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Abstract—Subgraph learning has dominated most practices
of improving the expressive power of Message Passing Neural
Networks (MPNNs). Existing subgraph discovery policies can
be classified into node-based and partition-based, which both
achieve impressive performance in most scenarios. However,
both mainstream solutions still face a subgraph degradation
trap. Subgraph degradation is reflected in the phenomenon
that the subgraph-level methods fails to offer any benefits over
node-level MPNNs. In this work, we empirically investigate the
existence of the subgraph degradation issue and introduce a
unified perspective, perfect reconstruction, to provide insights
for improving two lines of methods. We further propose a
subgraph learning strategy guided by the principle of perfect
reconstruction. To achieve this, two major issues should be well-
addressed, i.e., (i) how to ensure the subgraphs to possess with

’perfect’ information? (ii) how to guarantee the ’reconstruction’
power of obtained subgraphs? Firstly, we propose a subgraph
partition strategy Rayleigh-resistance to extract non-overlap
subgraphs by leveraging the graph spectral theory. Secondly,
we put forward a Query mechanism to achieve subgraph-level
equivariant learning, which guarantees subgraph reconstruction
ability. These two parts, perfect subgraph partition and equivariant
subgraph learning are seamlessly unified as a novel Rayleigh-
resistance Equivariant Subgraph learning architecture (RayE-Sub).
Comprehensive experiments on both synthetic and real datasets
demonstrate that our approach can consistently outperform
previous subgraph learning architectures. Code is available at
https://anonymous.4open.science/r/RayE-63C5.

Index Terms—Subgraph learning, subgraph degradation, Mes-
sage Passing Neural Networks, expressive ability, spectral theory.

I. INTRODUCTION

GRAPH, a widely prevalent non-Euclidean data structure
in the real world, play a crucial role in areas such

as social networks, transportation networks, and biological
networks [1]–[3]. A graph consists of nodes and edges, which
represent the complex relationships between entities. In recent
years, the rise and development of Graph Neural Networks
(GNNs) have dominated the graph learning research, making a
profound impact in areas such as recommendation systems [4],
[5], smart cities [6], [7], and AI for science [8], [9]. GNNs
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are implemented through Message Passing Neural Networks
(MPNNs), which embed nodes, edges, or subgraphs into a
low-dimensional vector space while retaining the topological
structure and attribute information.

However, the inherent limitations of the message-passing
mechanism restrict the expressive power of GNNs on complex
graph structures. It has been proved that MPNNs are with
limited expressiveness, which are at most as expressive as
1-dimensional Weisfeiler-Lehman (1-WL) test [10], [11]. As
a result, many studies have shifted their focus toward design-
ing graph learning methods with more powerful expressive
capabilities [12]–[18]. Among these, subgraph learning is one
of the most promising solutions. Subgraph learning focuses
on modeling the relationship between local structures and
global features, thereby extracting the most critical topological
information and the most label-relevant feature details. This
graph learning paradigm effectively improves the expressive
ability of network to learn complex structures while also
enhancing model interpretability.

Subgraph learning aims to extract a bag of subgraphs from
an original graph, and explore more powerful expressive frame-
works based on subgraph-level encoding [15]. The practices of
subgraph learning can be classified into two main research lines.
(i) Node-based subgraph discovery employs predefined struc-
ture to extract subgraphs, wherein each subgraph is centered by
a unique node in the graph [14], [15], [19]. The implementations
of this category include node-deletion, node-marking, and ego-
network subgraph extraction [16], [17], [20]. (ii) Partition-based
subgraph discovery extracts a bag of non-overlapping subgraphs
from original graphs. This category includes high-frequency
substructures extraction, node clustering and edge dropping [1],
[13], [21], [22]. This approach offers significant interpretability
in addressing real-world tasks, such as finding functional groups
in molecules, decoupling subnetworks in social networks, and
discovering urban functional patterns in cities [2], [3], [23].
Both of them have revealed effectiveness in practices, where
the former focuses more on studying the expressive capability
based on WL-test, while the latter emphasizes providing
better interpretability from a causal perspective. Although they
all have achieved impressive performance in most practical
applications, they fail to outperform traditional MPNNs in all
scenarios.

We reflect on these subgraph learning strategies and observe
they both suffer from the limitation that could potentially
lead to the degradation of distinguishability. (i) As shown
in the top panel of Figure 1, G1 and G2 are a pair of
graphs with different structures, which cannot be distinguished

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3544696

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 22,2025 at 07:19:44 UTC from IEEE Xplore.  Restrictions apply. 

https://anonymous.4open.science/r/RayE-63C5


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

by 1-WL algorithm. However, the subgraph sets obtained
through the node-based subgraph extraction method remain
indistinguishable, as the subgraph sets GS are identical. This
means that the subgraph learning method does not enhance
the model’s distinguishability. (ii) For partition-based subgraph
discovery policy, researchers typically concentrate on imple-
menting effective and interpretable subgraph partition strategies
but often overlook subgraph-level permutation equivariance.
As shown in the bottom panel of Figure 1, 2-Butanol (G1)
and 2-Methyl-1-Propanol (G2), which share similar features
and structures, cannot be distinguished by the 1-WL algorithm.
However, we observe that the two molecules still share a same
set of subgraphs (functional groups) through using a partition-
based subgraph extraction approach, i.e., the subgraph sets GS

of the two graphs remain indistinguishable. This means that
the subgraph learning method still fails to enable the network
to distinguish between them.

The causes of the subgraph degradation phenomenon in
the two lines of graph learning methods differ significantly.
Node-based methods often focus excessively on enhancing
the effective receptive field of the message passing mecha-
nism, while subgraph-based methods lack proper modeling
of interactions between subgraphs. This discrepancy limits
existing methods from studying the two lines of subgraph
learning approaches from a unified perspective. Actually, this
is a primary challenge we encounter in this work.

As a result, we establish a unified perspective to understand
the two lines of graph learning methods through a profound
analysis. We argue that both subgraph learning methods share
a common issue, i.e., the obtained subgraphs fail to reconstruct
the original graph perfectly. Specifically, (i) the subgraphs
generated from node-based strategies tend to contain redundant
information due to the overlap among subgraphs, making them
imperfect for reconstruction; (ii) the subgraphs extracted from
partition-based methods often lack the ability to be inversely
reconstructed. To verify this insight, we construct a theoretical
bridge investigating the expressive power of subgraph learning
models through the lens of reconstruction ability. We attribute
the limitations of existing efforts to the limited capacity
for reconstruction. We theoretically demonstrate that when
the extracted subgraph has perfect reconstruction ability,
the existing limitations of subgraph learning will be greatly
addressed. Therefore, this naturally raises the specific challenge
that how to obtain subgraphs with perfect reconstruction
ability?

Present work. We address the aforementioned issue by
two sub-solutions: (i) designing non-overlapped subgraph
learning approaches to ensure the perfect property, (ii) devising
subgraph-level equivariance learning architecture to guarantee
reconstruction property. To achieve it, we propose a novel
subgraphs partition strategy guided by spectral graph theory,
and design a Query mechanism to achieve subgraph-level
equivariant learning.

Firstly, we prioritize ensuring that the extracted subgraphs
contain perfect and non-redundant information. Partition-based
subgraph learning, which enjoys both non-overlapped and
interpretable properties, is considered to be closer to guarantee
the perfectness. Subgraph partition aims to identify optimally

G1 G2 GS

2-Methyl-1-propanol2-Butanol

Fig. 1. Illustration of subgraph failures. Top panel: m = 2, k = 2 in
Example 1, they will generate the same EGO-based subgraphs. Bottom panel:
two isomers cannot be distinguished by partition-based methods, 2-Butanol
and 2-Methyl-1-Propanol.

meaningful boundaries among complex graph connections.
Fortunately, spectral theory possesses the powerful capability
to draw graphs and identify potential boundaries from the
spectral domain [18], [24]. Given its potent capabilities and
numerous successful applications, we propose a novel spectrum-
based subgraph partition strategy Rayleigh-resistance Extractor.
Specifically, we quantify the structural stability using Rayleigh
entropy and achieve subgraph partition by the edge-wise
Resistance distance. The validity and feasibility of this design
are verified through theoretical analysis.

Secondly, although a collection of subgraphs obtained
through partitioning contain suitable and non-redundant in-
formation, they still lack reconstruction ability. To significantly
enhance the reconstructability of discovered subgraphs, we
employ the equivariance principle to examine the equivalent
relationships among subgraphs, thereby ensuring robust recon-
struction power [16]. Specifically, we propose a Siamese-Query
scheme to implement our equivariant architecture, where a
Siamese network processes each subgraph independently with
same parameters, and the Query mechanism aggregates all sub-
graphs with their equivariance information. Altogether, above
two parts are composed of our Rayleigh-resistance Equivariant
Subgraph learning architecture (RayE-Sub), which achieves
the perfect reconstruction of extracted subgraphs. Contributions
of this paper are summarized as follows:

• Through a theoretical and intuitive analysis of existing
subgraph learning models, we observe that they exhibit
a significant limitation known as subgraph degradation
and attribute such limitation to the failure of perfect
reconstruction.

