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Abstract—Pre-training GNNs to extract transferable knowledge
and apply it to downstream tasks has become the de facto stan-
dard of graph representation learning. Recent works focused on
designing self-supervised pre-training tasks to extract useful and
universal transferable knowledge from large-scale unlabeled data.
However, they have to face an inevitable question: traditional pre-
training strategies that aim at extracting useful information about
pre-training tasks, may not extract all useful information about
the downstream task. In this paper, we reexamine the pre-training
process within traditional pre-training and fine-tuning frameworks
from the perspective of Information Bottleneck (IB) and confirm
that the forgetting phenomenon in pre-training phase may cause
detrimental effects on downstream tasks. Therefore, we propose a
novel Delayed Bottlenecking Pre-training (DBP) framework which
maintains as much as possible mutual information between latent
representations and training data during pre-training phase by
suppressing the compression operation and delays the compression
operation to fine-tuning phase to make sure the compression can
be guided with labeled fine-tuning data and downstream tasks. To
achieve this, we design two information control objectives that can
be directly optimized and further integrate them into the actual
model design. Extensive experiments on both chemistry and biology
domains demonstrate the effectiveness of DBP.

Index Terms—Pre-training, graph neural networks, information
bottleneck, forget.
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I. INTRODUCTION

IN RECENT years, Graph Neural Networks (GNNs) have
shown prominent performances in various fields including

social networking [1], [2], [3], [4], [5], molecular computing [6],
[7], [8], [9], [10], web recommendation [9], [11], [12], [13], [14],
[15], [16], and bioinformatics [17], [18], [19]. Meanwhile, pre-
training GNN, which is capable of enhancing the performance of
GNN on specific-data-required downstream tasks by extracting
universal transferable knowledge from large-scale unlabeled
graph-structured data, has also attracted the great attention of
both academic and industrial communities [20], [21], [22].

Great efforts [23], [24], [25], [26], [27], [28], [29] have been
studied in the field of pre-training GNN to achieve knowledge
extraction, and existing works can be roughly distinguished
into two categories, contrastive self-supervised learning [26],
[27], [28], [29] and generative self-supervised learning [23],
[24], [25]. The previous one aims at learning knowledge in
different semantic levels by contrasting the enhanced views of
different data, while the latter one tries to recover and generate
graph structure data to eventually learn the property patterns
of vertexes and edges within the graph structure [30], [31]. In
summary, all these methods have paid all their attention to the
design of the self-supervised pre-training task to extract useful
information with regard to the pre-training task from large-scale
unlabeled datadata [26], [32], [33], [34], [35], [36]. However,
considering the difference between the pre-training task and
downstream tasks, we have to face an inevitable question: can
the pre-training process transfer all useful information to the
downstream task from large-scale unlabeled data?

To answer this question, we need to re-examine the
pre-training process within the traditional pre-training and
fine-tuning framework from the perspective of information
extraction. Some previous work indicates that, given a specific
learning task, animals choose to forget some remembered be-
haviors to better adapt to some specific tasks [37], [38], [39],
[40]. Meanwhile, [41], [42], [43], [44] also indicate that this
kind of biological forgetting phenomenon can also be found
during the training process of neural networks. As illustrated in
Fig. 1(a), the neural network quickly learns information from
data during the first phase and compresses the representation
by forgetting some learned information which is useless to the
pre-training task in the second phase. According to [42], such
forgetting behavior is to better fit the target of the pre-training
task. Nevertheless, considering the pre-training task which is
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Fig. 1. Information-theoretic analysis of conventional and delayed bottleneck-
ing pre-training in graph neural networks. Subfigure (a) presents the dynamics of
information encoding in latent space during conventional pre-training, denoted
asZ, relative to the pre-training dataX and associated taskY , and its subsequent
impact on downstream task Y ′. In this regime, the latent representation Z
undergoes a compression process, optimized forY , which inadvertently discards
non-salient features for Y but may be pertinent to Y ′, thereby diminishing
the mutual information I(Z;Y ′) post-compression. Subfigure (b) depicts an
alternative approach with the proposed Delayed Bottlenecking Pre-Training,
where the compression of Z during the pre-training phase is deliberately
modulated. This control preserves a broader set of features in Z, allowing for
enhanced mutual information I(Z;Y ′) post-fine-tuning, which is refined under
the guidance of labeled data specific to Y ′.

artificially designed to extract universal transferable information
from unlabeled data and is totally different from the downstream
task in general [45], [46], such forgetting behavior is harmful
to the learning and transformation of universal knowledge since
those dropped information may be useful and of significance to
downstream tasks.

