16], [39], [48] and vector-
wise concatenation [22], [49]. More recently, ST-SSL injects
the geographical contexts by performing convolution on
region embedding [36]. However, given the context-induced
spatiotemporal heterogeneity, there are two critical issues
neglected in above works: 1) They still have not considered
the interactions of context factors, which can be root causes
of various heterogeneity. 2) They fail to exploit the guid-
ance of context on spatiotemporal aggregation, leading to
homogeneous aggregation strategies, and suboptimal per-
formance. To summarize, exploring appropriate solutions to
capturing context-wise interactions and influences is essen-
tial for spatiotemporal prediction.

6.3 Target Dependence Learning
Machine learning researchers start to exploit label corre-
lations to improve learner performances. Gen, et, al. [50]
firstly propose the label distribution learning, to reconstruct
distribution of labels, enabling the network to alleviate
label ambiguity. This series of works arise the attention on
considering potential label distributions and explicit label
correlations. To introduce label correlations into GNNs,
Label-Aware GNN has been proposed to identify node-
wise label correlations and filter all negative neighbors for
aggregations by an edge classifier [51]. Recently, Google,
which develops the Neural Process [52] and Conditional
Neural Process (CNP) [26], further demonstrates that CNP
can improve learning efficiency by enjoying the benefits of
both prior knowledge sampling in Gaussian process and
gradient-based optimization in neural networks. Excitingly,
some pioneering work has theoretically demonstrated that
explicitly modeling target-wise correlations can imitate CNP
by minimizing the discrepancy of target variable-wise cor-
relations between prediction results and groundtruth [25].
Nevertheless, target variable-wise correlations have never
been explicitly considered in spatiotemporal forecasting,
which implies an opportunity of performance improvement
with modeling target-wise dependencies.

7 CONCLUSION

In this work, we devote to a systematical study on improv-
ing collective mobility prediction via countering spatiotem-

poral heterogeneity. We perform a mutual corroboration on
the intuition that predictive power can be gained by incor-
porating context factors into learning algorithms, with both
theoretical analysis and data-driven case visualizations. To
tackle such spatiotemporal heterogeneity, we resort to con-
text factor modeling and target-wise heterogeneous depen-
dence constraining. Instead of limited neural architecture
designs, we propose our CD-STGNet in the design perspec-
tives of in-depth data utilization and innovative objectives
where three contributions have been made. First, to perform
node-specific aggregations, we additionally leverage the
widely available context factors to realize a direction learner,
generating node-wise vector fields for target-oriented neigh-
bor selection. Second, for temporal learning, we bridge the
gap between spatial feature maps and targeted sequences
by disentangling three learnable transformations. In partic-
ular, two novel objectives considering element-wise shape-
trend and pairwise covariances are devised to regularize
and constrain the directional trends and spatial correlations
consistent with groundtruth. Thirdly, the effectiveness and
interpretability of CD-STGNet have been carefully verified
with various experimental designs on three different types
of mobility datasets. Finally, we demonstrate the interpre-
tation of our CD-STGNet with multiple case studies and
discuss the key insights of technologies and utilization of
our work on mobile computing community.

For future research, we plan to develop mobility-driven
mobile computing systems, such as intelligent transporta-
tion system and mobility-aware data transmission scheme
to facilitate the application of advanced machine learning
algorithms.
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