• We propose a subgraph learning architecture RayE-Sub,
including a novel subgraph partition strategy Rayleigh-
resistance Extractor and a subgraph-level equivariant
encoding framework Siamese-Query Network to achieve
perfect reconstruction ability.

• Comprehensive empirical results validate the competitive
performance of our approach on both synthetic and
realworld datasets, underscoring its effectiveness in diverse
scenarios.
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II. RELATED WORK

a) Subgraph Learning: According to different subgraph
discovery strategies, subgraph learning can be classified into
node-based [14]–[17] and partition-based [1], [13], [22], [23]
approaches.

Node-based subgraph learning primarily concentrates on
utilizing the Weisfeiler-Lehman (WL) test as a standard to
enhance the expressivity of graph learning architectures. GNN-
AK [17] observes that MPNNs’ local neighbor aggregation
follows a star pattern, and propose a design which naturally
generalizes from encoding the star to encoding a more flexibly
defined subgraph. ESAN [16] implements an subgraph equivari-
ant learning architecture and achieves better expressiveness by
per-layer aggregation across subgraphs. SUN [15] profoundly
studies the characteristics of node-based subgraph learning.
Further, SUN aligns the permutation group of nodes and
subgraphs, and models the symmetry with a smaller single
permutation group. These efforts are aimed at enhancing the
efficiency of messaging within the models but often do not
prioritize interpretability. In addition, the ineffectiveness of
node-based subgraph learning in all scenarios has been reflected
in some studies. For example, ESAN [16] involves performing
stochastic sampling of extracted subgraphs and subsequently
feeding the sampled subgraphs into networks. This design
can be seen as a way to prevent performance degradation
by minimizing overlap between subgraphs, which has been
widely followed in subsequent works [12]. Their practices are
uniformly analyzed and theoretically proved in our work.

Different from node-based subgraph learning methods,
partition-based approaches place a greater emphasis on inter-
pretability. Leveraging information theory to achieve subgraph
partition is a notable research line [13], [25], where GSAT
[13] is a representative method. Guided by the information
bottleneck theory, GSAT designs a subgraph extraction strategy
with edge deletions based on stochastic attention mechanism.
Numerous partition based subgraph learning practices aim to
methods seek invariant subgraphs from a causal perspective
[26]–[29]. DIR [26] extracts causal invariant subgraph by
conducting interventions on graphs to create interventional
distributions. To tackle the problem of learning invariant graph
representations under distribution shifts, GIL [27] designs three
tailored modules to encourage the graph representations to
capture the invariant relationships between predictive graph
structural information and labels. Such methods prioritize
achieving interpretable learning and often overlook the theoret-
ical investigation of expressive capacity, where the neglect of
subgraph-level permutation equivariance presents a significant
challenge.

Given the various limitations of existing works, there is
currently no universally accepted solution to achieve the unified
advancement of partition-based and node-based subgraph
discovery. In this work, we propose a novel perspective to unify
the underlying reasons for the limitation observed in existing
subgraph learning practices, i.e., perfect reconstruction.

b) Expressive power of MPNNs: Exploring more ex-
pressive learning architectures is the primary goal in graph
representation learning. Current researches tend to be divided
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Fig. 2. The support graphs (G and H) of ND-based subgraph learning failure
by setting m = 1, k = 4 in Example 1. And a complete graph K with 5
nodes to support Theorem 1.

into three lines, i.e., the MPNN-based methods aligned with
WL-Test, transformer-based methods and the solutions derived
from novel representation power measures. First, MPNN-based
methods improves expressiveness on WL-Test by devising
higher-order message-passing [11], [30], [31], position and
structure encoding [32]–[34]. However, the computational
cost for k > 3 expressive power in WL-Test should be
unacceptable. Second, instead of conventional message passing,
transformer like Graphormer computes the soft attention
scores for aggregation [35]. Third, Zhang et al. [12] take
a novel perspective, the graph bi-connectivity, as measure
of expressiveness and promotes the representation on bi-
connectivity aspect. In this work, we inherit the third line and
further exploits elegant theoretical paradigms, to construct a
novel perfect reconstruction subgraph learning scheme towards
more interpretable and powerful graph representations.

III. SUBGRAPH LEARNING FROM RECONSTRUCTION
PERSPECTIVE

In this section, we first highlight the degradation of extracted
subgraphs in existing methods and then attribute it to limited
reconstruction ability rationally.

Notation: Let G = (A,X) be an undirected graph with
n nodes. V and E represent the node set and edge set,
respectively. The adjacency matrix A ∈ Rn×n denotes the
connectivity of G. The feature matrix X ∈ Rn×d represents
the features of all nodes, where x(u) ∈ R1×d is the feature
of u. Let [n] = 1, ..., n. GS = {G1

S , · · · ,Gk
S} represents the

subgraph set generated by subgraph discovery policy π(G).
Each subgraph is Gi

S = (Ai
S ,X

i
S) with V i

S ⊆ V , Ei
S ⊆ E,

where 1 ≤ i ≤ k. We denote xi ∈ R|Vi|×d as the feature of
all nodes in subgraph Gi

S , which is different from x(u).

A. Node-based subgraph learning

The node-based subgraph discovery approach has emerged
as the most popular strategy in subgraph learning, owing
to its simplicity and effectiveness [15]–[17]. The specific
implementations consist of node-deletion (ND), node-marking
(NM), and ego-networks (EGO) policies. While such methods
have achieved remarkable success, there is still a significant
degradation of learning ability. We can easily observe two
family graphs can be indistinguishable for existing node-based
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Fig. 3. The architecture of RayE-Sub. Left panel: our RayE-Sub is composed
of two stages: a partition block Rayleigh-resistance Extractor, a subgraph-level
equivariant module Siamese-Query Network. Right panel: the detailed process
of Rayleigh-resistance.

subgraph learning practices, as illustrated in Example 1. We
sample some pairs of graphs to illustrate this phenomenon as
shown in Figure 1.

Example 1. (The degeneration of Node-based subgraphs.) Let
G1 = {V1,E1} and G2 = {V2,E2} be a pair of graphs with
n = 2kl + 1, where k, l are two positive integers satisfying
kl > 3. Note that V1 = V2 = [n], E1 and E2 satisfy the
following conditions,

E1 = {{i, (i mod kl) + 1} : i ∈ [kl]}
∪ {{i+ kl, (i mod kl) + kl + 1} : i ∈ [kl]}
∪ {{n, i} : i ∈ [2kl], i mod l = 0} ,

E2 = {{i, (i mod 2kl) + 1} : i ∈ [2kl]}
∪ {{n, i} : i ∈ [2kl], i mod l = 0} .

(1)

Given that ego-network is the simplest implementation of
a node-based approach, we visualize a pair of graphs that
cannot be distinguished by the EGO-based methods in the
top panel of Figure 1. By setting m = 2 and k = 2, we
can obtain a pair of graphs with identical EGO subgraphs set.
Therefore, EGO-based methods are powerless to distinguish this
pair of graphs. Moreover, we also provide more observations
of subgraphs failure on ND-based and NM-based strategies
as shown in Figure 2. We can obtain a pair of graphs G
and H , by setting m = 1, k = 4. For original G and H ,
they cannot be distinguished by 1-WL [12]. Thus, we tend
to explore whether we can distinguish them by ND-based
and NM-based strategies. We first extract their subgraph set
from GS and HS based on ND-based policy, respectively.
Unfortunately, they also can’t be distinguished by ND-based
learning strategy. We provide detailed explanations for these
reasons in the subsequent analysis.

The G1
S extracted from G is two 4-cycle regular graphs,

while the H1
S extracted from H is a 8-cycle regular graph.

Almost all node-based subgraph learning methods are upper
bounded by 3-WL. Thus, they are unable to distinguish G1

S and
H1

S . Similar to G1
S and H1

S , existing approaches with less than
3-WL expressive ability are unable to distinguish between G2

S

and H2
S . Intuitively, the subgraph generated from each node in

G2
S and H2

S shares the same information. This homogenization
will result in their indistinguishability. Theoretically, we
can verify this fact with the simple aggregation practice of
Algorithm 1. The failure of NM-based method is similar to
ND-based strategy, so we don’t repeat it.

Building upon the observed phenomenon of subgraph
degradation, we aim to delve into the underlying theory of this
phenomenon. As a result, we theoretically prove the existence
of this degeneration from the perspective of message passing.
Based on [36], we first derive the Proposition 1 regarding
function composition.

Proposition 1. MPNNs can repeatedly update each node’s
embedding by aggregating information from their neighbors.
The graph-level embedding hG can be obtained by,

hG = MPNN(A,X). (2)

There exists a global correlation matrix T to indicate node-wise
relevance learned by MPNN, where each element T(i, j) is
the aggregation coefficient from j to i.

This proposition stems from a profound understanding
that the feature space tends to be linearly correlated due to
the repeated aggregations of MPNNs [36]. We evaluate the
expressive ability of different subgraph models by considering
their power as learning over ground-truth correlation matrix T .
If extracted subgraphs fail to learning the correlation matrix
closer to T , these subgraph solutions will not contribute to
better distingushment ability [37], [38].