Challenges: To solve the above-mentioned deficiencies of tra-
ditional pre-training GNNs, there is a key challenge needs to be
addressed: How to improve existing pre-training and fine-tuning
strategy to make sure that the useful information with regard to
a downstream task can be maintained as much as possible?

To address these challenges, as demonstrated in Fig. 1(b),
we propose a novel Delayed Bottlenecking Pre-training (DBP)
framework to address the issue of information forgetting during
pre-training. In particular, as illustrated in Fig. 1(b), we first
re-analyze the whole procedure of pre-training from the per-
spective of IB, and formulate the information dropping during
pre-training. Based on this, we first design a novel informa-
tion compression delayed pre-training strategy that maintains
as much as possible mutual information between latent repre-
sentations and training data during the pre-training phase by
suppressing the compression operation. Then, we delay the
compression operation to fine-tuning phase to make sure the
compression can be guided with labeled fine-tuning data and
downstream tasks. In the pre-training phase, DBP includes a
newly designed information-based representation reconstruc-
tion which can maintain the mutual information between latent
representation and training data by decoding the learned latent
representation into the features of vertexes and edges. In the
fine-tuning phase, we borrow the core idea of Depth Variational

Information Bottleneck (DVIB) [42] and extend it to be adapted
to graph-structured data, hence making sure that the delayed in-
formation compression is optimized with the guidance of labeled
fine-tuning data and downstream task. Extensive experiments on
both chemistry and biology domains verify the effectiveness of
our proposed strategy on various pre-training GNNs.

The main contributions are summarized as follows:
� New theoretical analysis: For the first time, we analyze

the information forgetting of the compression operation in
pre-training GNNs from the perspective of the Information
Bottleneck (IB) theory. To our knowledge, this is the first
paper that aims at alleviating the influence of such kind of
inevitable information forgetting on downstream tasks.

� Novel framework and methods: We propose a DBP frame-
work that includes a novel information compression de-
layed pre-training strategy to enhance the performances
of pre-training GNNs. In DBP, we propose a novel
information-based representation reconstruction and an
extended Graph-DVIB to respectively achieve informa-
tion maintaining in the pre-training phase, and labeled
fine-tuning data and downstream task-guided information
compression in the fine-tuning phase.

� Extensive empirical evaluation: Extensive experiments on
both chemistry and biology domains demonstrate the ef-
fectiveness of our proposed framework while incorporating
different pre-training GNNs.

II. RELATED WORK

Pre-training GNNs: Recently, Pre-training GNNs have re-
ceived significant attention since they can alleviate the heavy
reliance of traditional GNNs on data with fine-grained labels.
Generally, pre-training GNNs usually consist of two phases:
i) Pre-training: learning model parameters and node embed-
dings from large-scale unlabeled graph data; ii) Fine-tuning:
fine-tuning the learned parameters and embeddings with labeled
graph data to make the network more applicable to down-
stream tasks. Existing methods, which mostly follow such a
two-phase framework, can be roughly divided into two cate-
gories: contrastive pre-training [26], [27], [47] and generative
pre-training [23], [24]. Contrastive pre-training learns graph
representation by contrasting the semantic differences between
pre-define positive and negative samples. In particular, DGI [47]
focuses on the correspondences between nodes and subgraphs,
GraphLoG [27] pays attention to correlogram and subgraph
pairs, and GraphCL [27] contrasts subgraph level with different
data augmentations. On the other hand, generative pre-training
captures the intrinsic dependencies between node attributes
and graph structure by generating node attributes and edges,
e.g., jointly generating nodes and edges [23] or reconstructing
shadowed nodes [24]. However, all these methods paid all their
attention to designing self-supervised tasks to maximally extract
useful information with regard to the pre-training task from
large-scale unlabeled data, ignoring the issue that the knowledge
extracted by the pre-training task cannot be completely trans-
ferred to the downstream task due to the differences between
pre-training and downstream tasks.
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Mutual Information and Its Application: Mutual information
(MI) is a measure of the degree of interdependence between
random variables based on Shannon entropy. It is often used to
measure the nonlinear correlation between variables, so it can be
regarded as a measure of the true dependence between variables.
For two random variables X and Y , the mutual information
between them is as follows:

I(X;Y ) = H(X)−H(X|Y ) (1)

Here,H(X) is the information entropy ofX , andH(X|Y ) is the
conditional entropy of random variable X under the condition
of known random variable Y . From a probabilistic perspective,
mutual information is derived from the joint probability dis-
tribution p(x, y) and the marginal probability distribution p(x)
and p(y) of the random variables X and Y . The dependence
between X and Y is stronger when the divergence between the
joint probability distribution p(x, y) and the marginal product
p(x)p(y) is larger. It is widely used in deep learning because it
can measure the real dependencies between variables.

However, since the true distribution in neural networks is
difficult to know, the calculation and optimization of mutual
information is a difficult problem. In graph learning, many stud-
ies on optimizing neural networks through information theory
choose MINE [47] or variational methods [42] to approximate
the upper and lower bounds of mutual information to achieve the
goal of optimizing mutual information. Many self-supervised
learning methods on graphs also utilize mutual information. For
example, DGI [47] relies on maximizing mutual information be-
tween patch representations and corresponding high-level graph
summaries to learn node representations in graph-structured
data. GraphMVP [48] performs self-supervised learning by op-
timizing the mutual information between molecular 2D topol-
ogy and 3D geometric views to improve correspondence and
consistency between these views. Besides representation learn-
ing and self-supervised learning, mutual information has also
been used in the study of neural network interpretability and
training dynamics. Typically, [42] investigates the correlation
between changes in mutual information between representation
and training data and labels during neural network training and
the generalization and robustness of neural networks. These
studies inspire us whether there will be related problems in the
pre-training process of GNN.

IB Theory: IB theory can be used in deep learning to seek the
balance between fitting and generalization by controlling the
mutual information between latent representation and training
data. The main idea of such equilibrium can be summarized into
two points: i) enlarging the information that is useful to the task
within the representation, and ii) suppressing the information
that is irrelevant to the task within the representation [42], [49],
[50]. Given the significant potential of IB in enhancing model
interpretability and generalization, recent researchers attempt
to explore its effect on extracting graph representations [50],
[51], [52]. Specifically, GIB [50] extends general IB to graph
data as a modified regularization on both structure and feature
information, hence achieving more robust node representations.
And, SIB [51] and VIB-GSL [52] apply IB to subgraph recog-
nition and graph structure learning, respectively. Collectively,

these methods directly utilize the IB principle to learn minimal
but sufficient information. However, directly using IB in pre-
training GNNs to learn minimal but sufficient information with
regard to the pre-training task will definitely result in the issue
of information forgetting during the procedure of seeking the
minimal information subset.

III. DELAYED BOTTLENECKING PRE-TRAINING: CAUSATION,
STRATEGY, AND DERIVATION

A key insight of this paper is information suppressing in
pre-training may lose useful information with regard to the
downstream task. In this section, we first conduct a theoretical
analysis to demonstrate the existence of this effect and formu-
late the information forgetting during pre-training, and further
pointedly propose the improvement strategy.

A. Re-analyzing Parameter Transfer in Pre-training

In this subsection, we re-analyze the information forgetting
problem during pre-training and its impact on parameter transfer.
Ideally, the essence of pre-training is to extract transferable
knowledge from pre-training data, so the objective optimization
process of pre-training can be described as:

θ0 = argmin
θ

Lp(fθ;Dpre)

= argmax
θ

Iθ(fθ;Dpre), (2)

where Lp represents the optimization objective of pre-training,
and Iθ(fθ;Dpre) denotes the information extracted by model fθ
from pre-training datasetDpre. After training, the optimal model
parameter set θ0 and the corresponding extracted information
Iθ(fθ;Dpre) are transferred to the downstream task through
parameter initialization.