Theorem 1. (The existence of subgraph degradation.) Given
two graphs G and H , the correlation matrices obtained by
node-level MPNNs be TG and TH respectively. The correlation
matrices implemented by node-based subgraph learning be TS

G

and TS
H . The subgraph degradation phenomenon occurs when

one of the following two cases is existing:

(i) TS
G = TG or TS

H = TH , (3)

(ii) TG = TH and TS
G = TS

H . (4)

Proof. Node-based subgraph learning first extract a subgraph
set GS = {G1

S ,G
2
S , · · · ,Gn

S}, wherein each subgraph is
associated with a unique node. The aggregation process of each
subgraph Gi

S generates a corresponding correlation matrix Ti
S .

For the whole graph, the correlation matrix of information
passing among all nodes is TS =

∑
i∈[n]

Ti
S . Therefore, we

turn the question into proving the existence of
∑

i∈[n]

Ti
S = TG.

Since [15] has shown that the ND-based methods are the most
expressive node-based subgraph learning strategies, we can only
investigate ND-based subgraph discovery for demonstrating
the existence of above issue. We then demonstrate that both
cases leading to subgraph degradation are present.

Equation 3 indicates that the introduction of subgraphs does
not enhance the 1-WL message passing mechanism. Consider
a complete graph K with 5 nodes and its subgraph set KS

as shown in Figure 2. We observe that each subgraph is a
complete graph with 4 nodes, there is no distinction among
them. And we can easily deduce that TG is a constant multiple
of

∑
i∈[n]

Ti
S , which doesn’t change the final result. Therefore,

there exists graph G satisfying Equation 3, i.e., TS
G = TG.

Equation 4 indicates that although the introduction of
subgraphs results in different correlation matrices with 1-WL,
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it still cannot distinguish isomorphic graphs. Consider two
graphs G and H as shown in Figure 2, they are isomorphic
graphs and are indistinguishable under the 1-WL-based message
passing mechanism [12]. Therefore, there exists TG = TH .
The subgraphs extracted from G exhibit two distinct forms,
namely G1

S and G2
S . Similarly, the subgraphs extracted from

H also exhibit two distinct forms, H1
S and H2

S . Next, we will
examine whether the introduction of subgraphs can alter the
indistinguishability of G and H . G1

S consists of two 4-cycles,
while H1

S forms a single 8-cycle. Actually, any node in these
subgraphs shares the same local structure, which cannot be
distinguished by the 1-WL-based message passing mechanism
[39]. Therefore, there exists Ti

G1
S
= Tj

H1
S

for i ∈ G1
S , j ∈ H1

S .
Every node in G2

S has a corresponding node in H2
S with the

same local structure. In other words, G2
S and H2

S are identical
in shape and connectivity, i.e, they are isomorphic graphs. Thus,
there exists Ti

G2
S
= Tj

H2
S

for i ∈ G2
S , j ∈ H2

S . In conclusion,
subgraph-level learning does not alter original distinguishability,
meaning the following equation still holds on:∑

i∈G1
S

Ti
G1

S
+ 8

∑
j∈G2

S

Tj
G2

S
=

∑
i∈H1

S

Ti
H1

S
+ 8

∑
j∈H2

S

Tj
H2

S
. (5)

Theoretical Insight. Our proof aims to confirm the existence
of the samples leading to subgraph degeneration. Specifically,
the process of the proof is divided into two steps. (i) We
first demonstrate that the utilization of subgraph learning does
not alter the original message passing correlation matrix by
introducing a complete graph K with 5 nodes. (ii) Using two
families of samples from Example 1, we then show that the
use of subgraphs does not enhance the raw distinguishability
of networks. In other words, a pair of graphs that are initially
indistinguishable remain so even after applying subgraph
learning.

B. Partition-based Subgraph Learning

Partition-based subgraph learning aims to extract a subgraph
set GS = {G1

S ,G
2
S , · · · ,Gk

S} which are with no overlaps
among any pair of elements, as described in following,

V = V 1
S ∪ V 2

S ∪ ... ∪ V k
S , (6)

V i
S ∩ V j

S = ∅ (∀i, j ∈ [k], i ̸= j). (7)

Given that existing practices aim to refine a minimal label-
relevant subgraph set [13], [26], Equation 6 is thus not always
a compulsory condition. Compared with node-based strategies,
partition-based methods are more interpretable for real-world
tasks, such as finding the functional groups in molecules [1].

However, most previous works [13], [21], [38], [40] pay
more attention to explore effective and interpretable partition
principle, but ignore subgraph-level permutation equivariance
analysis. For example, this deficiency makes it challenging for
the model to distinguish isomers and chiral molecules, leading
to invalidated predictions. It is shown in the bottom panel of
Figure 1. Therefore, this limitation results in failing to achieve
the desired powerful representation ability, namely subgraph
degradation.

We can denote these practices, which ignore subgraph-level
permutation invariance, as f : f(τ ·GS) = f(GS), where τ
denotes the permutation operation of subgraph. Obviously, this
design cannot be suitable for real-world tasks of subgraph
learning, where one of the most notable examples is the
challenge of distinguishing isomers. In contrast, equivariant
learning g : g(τ ·GS) = τ · g(GS) at the subgraph-level can
achieve better distinguishability and interpretability [16].

C. Unifying Subgraph Learning via Reconstruction Ability

Based on this fresh review of previous practices, we can
summarize the root view for subgraph degradation to two key
limitations as follows.

a) Node-based subgraphs with redundant information:
The most notable characteristic of the subgraphs GS extracted
by node-based methods is the presence of numerous pairwise
subgraphs with overlapping information, namely Gi

S∩G
j
S ̸= ∅

for i ̸= j. Moreover, we have demonstrated that the degradation
of message passing space (neighbor information) is the main
reason for node-based subgraphs failure. Therefore, overlapping
subgraphs precisely give each node an independent and 1-WL-
similar messaging passing space.

Actually, some empirical results from prior work have
potentially supported this view. For example, ESAN [16]
conducts a stochastic sampling of the extracted subgraphs
Gm

S ⊆ Gn
S and subsequently feeding the sampled subgraphs

into networks. This design can be seen as a way to prevent the
degradation by minimizing overlap between subgraphs, which
has been widely followed in subsequent works [12]. Therefore,
such redundancy in GS poses a significant challenge for node-
based strategies.

b) Partition-based subgraphs with inadequate informa-
tion: From the perspective of information overlap, we can
also summarize the characteristics of GS obtained by partition-
based subgraph selection. Specifically, (i) there is no infor-
mation overlap between any pair of subgraphs, denoted as
Gi

S ∩Gj
S = ∅ for i ̸= j, (ii) GS is disordered with no posi-

tional associations among subgraphs. The above observations
indicate that the elements in GS are independent of each
other. Therefore, it is evident that the lack of subgraph-level
interaction inevitably leads to the failure of distinguishment.

In summary, we attribute the limitations of the above two
strategies to the redundancy and inadequacy of extracted sub-
graphs, respectively. The redundant and insufficient subgraphs
result in failing to perfectly reconstruct the whole graph.
Inspired by this observation, we take the perspective of perfect
reconstruction to remedy above two limitations.

Definition 1. Let subgraph set GS be extracted by G. The
subgraph set GS will be equipped with reconstruction ability if
there exist a reconstruction function r(·) satisfying r(GS) = G.
Specifically, GS with redundant reconstruction ability is
defined by,

r(GS∗) = G, ∃GS∗ ⊂ GS . (8)

GS with perfect reconstruction ability is defined by,

r(GS∗) ̸= G, ∀GS∗ ⊂ GS . (9)
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If there does not existence a reconstruction function r(·)
satisfying r(GS) = G, GS is with no reconstruction ability.

In this section, we present a unified perspective that en-
capsulates the subgraph degeneration phenomena observed in
two existing categories of subgraph learning methods. These
failures stem from their inability to adhere to the principle of
perfect reconstruction in subgraph learning. In next section, we
thus propose a novel subgraph learning framework equipped
with perfect reconstruction capabilities to effectively address
the limitations of existing methods.

IV. RAYE-SUB: RAYLEIGH-RESISTANCE EQUIVARIANT
SUBGRAPH LEARNING

In this section, we design a subgraph learning framework
RayE-Sub with perfect reconstruction ability and further
demonstrate its powerful expressive capacity theoretically.

A. Rayleigh-resistance Extractor for Subgraph Partition

Compared to node-based subgraph learning methods,
partition-based methods often yield subgraphs closer to perfect
reconstruction. The reason lies in that the excellent properties of
the extracted subgraphs can only be guaranteed by incorporating
the permutation invariant learning module. Therefore, we are
pursuing the partition-based research line to tackle the challenge
of subgraph degradation of existing approaches.

Subgraph partition methods aim to find the significant
boundary, which composes of a series of edges connecting two
irrelevant nodes. In implementations, topological characteristics
and feature contents are vital factors affecting the effectiveness
of partition principles. Inspired by the great superiority of
spectral theory in drawing graphs [18], [24], we exploit the idea
of spectrum to realize the subgraph partitions with topological
and feature information.