Lemma 1 (Representation Forgetting): According to the re-
search of [42], in the normal training process, the mutual infor-
mation I(X;Z) between input data X and latent representation
Z first increases and then decreases in the early stage of training,
while the mutual information I(X;Y ) between input dataX and
output Y keeps increasing. Formally:

∃θmax, s.t. ∀θ < θmax,
∂I(X;Zθ)

∂θ
> 0;

∀θ > θmax,
∂I(X;Zθ)

∂θ
< 0. (3)

Theorem 1 (Pre-training Information Transfer): Since the
pre-training task itself is also a training task, according to
Lemma 1, for the existing pre-trained GNN model fθ, the
extracted information Iθ(fθ;Dpre) will gradually increase to
Iθmax

(fθmax
;Dpre), and then decrease to Iθ0(fθ0 ;Dpre) when

obtaining the optimal parameter θ0, i.e.,

θ → θ0 =⇒
Iθ(fθ;Dpre) → Iθmax

(fθmax
;Dpre) → Iθ0(fθ0 ;Dpre). (4)

In this process, the forgotten information, probably contains
some information which is useless to the pre-training task but
useful to the downstream task. If such information is forgotten

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 22,2025 at 07:23:21 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: DELAYED BOTTLENECKING: ALLEVIATING FORGETTING IN PRE-TRAINED GRAPH NEURAL NETWORKS 1143

and cannot be transferred to the downstream task, the parameter
set θ0 and extracted information Iθ(fθ;Dpre) are not optimal
anymore.

B. Delayed Bottlenecking Strategy

In this subsection, we propose a novel strategy, Delayed Bot-
tlenecking (DBP), to alleviate the above problem. The basic idea
of such a strategy is to suppress the information compression
imposed for the pre-training task in pre-training and enhance
the compression based on the downstream task in fine-tuning,
i.e., make sure Iθ0(fθ0 ;Dpre) be closer to Iθmax

(fθmax
;Dpre)

while obtaining the optimal pre-training parameter set θ0.
Such operation of maintaining as much as possible infor-

mation to fine-tuning phase can also be viewed as that the
pre-trained parameters and representation are skewed to the
downstream task, and to achieve this target, we can formulate
two information control objectives respectively for pre-training
and fine-tuning phases, i.e.,

i) Pre-training phase:

Lpi = −I(Dpre;Z) (5)

ii) Fine-tuning phase:

Lfine = Lcls + β · Lfi

where

⎧⎨⎩Lcls = −I(Y ;Z)

Lfi = I(Dfine;Z)

(6)

where I(·; ·) represents the mutual information, Z is the latent
representation, Y is the downstream target, β is employed to
control the degree of enhancing compression in fine-tuning and
can be tuned based on task and dataset. Lfine is used to enhance
compression with the guidance of the downstream task and
labeled fine-tuning data. Therefore, it contains two components,
Lfi is to enhance the compression based on labeled fine-tuning
data, and Lcls is to enhance the mutual information between
latent representation and downstream task, hence improving
the final performance of our model in the downstream task.
Different from traditional optimization problems, in the field of
deep learning, the issue of optimizing such objectives can also be
converted into seeking the variational upper bounds respectively
for Lpi and Lfine to achieve the minimization constraint of
mutual information in both pre-training and fine-tuning periods.
We then detailedly discuss these in the next subsection.

C. Information Control Objectives for Optimization

Due to the intractability of mutual information, the IB objec-
tives in (5) and (6) are hard to be directly used in optimization.
Therefore, in this subsection, we derive the tractable upper
bounds of Lpi and Lfi. The variational upper bounds ensure
that the original mutual information objective can be reduced in
case the empirical risks of Lfine and Lpi are reduced.

Proposition 1 (Upper bound of Lpi): Given pre-training
dataset Dpre, latent representation Zp learned from Dpre, and

graph Gp = (Xp, Ep) ∈ Dpre, we have

Lpi = −I(Dpre;Z)

≤ −EZp∼pθ(Zp|Xp,Ep)[log qϕ(Xp, Ep|Zp)] (7)

where pθ(Zp|Xp, Ep) is the variational approximation of true
conditional probability p(Zp|Xp, Ep) in the encoder during pre-
training, and qϕ(Xp, Ep|Zp) is the variational approximation
of the true conditional probability q(Xp, Ep|Zp) in the decoder
during pre-training.