The Laplacian operator LG is the entry to spectral theory,
where Rayleigh quotient of LG elegantly depict the stability
of graph G [24].

Definition 2. The Rayleigh quotient q(G) of the Laplacian
matrix LG is defined as

q(G) = xTLGx =
∑

(u,v)∈E

wuv(x(u)− x(v))2, xTx = 1, (10)

where x ∈ Rn×1 is the feature matrix of nodes 1 .

The value of q(G) resonates with both the structure informa-
tion wuv and the feature contents (x(u)− x(v))2 for all edges
(u, v). Thus, Rayleigh quotient quantifies the stability of the
graph with structure and feature information. The smaller q(G)
refers to those nodes are closer with each other so that the graph
is more stable. Otherwise, the graph is fragile. The quantization
property aligns well with our subgraph extraction strategy,
which involves breaking fragile edges BG ⊂ V to obtain the
most stable substructures. This leads us to further investigate
a subgraph learning method that can extract subgraphs with
perfect reconstruction from the perspective of Rayleigh entropy.

1We let the feature dimension be 1 to simplify subsequent analysis.

There exists an equation between the Laplacian matrix
LGi

S
∈ Rn×n of the subgraph Gi

S , boundary matrix BGi
S
∈

Rn×n and extraction matrix LG(Vi,Vi) ∈ Rn×n of LG,

LG(Vi,Vi) = LGi
S
+BGi

S
, (11)

where BGi
S

represents the boundary between Gi
S and the rest

of the graph with BGi
S
(a, a) =

∑
b/∈Gi

S

wab. Let the boundary of

global graph BG be
∑
i∈[k]

BGi
S

, we can rewrite the Rayleigh

quotient (Equation 10) from the perspective of partitioning
graph,

xTLGx =
∑
i∈[k]

xTLGi
S
x+ xTBGx. (12)

Given a specific x, xTLGx becomes fixed. Thus, the implemen-
tation of partitioning subgraphs by max

BG

xTBGx is equivalent

to optimizing,

min
GS

q(GS) = min
GS

∑
i∈[k]

xTLGi
S
x. (13)

Unfortunately, this optimization objective become trapped, as
it may lead to including all edges in BG to achieve the
optimal value, resulting in a bag of single-node subgraphs.
A straightforward solution is to consider the number of nodes
as one of the descriptive factors of subgraph stability. Follow
this idea, instead of LG, we utilize the normalized Laplacian
matrix NG = D−1/2LGD−1/2 to rewrite the formation of
Rayleigh quotient as,

q∗(G) = xTNGx =
∑

(a,b)∈E

wab(
x(a)√
da

− x(b)√
db

)2, (14)

where dj represents the degree of j. Equation 14 effectively
avoids single-node subgraphs case by considering the degree of
node in subgraph. However, we are still curious about whether
this rephrasing results in different semantics theoretically. We
make the following derivation:

xTNGx = xTD−1/2LGD−1/2x, (15)

we can further obtain

NG(Vi, Vi) = D−1/2LGi
S
D−1/2 +D−1/2BGi

S
D−1/2, (16)

we then get

xTNGx =
∑
i∈[k]

xTD−1/2LGi
S
D−1/2x+ xTD−1/2BGD−1/2x.

(17)
Given x, xTNGx is fixed. Thus, discovering the signif-
icant boundary max

BG

xTD−1/2BGD−1/2x is equivalent to

optimizing min
GS

xTNGx = min
GS

∑
i∈[k]

xTD−1/2LGi
S
D−1/2x =

min
GS

∑
i∈[k]

(D−1/2x)
T
LGi

S
D−1/2x. In this case, we can con-

sider y = D−1/2x as the feature of nodes. Different from
the previous one, topological information, such as the degree
distribution of nodes, is also an important metric for graph
partition. Therefore, our solution can not only improve the
subgraph partition guided by Rayleigh quotient but also avoid
the defect of single-node subgraph case.
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However, optimizing min
GS

q∗(GS) is an NP (Non-

deterministic Polynomial) problem, such optimization is an
inaccessible target in practical implementation. To this end,
we utilize resistance distance to implement the quantification
defined by the Rayleigh quotient. Resistance distance (RD) is
a basic metric in graph spectral theory [41]. It reflects both
distance and the accessibility (number of pathways) between
two nodes, which has the potential to characterize the global
structural topology. This inspires us to exploit RD as an
alternative to quantify the stability of subgraphs.

Definition 3. The resistance distance between two vertices u
and v in an electrical network, is measured by the resistance
of the entire network when we treat it as an integrated complex
resistor. It can be computed by

RDuv = (δu − δv)
TL+(δu − δv), (18)

where δj is the elementary unit vector with 1 in coordinate j
and L+ is the pseudo-inverse of L.

Theorem 2. (The equivalence between Resistance distance
and Rayleigh quotient.) Let u and v be any two vertices
connected by an edge. Under the accessible constraints, the
resistance distance between u and v is approximately equivalent
to the stability of pairwise vertices defined by Rayleigh quotient.

Proof. We attempt to demonstrate that their equivalence
can be achieved by integrating feature information x into the
topology using the edge reweighting strategy wuv = ||xu −
xv||−2. Given that we have LG = UTWU , where U ∈ Rm×n

is the signed edge-vertex adjacency matrix and W ∈ Rm×m

is the diagonal matrix of edge weights. Thus, NG can be
rewritten as,

NG = D−1/2UTWUD−1/2. (19)

We can obtain the following two derivations, i.e., the derivation
of objective of finding boudary of subgraph partition Equation
20 and Resistance distance Equation 21,

xTNGx = xTD−1/2UTWUD−1/2x

= ||W 1/2UD−1/2x||2,
(20)

RDuv = (δu − δv)
TL+

GLGL+
G(δu − δv)

= ||W 1/2UL+
G(δu − δv)||2.

(21)

By comparing the two derivations, we find the only different
between them is D−1/2x and L+

G(δu − δv), which inspires us
to utilize Resistance distance to quantify Rayleigh quotient. In
other words, we will explore whether there exist the function
ϕ(·) satisfying D−1/2x = ϕ(L+

G(δu − δv)). We investigate
this problem by integrating the feature information x into the
topology, and prove this equivalence.

Since LG is symmetric, we can diagonalize it and derive,

LG =

n−1∑
i=1

λiµiµ
T
i , (22)

where λ1, λ2, ..., λn−1 are the nonzero eigenvalues of LG

and µ1, µ2, ...., µn−1 are a corresponding set of orthonormal
eigenvectors. Thus, we can obtain the L+

G,

L+
G =

n−1∑
i=1

1

λi
µiµ

T
i . (23)

For all nodes u and v connected by edges, we can easily obtain
(δu − δv) ∈ Rn×|E|. We can derive that the i-th row element

of L+
G(δu − δv) is denoted as

n−1∑
k=1

1
λk

(µ2
ki − µkiµkj)κi, where

κi ∈ R1×n, and if j directly connected to i, then κi[j] has a
value of 1, otherwise it is 0. For D−1/2x, its i-th row element
is xi√

di
. Therefore, our proof is transformed into exploring

whether there exists the function ϕ(·) satisfying xi√
di

=

ϕ(
n−1∑
k=1

1
λk

(µ2
ki − µkiµkj)κi). We define N (i) = {j1, ..., jdi}

and further simplify the latter term:

∑ n−1∑
k=1

1

λk
(µ2

ki − µkiµkj)κi

= di

n−1∑
k=1

1

λk
µ2
ki −

∑
j∈N (i)

n−1∑
k=1

1

λk
µkiµkj

= (

n−1∑
k=1

1

λk
µ2
ki −

n−1∑
k=1

1

λk
µkiµkj1) + ...

+ (

n−1∑
k=1

1

λk
µ2
ki −

n−1∑
k=1

1

λk
µkiµkjdi )

=

n−1∑
k=1

1

λk
(µ2

ki − µkiµkj1) + ...+

n−1∑
k=1

1

λk
(µ2

ki − µkiµkjdi ).

(24)

We borrow the concept of access time H(i, j) in graph
theory to find out the ϕ(·). H(i, j) is the expected number of
steps before node j is visited, starting from node i,

H(i, j) = 2|E|
n−1∑
k=1

1

λk
(
µ2
ki

di
− µkiµkj√

didj
). (25)

Specifically, we define that ϕ(L+
G(δu − δv)) =

∑
j∈N(i)

H(i,j)

√
di

.
Actually, the access time between neighbors is determined
by the weight of the edges and the local topology. Therefore,
integrating feature information x into the topology is the key to
ensure this feasibility. This problem becomes into investigating
the correlation between xi and

∑
j∈N(i)

H(i, j). In practical

implementation, however, the dimension of x is d (non-zero).
We further explore the topological relationship between nodes
from the embedded Euclidean space. Specifically, we reweight
edges using wuv = ||xu − xv||−2. This design reveals that
the isolation or centrality of node embedding in Euclidean
space must lead to its topological isolation or centrality. For
example, isolated node i (xi) must be hard to reach, so the
access time (

∑
j∈N(i)

H(i, j)) to its neighbors must also be long,

which satisfies our expectation.
In conclusion, when the reweighting strategy of edge wuv =
||xu − xv||−2 is achieved, the resistance distance between
u and v is approxi20mately equivalent to the stability of
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pairwise vertices defined by Rayleigh quotient. The theoretical
understanding of effective resistance distance supports this
design: the edge weight and resistance distance have opposite
tendency [24].

Theoretical Insight. We begin by aligning the formal expres-
sions of Rayleigh entropy and resistance distance, as presented
in Equation 20 and 21. Then, we analyze their differences
through spectral decomposition, as shown in Equation 23.
Based on the differences identified through re-comparison,
our proof is transformed into verifying whether there exists

the function ϕ(·) satisfying xi√
di

= ϕ(
n−1∑
k=1

1
λk

(µ2
ki−µkiµkj)κi).

Ultimately, we develope a reweighting estimation method using
access time as a bridge. In conclusion, the proof shows that
the alignment of Rayleigh quotient and resistance distance can
be achieved through the reweighting strategy.

B. Siamese-Query Network for Subgraph-level Equivariant
Aggregation

The discussion above supports the extraction of a bag of
non-overlapping subgraphs, which guarantees the perfection
of extracted subgraphs. After that, we investigate methods for
enabling interactions among subgraphs to achieve subgraphs re-
construction. Specifically, we propose a Siamese-Query scheme
to realize equivariant subgraph learning, as shown in Figure 3.
These layers map bags of subgraphs into representation Z as
follows,

hG = L(A,X), hS = CONCAT[L(Ai, Xi)], (26)

Q = hGWQ, K = hSWK , V = hSWV , (27)

where WQ,WK ,WV ∈ Rd×d are learnable parameters. hG ∈
R1×d and hS ∈ Rm×d respectively denote the graph-level and
subgraph-level embedding obtained by an MPNN encoder L.
We can further get the representations Z for prediction,

Z = softmax(
QKT

√
d

)V. (28)

Query mechanism introduces attention score to each sub-
graph by interacting with global information, which realizes
subgraph-level equivariant learning. We define g(hG, hS) =

softmax(QKT

√
d
). For any permutation τ acting on subgraphs,

g(hG, τ · hS) = τ · g(hG, hS) is always hold on.

C. Learning Objective

RayE-Sub is a two-stage learning architecture, where
Rayleigh-resistance realizes subgraph partition and Siamese-
Query achieves subgraph-level equivariant learning.

Rayleigh-resistance Extractor aims to obtain boundary BG

to partition graph G. Specifically, we employ the resistance
distance between two connected nodes to quantify the stability
of this edge s(u, v). Similar to Rayleigh quotient, smaller resis-
tance distance indicates a more stabler connection. Therefore,
BG is composed of the edges (u, v) belonging to top-β(S),
which picks out the top β larger of S,

BG := ∪
(u,v)∈E

{(u, v)}, s(u, v) ∈ top-β(S), (29)

where β is a hyper-parameter and its sensitivity analysis is
provided in Section VI-H.

Siamese-Query Network is proposed to achieve subgraph-
level equivariant learning in making predictions. For each graph
with label Yi and its prediction Ŷi, we impose the cross entropy
loss on all N graphs as the learning objective,

L := − 1

N

N∑
i=1

Yi log(Ŷi). (30)

D. The Expressive Power of RayE-WL

We introduce WL analogue (RayE-WL) for RayE-Sub to
support our next study of the expressive ability. We initially
introduce the central process of RayE-WL, the color refinement
algorithm. A detailed outline of the algorithm is provided in
Algorithm 3. On subgraph Gi

S ∈ GS , the color (feature) of
node v ∈ Gi

S is refined (updated) according to the rule,

ct+1
v,Gi

S

:= HASH(ctv,Gi
S
, N t

v,Gi
S
, ct+1

Gi
S

), (31)

ct+1
Gi

S

:= HASH(ctGi
S
,M t

Gi
S ,G, cWL,t

G ), (32)

where N t
v,Gi

S
denotes the multiset of colors in v’s neighborhood

over subgraph Gi
S after the t-th iteration [19], [42]. ct

Gi
S

represents the color of the subgraph Gi
S in which node v

is located after the t-th iteration. M t
Gi

S ,G
denotes the color

multiset of all subgraphs of the graph G independently mapped
by 1-WL after the t-th iteration, M t

Gi
S ,G

= {cWL,t
S |S ∈ GGi

S
}.

ctG represents the color of the graph G mapped by 1-WL after
the t-th iteration.

Algorithm 1: The k-dimensional Weisfeiler-Lehman
Algorithm

Input: Graph G = (V ,E) and the number of
iterations T

Output: The coloring of all k-tuples C
1 Initialization: The initial coloring C0 is defined using

the isomorphism type of each k-tuple
2 for t← 1 to T do
3 for each k-tuple i do
4 Ct

i := HASH(Ct−1
i , ({{Ct−1

j |j ∈ Nj(i)}|j ∈
[k]}))

5 end
6 end

Result: C

Theorem 3. (RayE-WL is more powerful than 1-WL.) RayE-
WL is strictly more powerful than 1-WL in distinguishing non-
isomorphic graphs, which is upper bounded by 3-WL.

Proof. Given two non-isomorphic graphs G, H , we first
prove that RayE-WL is stronger than 1-WL by two terms. (i) If
they can be distinguished by the 1-WL graph isomorphism test,
RayE-WL can strictly distinguish them. (ii) There exist graphs
that cannot be distinguished by 1-WL but can be distinguished
by RayE-WL.
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For the first term, G and H can be distinguished by the
1-WL graph isomorphism test, which means cG ̸= cH . We can
easily deduce {cGi

S
|Gi

S ∈ GS} ≠ {cHi
S
|Hi

S ∈ HS}, where
GS and HS are the subgraph sets extracted by G and H
respectively. The final the color multiset of G and H is also
distinguishable.

For the second term, G and H cannot be distinguished by
the 1-WL graph isomorphism test, which means cG = cH .
After G and H are partitioned into subgraphs GS and HS ,
there are two existing cases that should be discussed. One is
that each subgraph can be distinguished, i.e., {MGi

S ,G|Gi
S ∈

GS} ≠ {MHi
S ,H |Hi

S ∈HS}. In other words, the independent
mapping results based on 1-WL in each subgraph can distin-
guish between GS and HS . Thus, we can similarly deduce
{cGi

S
|Gi

S ∈ GS} ≠ {cHi
S
|Si

S ∈HS}. The final color of each
node cv,S is also distinguishable. More importantly, another
case is that their generated subgraphs still cannot be distin-
guished, i.e., {MGi

S ,G|Gi
S ∈ GS} = {MHi

S ,H |Hi
S ∈ HS}.

The bottom panel of Figure 1 intuitively describes this case.
According to the comparison among their color refinement
algorithms, we can observe our RayE-WL is a subclass of
3-WL. Thus, we can conclude that RayE-WL is upper bounded
by 3-WL.

Algorithm 2: The k-dimensional Folklore Weisfeiler-
Lehman Algorithm

Input: Graph G = (V ,E) and the number of
iterations T

Output: The coloring of all k-tuples C
1 Initialization: The initial coloring C0 is defined using

the isomorphism type of each k-tuple for t← 1 to T
do

2 for each k-tuple i do
3 Ct

i := HASH(Ct−1
i , {{(Ct−1

j |j ∈ NF
j (i))|j ∈

[n]}})
4 end
5 end

Result: C

It’s crucial to emphasize that despite the degradation of
subgraphs, the expressive power of existing subgraph learn-
ing methods are strictly more powerful than 1-dimensional
Weisfeiler-Lehman (1-WL). Actually, this degradation phe-
nomenon indicates that node-based approaches have an unac-
ceptable lower limit of expression ability. The reason lies in
the following analysis. It is well accepted that Node-WL is
stronger than 1-WL by proving following two terms. Given
two non-isomorphic graphs G, H , we can demonstrate (i) if
they can be distinguished by the 1-WL graph isomorphism test,
Node-WL can strictly distinguish them; (ii) there exist graphs
that cannot be distinguished by 1-WL but can be distinguished
by Node-WL. Therefore, there will be some non-isomorphic
pairs of graphs, those can neither be distinguished by Node-WL
nor 1-WL. The cases of subgraph degradation corresponds to
this scenario, which does not affect the proof of these two terms.
Our work systematically studies this degradation phenomenon
and further propose a more stable subgraph learning architecture

to address this limited distinguiability. In terms of expressive
power, our architecture is still bounded above by 3-WL, yet it
can achieve a higher lower bound against existing methods. The
specific method design and theoretical proof will be provided
in the subsequent sections.