Proof: For pre-training datasetDpre, latent representationZp

learned from Dpre, and graph Gp = (Xp, Ep) ∈ Dpre, we have:

I(Dpre;Zp) = H(Dpre)−H(Dpre|Zp)

≥ −H(Dpre|Zp)

(1)
=

∫
dZpdGp p(Zp, Gp) log p(Gp|Zp)

(2)
=

∫
dZpdGp p(Zp, Gp) log qϕ(Gp|Zp)

+

∫
dZpdGp p(Zp, Gp) log

p(Gp|Zp)

qϕ(Gp|Zp)

(3)
=

∫
dZpdGp p(Zp, Gp) log qϕ(Gp|Zp)

+

∫
dGp p(Gp|Zp) log

p(Gp|Zp)

qϕ(Gp|Zp)

(4)
=

∫
dZp pθ(Zp|Gp) log qϕ(Gp|Zp)

+ KL [p(Gp|Zp)||q(Gp|Zp)]

(5)

≥
∫

dZp pθ(Zp|Gp) log q(Gp|Zp)

(6)
= EZp∼pθ(Zp|Gp)[log qϕ(Gp|Zp)]

(7)
= EZp∼pθ(Zp|Xp,Ep)[log qϕ(Xp, Ep|Zp)]. (8)

Among (8), step (1) is the definition of mutual information. Steps
(2) and (3) are based on the integral property. Steps (4) and (5)
are defined according to the KL divergence. Steps (6) and (7)
are based on the properties of integrals and expectations.

Lpi = −α · I(Dpre;Zp)

≤ −α · EZp∼pθ(Zp|Xp,Ep)[log qϕ(Xp, Ep|Zp)] (9)

In the fine-tuning phase, we encourage the downstream task
can compress information with ground-truth labels, so that the
learned knowledge during pre-training can be transferred and
generalized on the downstream task more quickly.

Proposition 2 (Upper bound of Lfine): Given fine-tuning
dataset Dfine, latent representation Zf learned from Dfine,
the label y of downstream task Y , and graph Gf = (Xf , Ef ) ∈
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Dfine, we have

Lfine = β · I(Dfine;Z)− I(Y ;Z)

≤ β · EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )]

− EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )]
(10)

where pω(Zf |Xf , Ef ) is the variational approximation of true
conditional probabilityp(Zf |Xf , E)f in the encoder during fine-
tuning, r(Zf ) is an estimation of prior probability p(Zf ) of
Zf , and qγ(y|Zf ) is the variational approximation of the true
conditional probability q(y|Zf ) in the classifier.

Proof: For fine-tuning dataset Dfine, latent representation
Zf learned from Dfine, the label of downstream task y, and
graph Gf = (Xf , Ef ) ∈ Dfine, we have:

I(y;Zf )− β · I(Dfine;Zf )

(1)

≥
∫

dXfdydZf p(Xf ) p(y|Xf ) p(Zf |Xf ) log q(y|Zf )

− β ·
∫

dXfdZf p(Xf ) p(Zf |Xf ) log
p(Zf |Xf )

r(Zf )

(2)
=

∫
dZf pω(Zf |Xf ) log qγ(y|Zf )

− β ·
∫

dZ pω(Zf |Xf ) log
pω(Zf |Xf )

r(Zf )

(3)
= EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )]

− β · EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )].
(11)

Among (11), Step (1) is derived from the application of Jensen’s
inequality and the variational lower bound for mutual informa-
tion. This step provides a lower bound for both I(y;Zf ) and
I(Dfine;Zf ). Step (2) is based on the properties of conditional
probability and marginal probability. Here, we introduce the pa-
rameterized distributions pω(Zf |Xf ) and qγ(y|Zf ) to represent
our model. Step (3) follows from the definition of expectation
and the Kullback-Leibler (KL) divergence. We express the
integrals as expectations with respect to pω(Zf |Xf , Ef ), and
identify the KL divergence term. Thus, we can obtain an upper
bound on the information control objective of the fine-tuning
stage:

Lfine = β · I(Dfine;Zf )− I(y;Zf )

≤ β · EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )]

− EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )].
(12)

D. Proof for Parameters Transfer

In this section, we will prove how the proposed two-stage loss
function improves the transfer of pre-trained parameters. First,
we introduce some additional definitions and lemmas:

Definition 1 (KL Divergence): For two probability dis-
tributions P and Q, the KL divergence between them is

defined as:

DKL(P‖Q) = Ex∼P

[
log

P (x)

Q(x)

]
(13)

Lemma 2 (Chain Rule of KL Divergence): For three prob-
ability distributions P (X,Y ), Q(X,Y ), and R(X), we have:

DKL(P (X,Y )‖Q(X,Y )) = DKL(P (X)‖R(X))

+ Ex∼P (X)[DKL(P (Y |X)‖Q(Y |X))] (14)

Lemma 3 (Non-Negativity of KL Divergence): For any two
probability distributions P and Q, we have DKL(P‖Q) ≥ 0,
with equality holding if and only if P = Q almost everywhere.

The equality holds if and only if Q(x)
P (x) is a constant almost

everywhere, i.e., P = Q almost everywhere. The proof of this
lemma can be demonstrated using Jensen’s inequality, but is
omitted here due to space constraints.

Now, we restate and prove the main theorem:
Theorem 2 (Bounding Posterior Distributions via DBP): Let

Dpre,Dfine denote the pre-training data and fine-tuning data,
respectively, Zp, Zf denote the corresponding latent representa-
tions, and Y denote the labels for the downstream task. Define:

⎧⎨⎩Lpi = −I(Dpre;Zp)

Lfi = βI(Dfine;Zf )− I(Y ;Zf )
(15)

We make the following assumptions:
Assumption 1: Let H denote the model hypothesis space,

which represents the set of all possible models or hypotheses
for the given learning task. Let P (H) and Q(H) denote two
different prior probability distributions over this hypothesis
space H . These priors represent initial beliefs or assumptions
about the likelihood of different hypotheses before observing
any data.

Assumption 2: P (Zp|Dpre, H) = Q(Zp|Dpre, H), ∀H ∈ H
Assumption 3: P (Zf |Dfine, H)=Q(Zf |Dfine, H), ∀H∈H
Assumption 4: P (Y |Zf , H) = Q(Y |Zf , H), ∀H ∈ H
Rationale: Our assumptions ensure consistency between the

true distribution P and the approximate distribution Q during
key stages of learning, while allowing flexibility in priors.
Assumption 1 introduces different priors, P (H) and Q(H), to
capture varying initial beliefs. Assumptions 2 and 3 ensure that,
given the same hypothesis H , the latent representations from
pre-training (Zp) and fine-tuning (Zf ) are identical under P
and Q. Assumption 4 ensures that, once Zf and H are fixed,
the prediction of Y is the same across both distributions. To-
gether, these assumptions balance flexibility in priors with con-
sistency in learning, enabling rigorous analysis across different
distributions.

Then the optimization objectives Lpi and Lfi satisfy:

DKL(P (H|Dpre)‖Q(H|Dpre))

≤ DKL(P (H)‖Q(H))− Lpi(P ) + Lpi(Q)

DKL(P (H|Dfine)‖Q(H|Dfine))
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≤ DKL(P (H)‖Q(H)) +
1

β
(Lfi(P )− Lfi(Q)) (16)

Theorem 2 provides a theoretical foundation for our Deferred
Bottleneck Pretraining (DBP) method by showing how min-
imizing Lpi and Lfi can control the divergence between the
posterior distributions under the pre-training and fine-tuning
data, respectively. This theorem supports the core principles of
DBP: By minimizingLpi(Q) during pre-training, the divergence
between P (H|Dpre) and Q(H|Dpre) is reduced, ensuring high
mutual information between latent representations and data.
This helps the model learn comprehensive representations with-
out prematurely compressing information, which is valuable for
downstream tasks. In fine-tuning, minimizing Lfi(Q) reduces
the divergence between P (H|Dfine) and Q(H|Dfine), with
DBP delaying compression to this stage. This allows the model
to selectively compress and optimize the pre-trained represen-
tation based on the downstream task’s needs. The core strategy
combines minimizing Lfi(Q) and Lfi(P ), which maximizes
IP (Y ;Zf )− βIP (Dfine;Zf ), balancing mutual information
with label prediction and compression, thus reflecting DBP’s
delayed bottleneck approach guided by downstream supervi-
sion.