Algorithm 3: The RayE-WL Algorithm
Input: Graph G = (V ,E) and the number of

iterations T
Output: The coloring of all nodes cT

1 Initialization: Initialize the color of each node c0, and
the subgraph set GS extracted from G

2 for t← 1 to T do
3 for each subgraph S in GS do
4 for each node v in S do
5 ctS := HASH(ct−1

S ,M t−1
S,G , cWL,t−1

G )

6 ctv,S := HASH(ct−1
v,S , N t−1

v,S , ctS)

7 end
8 end
9 end

Result: cT

E. Efficiency Analysis

In this section, we provide an efficient approximation
approach for calculating RD with the time complexity of
O(|E|). Specifically, the running time of the subgraphs
partition stage mainly comes from calculating edge weight
(wab) and resistance distance (RDab). It is obvious that the
process of reweighting edge costs O(|E|) time of computations.
Given the major computational cost is introduced by RD, we
are concerned with the more efficient calculation of resistance
distance and do not need to follow the inefficient method with
O(|V |3). Inspired by Equation 45, we propose a resistance
distance approximation method with O(|E|) time complexity.
Specifically, we first precalculate the resistance distance RD∗

among all the nodes in the case that all edges are with
the weight of 1. Then, with the weight wab of edge (a, b),
we approximate the resistance distance RDab = RD∗

ab/wab.
This proposal realizes the calculation of resistance distance in
O(|E|) time complexity. Note that this approximate method
can only be used to calculate the resistance distance between
nodes connected by edges. The cost time of the subgraph-level
equivariant learning stage mostly stems from Query mechanism,
where its time complexity is O(md2), m represents the number
of subgraphs, and d indicates the hidden dimension. Then, we
can conclude the overall time complexity of RayE-Sub to be
O(|E|) due to d is a constant.

V. UNDERSTANDING RAYLEIGH QUOTIENT FROM
SPECTRAL THEORY

Fundamentally, our approach is inspired by spectral graph
theory. As mentioned earlier, the Rayleigh quotient intuitively
indicates the stability of graphs, which provide a solid theo-
retical foundation to guide our subgraph partitioning. In this
section, our goal is to offer a deep theoretical elucidation of
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our design from the perspective of spectral theory. We first
introduce Lemma 1 [24] to understand spectral theory from
eigenvector space.

Lemma 1. Let M be an n-dimensional real symmetric
matrix. There exist numbers µ1, ..., µn and orthonormal vectors
φ1, ..., φn such that Mφi = µiφi. Moreover,

φ1 ∈ arg max
||x||=1

xTMx, (33)

and for 2 ≤ i ≤ n,

φi ∈ arg max
||x||=1

xTφj=0,j<i

xTMx. (34)

Similarly,
φi ∈ arg min

||x||=1

xTφj=0,j>i

xTMx. (35)

We consider the case where M represents the Laplacian
operator LG of the graph G. Let LG be with eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn. We can obtain,

µk = max
S⊆Rn

dim(S)=k

min
x∈S
x ̸=0

xTLGx

xTx
= min

T⊆Rn

dim(T )=n−k+1

max
x∈T
x ̸=0

xTLGx

xTx
,

(36)
where the maximization and minimization are over subspaces
S and T of Rn. Equation 36 reveals that the extreme values
of Rayleigh quotient are equivalent with eigenvalues of LG.
Actually, the eigenvalues are also characterized by the resistance
distance, which build a bridge connecting Rayleigh quotient
and resistance distance.

The resistance distance between two vertices a and b in an
electrical network is the resistance of the entire network when
we treat it as one complex resistor. That is, we consider an
electrical flow that delivers one unit of current into node a
and outflows one unit of current from node b. We measure the
potential difference between a and b as the resistance distance,
denoted as RDab,

RDab
def
= (δa − δb)

TL+(δa − δb), (37)

where δj is the elementary unit vector with 1 in coordinate j
and L+ is the pseudo-inverse of L,

RDab
def
= (δa − δb)

TL+(δa − δb)

= (L+/2(δa − δb))L
+/2(δa − δb)

= ||L+/2(δa − δb)||2

= ||L+/2δa − L+/2δb||2

= dist(L+/2δa, L
+/2δb)

2.

(38)

Physical principle tells us that the vertices will settle into
the position that is bound to minimize the potential energy.
The potential energy ξ of an ideal linear spring with constant
w when stretched to length l is given by,

ξ =
1

2
wl2. (39)

Thus, the potential energy in a configuration x is given by,

ξ(x)
def
=

1

2

∑
(a,b)∈E

wab(x(a)− x(b))
2
. (40)

The lowest energy must be reached when the each variable of
ξ(x) is zero. The partial derivative with respect to x(a) is,

1

2

∑
(a,b)∈E

2wab(x(a)− x(b)) =
∑

(a,b)∈E

wab(x(a)− x(b)). (41)

Setting this to zero gives the equations we can obtain,

x(a) =
1

da

∑
(a,b)∈E

wabx(b). (42)

This result can be broadly generalized as the Lemma 2 [24].

Lemma 2. Let G = (V ,E, w) be a weighted graph, let
B ⊂ V , and let S be V −B. Given x(B), ξ(x) is minimized
by setting x(S) so that x is harmonic on S.

Given this lemma, we focus on the resistance distance
between a and b, thus x should be harmonic on V − {a, b}.
Fortunately, we already know how compute such a vector x.
Thus, we can set,

y = L+(δa − δb)/RDab. (43)

We obtain,

y(a)− y(b) = (δa − δb)
TL+(δa − δb)/RDab = 1. (44)

Thus, y is harmonic on V − {a, b}. We further set x = y −
1 ∗ y(s). It is obvious that x satisfies x(s) = 0, x(t) = 1, and
it is harmonic on V − {a, b}. We compute the energy as,

xTLx = yTLy
= 1

(RD(a,b))2
(L+(δa − δb))

TL(L+(δa − δb))

= 1
(RD(a,b))2

(δa − δb)
TL+LL+(δa − δb)

= 1
(RD(a,b))2

(δa − δb)
TL+(δa − δb)

= 1
RD(a,b) .

(45)

This derivation reveals a fact that the weights of edges
are the reciprocals of their resistance distance. In practical
implementation, we employ this understanding to achieve the
approximate resistance distance with the time complexity of
O(|E|). More importantly, Equation 45 builds a theoretical
bridge between Rayleigh quotient and Resistance distance.
This verifies the rationale of utilizing resistance distance to
partition graphs, and the effectiveness of our proposed Rayleigh-
resistance.

VI. EXPERIMENTS

A. Datasets

The selected datasets are two-fold, four real-world datasets
and two synthetic datasets on graph classification tasks.

BA-2Motifs is a synthetic dataset created by [43] with two
graph classes. House motifs and cycle motifs give class labels
and thus are regarded as ground-truth explanations for the two
classes respectively.

Spurious-Motif is a synthetic dataset proposed by [26] with
three graph classes. Each graph is composed of one base S
and one motif C. The motif C directly determines the label of
the graph. We can create Spurious-Motif datasets with different
spurious correlation, which represents the degree (b) between
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the base S and the label. In our implementation, we choose
b = 0.5, 0.7 and 0.9 to obtain datasets.

MUTAG [44] is a binary dataset of molecular property,
where nodes represent atoms and edges denote chemical bonds.
Each graph is associated with a binary label based on its
mutagenic effect.

Open Graph Benchmark (OGB) [45] is a series of
real, large-scale and diverse datasets which is utilized for
machine learning on graphs. It covers almost all real-world
tasks, including node-level, link-level and graph-level property
prediction. We choose MOLHIV, BBBP and SIDER to verify
our method.

B. Baselines
Our baselines are three-fold, including GNN backbones

(i.e., GCN, Graph-SAGE, GIN), node-based subgraph learn-
ing methods (i.e., ESAN, GNN-AK, SUN, MAG-GNN, 2-
DRFWL(2)) and partition-based subgraph learning models
(i.e., IB-subgraph, GSAT, DIR, EdgeRWSE, MICRO-Graph).
A detailed description of the datasets is provided below.

GCN [46] serves as a landmark model due to its ability to
effectively handle node-level tasks in graph-structured data. It
introduced the concept of graph convolutional layers, allowing
for information propagation and aggregation across the nodes
of a graph.

Graph-SAGE [47] is a graph neural network framework that
extends the concept of graph convolutional networks (GCNs).
It introduces the idea of "aggregators" to aggregate information
from a node’s neighborhood, allowing for a more flexible and
scalable approach to graph representation learning.

GIN [10] is a graph neural network model that is designed
to handle graph-structured data and capture important structural
information. It is a provably maximally powerful GNN under
the neighborhood aggregation framework.

ESAN [16] implements an subgraph equivariant learning
architecture and achieve better expressiveness by per-layer
aggregation across subgraphs.

GNN-AK [17] follows a similar manner to develop subgraph
GNNs by considering the star-pattern as the pre-defined
substructure.

SUN [15] falls into a practice of node-based subgraph learn-
ing. It aligns the permutation group of nodes and subgraphs,
and models the symmetry with a smaller single permutation
group.

IB-subgraph [25] is a pioneering implementation of the
information bottleneck theory in the field of graph learning. It
accomplishes subgraph partitioning through the utilization of
edge drop technology.

GSAT [13] follows the practice of IB-subgraph and designs
a subgraph extraction strategy with edge deletions based on
stochastic attention mechanism.

DIR [26] disentangles the input graph into causal and non-
causal subgraphs, and utilizes invariant features to construct
interpretable GNNs from a causal perspective.

MAG-GNN [48] proposes a reinforcement learning-driven
approach that efficiently identifies discriminative subgraphs,
significantly reducing computational costs while preserving
strong expressive capabilities.

d-DRFWL(2) [49] strikes a balance between expressive
power and computational complexity by limiting message
passing to a maximum distance of d between node pairs.

EdgeRWSE [50] focuses on enhancing the theoretical
expressiveness and practical performance of GNNs through
random walks on simplicial complexes.

MICRO-Graph [51] is designed to pretrain GNNs using self-
supervised contrastive learning to achieve stronger predictive
performance.

C. Backbone and Metrics

We exploit GIN as the backbone of RayE-Sub due to its
extensive popularity. To ensure fair comparisons, we let GIN
serve as the basic model in all baselines. We also explore
the influence of different backbones on performance, which
is provided in Section VI-I. For prediction performance,
we employ ROC-AUC for OGB datasets (MOLHIV, BBBP
and SIDER) and accuracy for the other datasets. All our
experiments are conducted on a Tesla V100-PCIE-16GB
GPU, and are repeated with 10 different random seeds of
[2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032].
Therefore, the performance of our selected baselines may
differ from that described in the original paper due to different
random seed settings.

D. Main Results

We conduct a comparative analysis to evaluate the effec-
tiveness of our RayE-Sub compared to these two lines of
approaches respectively, as shown in Table I and II. On
the whole, our approach exhibits strong competitiveness and
clear advantages. Especially when compared to node-based
methods, our approach demonstrates dominance, achieving 6
optimal performances. Next, we present the insights gained
from comparing our approach with node-based and partition-
based subgraph learning methods.

Comparing with node-based subgraph learning methods.
As shown in Table I, compared to node-based baselines,
our approach demonstrates dominance, achieving 6 optimal
performances. Node-based baselines are relatively simple in
design, emphasizing direct intervention in the receptive field
during the message-passing process. However, they often lack
the incorporation of inductive biases specific to downstream
tasks (e.g., chemical knowledge). Therefore, in tasks with
strong inductive biases, such as MUTAG and BA-2Motifs,
their performance tends to be suboptimal. Although our RayE-
Sub also focuses on filtering and learning receptive fields within
the structure, it enhances representation by incorporating rich
information through a reweighting strategy. This becomes the
main reasons why our model achieves better performance.
Note that the performance of GSAT differs from the published
version because we retrained it by aligning it with the random
seeds of RayE-Sub.

Comparing with partition-based subgraph learning
methods. As shown in Table II, compared to partition-based
baselines, our approach is competitive, achieving nearly all
optimal and sub-optimal results. We find that our method is
robust across all datasets,with only minor disadvantages even
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TABLE I
PERFORMANCE COMPARISONS WITH BACKBONES AND NODE-BASED BASELINES. THE BEST RESULTS ARE IN BOLD AND THE SECOND BEST IS UNDERLINED.

MOLHIV BBBP SIDER MUTAG BA-2Motifs Spurious-Motif
0.5 0.7 0.9

GCN 75.5 ± 1.6 65.3 ± 1.9 52.1 ± 2.0 83.7 ± 4.7 86.8 ± 1.7 33.2 ± 1.8 31.6 ± 1.7 29.6 ± 6.2
Graph-SAGE 74.8 ± 3.4 64.1 ± 2.8 52.5 ± 1.6 84.6 ± 5.3 85.7 ± 2.3 34.8 ± 2.0 31.5 ± 2.5 30.4 ± 3.4

GIN 75.8 ± 1.3 66.4 ± 2.0 56.2 ± 1.6 89.4 ± 5.6 89.5 ± 2.1 39.9 ± 1.3 39.0 ± 1.6 38.6 ± 2.3
ESAN 77.2 ± 1.3 68.8 ± 1.3 58.1 ± 1.8 92.0 ± 5.0 92.9 ± 2.9 56.1 ± 1.7 47.9 ± 1.5 44.8 ± 2.9

GNN-AK 76.8 ± 1.2 67.7 ± 4.2 57.5 ± 1.4 92.3 ± 6.8 91.6 ± 3.3 54.2 ± 1.2 44.8 ± 1.7 42.6 ± 1.8
SUN 76.6 ± 0.9 66.4 ± 1.5 56.7 ± 2.0 94.7 ± 5.2 93.6 ± 4.1 55.6 ± 3.2 45.2 ± 2.4 43.2 ± 1.6

MAG-GNN 77.1 ± 1.1 70.9 ± 1.0 57.9 ± 2.3 95.1 ± 2.0 97.2 ± 1.6 53.6 ± 2.5 47.2 ± 1.2 44.5 ± 1.3
2-DRFWL(2) 78.2 ± 2.2 71.6 ± 1.3 56.7 ± 2.0 94.7 ± 5.2 93.6 ± 4.1 52.9 ± 2.3 48.6 ± 1.6 45.1 ± 1.3

RayE-Sub 77.6 ± 1.0 72.2 ± 1.1 58.4 ± 1.9 95.6 ± 2.4 98.5 ± 1.0 53.8 ± 2.0 49.6 ± 2.9 45.8 ± 2.2

TABLE II
PERFORMANCE COMPARISONS WITH PARTITION-BASED BASELINES. THE BEST RESULTS ARE IN BOLD AND THE SECOND BEST IS UNDERLINED.

MOLHIV BBBP SIDER MUTAG BA-2Motifs Spurious-Motif
0.5 0.7 0.9

IB-subgraph 76.4 ± 2.6 68.1 ± 1.1 57.7 ± 2.1 91.1 ± 6.4 90.1 ± 6.5 54.4 ± 7.0 48.5 ± 5.8 46.2 ± 5.7
GSAT 76.5 ± 1.5 69.0 ± 1.2 57.2 ± 1.3 96.7 ± 2.1 97.4 ± 1.9 46.6 ± 2.9 49.1 ± 3.0 39.8 ± 2.4
DIR 76.3 ± 1.1 68.2 ± 1.4 57.8 ± 1.8 92.1 ± 2.3 93.8 ± 9.6 45.5 ± 3.8 41.1 ± 2.6 37.6 ± 2.0

EdgeRWSE 78.9 ± 1.2 71.9 ± 1.0 58.0 ± 1.3 97.4 ± 2.0 96.9 ± 2.9 51.2 ± 3.3 46.9 ± 2.2 42.1 ± 1.4
MICRO-Graph 75.1 ± 1.1 84.4 ± 1.1 56.7 ± 0.9 97.0 ± 2.8 97.8 ± 3.6 50.4 ± 2.8 47.6 ± 1.9 43.7 ± 2.1

RayE-Sub 77.6 ± 1.0 72.2 ± 1.1 58.4 ± 1.9 95.6 ± 2.4 98.5 ± 1.0 53.8 ± 2.0 49.6 ± 2.9 45.8 ± 2.2

Fig. 4. Visualizing the boundary discovered by RayE-Sub, where the bold connections are the edges of boundary. Left panel: the boundary obtained by
RayE-Sub for MUTAG. Right panel: the boundary discovered by RayE-Sub for BA-2Motifs.

for suboptimal results. We argue that this is primarily due to
the relatively minor subgraph degradation caused by partition-
based methods in the existing datasets. For instance, the low
proportion of isomers in these datasets enables current methods
to perform well on the available samples. In our future work,
we aim to explore more challenging domains that better align
with the application scenarios of our method and construct such
"subgraph degradation datasets" for further evaluation. More-
over, we also observe a significant performance improvement
of MICRO-Graph on the BBBP dataset comparing all existing
methods. Actully, this improvement can be attributed to the pre-
training learning mechanism of MICRO-Graph. Therefore, this
motivates us to further apply the same pre-training mechanism
to further enhance performance and generalization in the future
work.

Combining all two lines of subgraph learning methods, we
also have the following Observations.

Obs 1: Partition-based subgraph discovery approaches
have better predictive ability than node-based methods. In

all eight datasets, partition-based subgraph learning methods
including RayE-Sub obtain seven best results. Specifically,
the top-2 performances on all datasets are almost achieved by
partition-based approaches. From the perspective of invariant
learning, we argue that the partition-based methods can often
obtain the casual subgraphs to improve the representation ability
of the model. Actually, this powerful ability to capture causal
information is especially crucial for predicting the properties
of chemical molecules. These results verify that partition-based
methods not only have better interpretability, but also are with
better expressiveness. Therefore, our framework, RayE-Sub,
follows the partition-based subgraph learning pathway, which
is also backed by causal theory.

Obs 2: Our RayE-Sub consistently outperform conven-
tional backbone models on all datasets. Compared with con-
ventional backbone methods, our approach achieves significant
improvements across all datasets with a maximum performance
margin of 9%. This improvement empirically verifies that
subgraph learning can effectively boost the expressive power
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TABLE III
THE p-VALUE OF SIGNIFICANCE TEST. THE METHOD IN PARENTHESES

INDICATES THE BASELINE THAT IS SUB-OPTIMAL IN THE GIVEN DATASET.