Proof: First, we prove the first inequality. By Lemma 2, we
have:

DKL(P (H,Zp,Dpre)‖Q(H,Zp,Dpre))

(1)
= DKL(P (H)‖Q(H))

+ EP (H)[DKL(P (Zp,Dpre|H)‖Q(Zp,Dpre|H))]

(2)
= DKL(P (H)‖Q(H))

+ EP (H)[DKL(P (Dpre|H)‖Q(Dpre|H))]

+ EP (H),P (Dpre|H)[DKL(P (Zp|Dpre, H)‖Q(Zp|Dpre, H))]

(3)

≥ DKL(P (H)‖Q(H))

+ EP (H)[DKL(P (Dpre|H)‖Q(Dpre|H))] (17)

Explanation: (1) We apply the chain rule of KL divergence
(Lemma 2) to decompose the joint distribution. (2) We further
decompose the conditional distribution P (Zp,Dpre|H) using
the chain rule. (3) Due to Assumption 2: P (Zp|Dpre, H) =
Q(Zp|Dpre, H), the third term becomes zero. We then apply
the non-negativity of KL divergence (Lemma 3) to obtain the
inequality.

On the other hand, we have:

DKL(P (H,Zp,Dpre)‖Q(H,Zp,Dpre))

(1)
= EP (H,Zp,Dpre)

[
log

P (h, zp, d
pre)

Q(h, zp, dpre)

]
(2)
= EP (H,Zp,Dpre)

[
log

P (h)P (dpre|h)P (zp|dpre, h)
Q(h)Q(dpre|h)Q(zp|dpre, h)

]
(3)
= EP (H,Zp,Dpre)

[
log

P (h)

Q(h)

+ log
P (dpre|h)
Q(dpre|h) + log

P (zp|dpre, h)
Q(zp|dpre, h)

]
(4)
= DKL(P (H)‖Q(H)) + EP (H,Dpre)

[
log

P (dpre|h)
Q(dpre|h)

]
+ EP (H,Zp,Dpre)

[
log

P (zp|dpre, h)
Q(zp|dpre, h)

]
(5)
= DKL(P (H)‖Q(H)) + IP (Dpre;H)− IQ(Dpre;H)

+ EP (H,Dpre)[DKL(P (Zp|Dpre, H)‖Q(Zp|Dpre, H))]

(6)
= DKL(P (H)‖Q(H))− Lpi(P ) + Lpi(Q) (18)

Combining the above two inequalities, we obtain:

DKL(P (H|Dpre)‖Q(H|Dpre))

(7)

≤ DKL(P (H,Zp,Dpre)‖Q(H,Zp,Dpre))

(8)

≤ DKL(P (H)‖Q(H))− Lpi(P ) + Lpi(Q) (19)

Explanation: (1) Definition of KL divergence for joint distri-
butions. (2) Applying the chain rule to decompose joint proba-
bilities. (3) Separating the logarithm of a product into a sum of
logarithms. (4) Recognizing the first term as KL divergence ofH
and separating expectations. (5) Identifying mutual information
terms and KL divergence for Zp. (6) Defining Lpi in terms of
mutual information. (7) Applying the data processing inequality
for KL divergence. (8) Using the result from (18). where the
second equality uses assumption (2), and the last inequality uses
Lemma 3.

Next, we prove the second inequality. Similarly, we have:

DKL(P (H,Zf ,Dfine, Y )|Q(H,Zf ,Dfine, Y ))

(1)
= DKL(P (H)|Q(H))

+EP (H)
[
DKL(P (Zf ,Dfine, Y |H)|Q(Zf ,Dfine, Y |H))

]
(2)
= DKL(P (H)|Q(H))

+ EP (H)
[
DKL(P (Dfine|H)|Q(Dfine|H))

]
+ EP (H)EP (Dfine|H)

[
DKL(P (Zf |Dfine, H)

|Q(Zf |Dfine, H))
]

+ EP (H)EP (Dfine|H)EP (Zf |Dfine, H)

[DKL(P (Y |Zf , H)|Q(Y |Zf , H))]

(3)

≥ DKL(P (H)|Q(H))

+ EP (H)
[
DKL(P (Dfine|H)|Q(Dfine|H))