BBBP(2-
DRFWL(2))

BA-2Motifs
(MAG-GNN)

BA-2Motifs
(MICRO-Graph)

p-value 0.046 0.044 0.035

of graph learning. Actually, this viewpoint is also supported
by the remarkable performance of existing subgraph learning
methods, such as GNN-AK, IB-subgraph, GSAT. Moreover,
we note that GIN stands out among backbone models as it
achieves the best performance among these methods. This
observation aligns with both theoretical proofs and empirical
analysis. Therefore, for the implementation of RayE-Sub, we
choose GIN as the backbone.

Obs 3: Compared with existing subgraph learning
methods, RayE-Sub achieves competitive results in both real
and synthetic datasets. Encouragingly, RayE-Sub obtains the
SOTA on five datasets. Specifically, our RayE-Sub outperforms
best baselines by 3.2% and 1.1% respectively on BBBP and
BA-2Motifs. Such performance superiority can be explicitly
attributed to the coupling effects of both two objectives, i.e.,
Rayleigh-resistance based subgraph partition and Siamese-
Query based equivariant subgraph learning. We also note that
GSAT obtains several suboptimal results. Actually, both RayE-
Sub and GSAT are partition-based subgraph learning methods.
Supported by the visual analysis presented below, we argue
that this phenomenon stems from the inherent inductive bias
in the real-world prediction tasks. Specifically, it suggests
that a consistent causal substructure can always be extracted
through partition of the original graph. This further validates
the effectiveness of our RayE-Sub.

E. Quantitative Analysis

We further evaluate whether RayE-Sub significantly outper-
forms the second-best node-based baselines on the BBBP and
BA-2Motifs, and the second-best partition-based baselines on
BA-2Motifs. The Null Hypothesis is that Seman does not show
a significant performance improvement. As shown in Tab. III,
our method significantly outperforms the second-best method
(p < 0.05) on above datasets.

F. Visual Analysis

We provide visualizations of the boundary discovered by
RayE-Sub on two datasets (MUTAG and BA-2Motifs) as shown
in Figure 4. According to the results of visualization, we explore
(i) whether our method can partition original graph into label-
relevant subgraphs, (ii) whether the setup of β = 0.05 matches
the real scenario of the datasets.

Following [13], −NO2 and −NH2 in MUTAG dataset
are labeled as ground-truth explanations. In our practice, we
observe that our RayE-Sub always partition −NO2 or −NH2

into a subgraph as shown in Figure 4. Excitingly, our partition
tends to divide the molecule into a bag of functional groups,
which indicates that our method is suitable for real-world tasks.

TABLE IV
THE EXECUTION TIME OF FOUR BASELINES ON THREE DATASETS

(S/EPOCH).

BBBP MUTAG BA-2Motifs
GIN 0.79 1.07 0.64
PNA 1.30 2.62 0.91

GNN-AK 2.76 4.32 1.23
GSAT 3.88 6.49 2.98

RayE-Sub 4.06 9.86 2.65

Besides, we find the number of label-relevant subgraphs in
each graph is small, resulting in only a few edge partition
(drop) can extract them. Therefore, the setting of β = 0.05 is
appropriate for real-world tasks.

Following [43], house motifs and cycle motifs give class
labels and thus are regarded as ground-truth explanations for the
two classes respectively. Specifically, each graph is generated
using the BA model and will be attached with two house motifs
or three house motifs randomly. The number of house motifs
represents the graph class. The primary goal of this task is to
identify house motifs. We observe that our RayE-Sub always
partition house motif (pink nodes) into a subgraph. Similar
to MUTAG, BA-2Motifs also needs only a few number of
boundary edges to achieve accurate prediction.

In conclusion, our RayE-Sub can partition original graph
into label-relevant subgraphs, and the setup of β = 0.05 is
appropriate for the tasks of these datasets.

G. Efficiency Analysis

The above analysis has confirmed that RayE-Sub maintains
a reasonable time complexity, and we further investigate its
efficiency in the actual training process. We compare the
execution time (s/epoch) of four baselines (GIN, PNA, GNN-
AK and GSAT) on three datasets (BBBP, MUTAG and BA-
2Motifs) as shown in Table IV. Note that all experiments
are conducted on a Tesla V100-PCIE-16GB GPU, and The
backbones of all models are 2-layer GIN, same as RayE-Sub.
The result shows that the running efficiency of RayE-Sub is
competitive, and it achieves interpretability and performance
improvements within an acceptable time consumption.

H. Sensitivity Analysis

We conduct sensitivity analysis of model performance about
β, the results are in Figure 6(d). Our model achieves best results
when β is within [0.05, 0.1]. In other words, about 5%-10% of
the edges in two molecular datasets are with fragile connections,
and their role is simply to bond different functional groups.
Therefore, we set β = 0.05 on all datasets.

I. Ablation Studies

Our ablation studies are conducted from the following three
perspectives: (i) The superiority of Rayleish-resistance metric
in subgraph discovery. (ii) The effectiveness of Siamese-Query
architecture for graph prediction. (iii) The impacts of different
backbones on performances of RayE-Sub.

Our primary focus lies in investigating whether Rayleigh-
resistance can yield more interpretable subgraphs. We designed
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(c) Extracted subgraph by the variant of
RayE-Sub.

Fig. 5. Comparison of subgraph extracted by different methods with ground-truth causal invariant subgraph, where the light-colored region in the upper left
corner represents the extracted causal invariant subgraph.
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(b) The variant of RayE-Sub without
Siamese-Query module.
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Fig. 6. Ablation studies and sensitivity analysis. Left panel: the rationale distributions of the inspection points from Spurious-Motif(0.33), which are visualized
by t-SNE [52], and the backbone sensitivity analysis. Right panel: sensitivity analysis of β on MUTAG and BBBP, where y-axis represents the discount of
each setting to the best performance.

a variant of RayE-Sub, using the hop-based distance instead
of Rayleigh-resistance. Figure 5 shows the comparison of
subgraph extracted by different methods with ground-truth
causal invariant subgraph on Spurious-Motif dataset. We can
observe that RayE-Sub can extract accurate invariant subgraph.
Although the subgraph extracted by the variant of RayE-Sub
can cover invariant subgraph, its precision is far less than that of
RayE-Sub. Therefore, we can intuitively verify the validity of
Rayleigh-resistance. In addition, we also provide visualizations
of the subgraphs discovered by Rayleigh-resistance to verify
its superiority in Section VI-F.

Next, we explore the effectiveness of Siamese-Query. As
shown in Figure 6, we employ t-SNE to visualize 6000
representations of samples from the Spurious-Motif dataset
[52]. The variant of RayE-Sub is implemented by using a
backbone GNN instead of Siamese-Query. We can observe
that the representation space obtained by RayE-Sub is better
discriminative than the variant. Actually, subgraph-level equiv-
ariant design is crucial for the prediction performance. The
effectiveness of Siamese-Query is demonstrated.

Our final ablation study is designed to explore the effects of
RayE-Sub with different backbones. Specifically, we compare
the performances of RayE-Sub when GIN and PNA are utilized
as base encoder respectively. As shown in Figure 6(c), we
observe that PNA-based architecture has strong expression
ability on synthetic datasets. We conclude that the design of
PNA using multiple aggregators can better exploit common
sub-units of graphs, which matches the generation principles of

synthetic datasets [26]. GIN has an advantage on more complex
tasks in real-world datasets.

VII. CONCLUSION AND FUTURE WORK

In this paper, we conduct a systematic investigation of two
mainstream subgraph learning approaches from the unified
perspective of perfect reconstruction and propose a novel
architecture RayE-Sub. Our motivation stems from a significant
observation that existing subgraph learning methods commonly
encounter the issue of subgraph degradation. Through our
theoretical and empirical investigation, we discover that the
performance degradation is primarily caused by the redundancy
and inadequacy of the extracted subgraph information. As
a result, we develop a unified standard to evaluate the
performance of subgraph learning methods, i.e., perfect re-
construction. Our aim lies in proposing a novel subgraph
learning framework that can effectively extract subgraphs
with perfect reconstruction ability, addressing the existing
problems associated with performance degradation. Specifically,
we propose a subgraph extraction method Rayleigh-resistance
based on spectral theory and a subgraph-level equivariant
learning architecture Siamese-Query, both of them jointly tackle
existing technical limitation to guarantee perfect reconstruction
of extracted subgraphs. Experiments on both synthetic and
real-world datasets demonstrate the effectiveness of RayE-
Sub. Moreover, theoretical analysis and practical observations
profoundly guarantee the superiority of our architecture.
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In future, we can improve our work from following two
aspects. In the subgraphs partition stage, how to set an
personalized and optimal partition rate via domain knowledge
across different datasets is still unexplored. And in the subgraph
aggregation stage, it is also interesting to investigate more
powerful equivariant architectures for effective aggregations.
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