]
(20)

Explanation: (1) We apply the chain rule of KL divergence
to decompose the joint distribution. (2) We further decompose
the conditional distribution P (Zf ,Dfine, Y |H) using the chain
rule multiple times. (3) Due to Assumptions 3 and 4, the third
and fourth terms become zero. We then apply the non-negativity
of KL divergence to obtain the inequality.
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Fig. 2. Architecture of DBP framework. Subfigure (a) corresponds to the generative and contrastive learning based self-supervised pre-training model. The
optimization objective of pre-training consists of Lcon and Lpi which are respectively used to extract general knowledge and avoid excessive information
compression. Subfigure (b) indicates the information control based fine-tuning model. The optimization objective of fine-tuning, which is composed of Lcls

and Lfi, encourages enhanced information compression to improve classification performance. The two-phase transition is implemented by means of parameter
transfer.

On the other hand, we have:

DKL(P (H,Zf ,Dfine, Y )‖Q(H,Zf ,Dfine, Y ))

(4)
= EP (H,Zf ,Dfine,Y )

[
log

P (h, zf , d
fine, y)

Q(h, zf , dfine, y)

]
(5)
= EP (H,Zf ,Dfine,Y )

[
log

P (h)

Q(h)
+ log

P (dfine|h)
Q(dfine|h)

+ log
P (zf |dfine, h)
Q(zf |dfine, h) + log

P (y|zf , h)
Q(y|zf , h)

]
(6)
= DKL(P (H)‖Q(H)) + EP (H,Dfine)

[
log

P (dfine|h)
Q(dfine|h)

]
+ EP (H,Zf ,Dfine)

[
log

P (zf |dfine, h)
Q(zf |dfine, h)

]
+ EP (H,Zf ,Dfine,Y )

[
log

P (y|zf , h)
Q(y|zf , h)

]
(7)
= DKL(P (H)‖Q(H)) + IP (Dfine;H)− IQ(Dfine;H)

+ IP (Zf ;Dfine|H)− IQ(Zf ;Dfine|H)

+ IP (Y ;Zf |H)− IQ(Y ;Zf |H)

(8)
= DKL(P (H)‖Q(H)) +

1

β
(Lfi(P )− Lfi(Q))

(21)
Combining inequalities (20) and (21), we obtain:

DKL(P (H|Dfine)‖Q(H|Dfine))

(9)

≤ DKL(P (H,Zf ,Dfine, Y )‖Q(H,Zf ,Dfine, Y ))

(10)

≤ DKL(P (H)‖Q(H)) +
1

β
(Lfi(P )− Lfi(Q)) (22)

Explanation: (4) Definition of KL divergence for joint distri-
butions. (5) Applying the chain rule to decompose joint proba-
bilities. (6) Separating the logarithm of a product into a sum of
logarithms and grouping terms. (7) Identifying mutual informa-
tion terms. (8) DefiningLfi in terms of mutual information, with
β as a scaling factor. (9) Applying the data processing inequality
for KL divergence. (10) Using the result from (21).

IV. DBP FRAMEWORK

Given the theoretical analysis in the previous section, we still
have to consider how to integrate the proposed DBP strategy
into the actual model design, so that the information control
objectives can be applied to graph structure data. We will discuss
these issues in this section.

A. Solution Overview

The solution overview is illustrated in Fig. 2 which also
contains the implementations of the above two optimization
information control objectives in the pre-training and fine-tuning
phases. The DBP framework contains two parts: i) a self-
supervised pre-training model for controlling information and
extracting knowledge via generative learning and contrastive
learning, and ii) a fine-tuning model with an information control
module.

B. Generative and Contrastive Learning Based
Self-supervised Pre-training

As shown in Fig. 2(a), We built a self-supervised pre-
training model that consists of two components, mask-based
representation contrast and information-based representation
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reconstruction. The first one is to extract general knowledge
from pre-training data, and the second component is used to
maintain the mutual information between latent representation
and training data. We will describe these two modules in detail
in the following subsections.

Mask-based Representation Contrast: We begin by applying
a random masking scheme to the original graph Gp = (Xp, Ep),
masking some nodes and their connected edges. We record
the indices of these masked nodes and obtain a noisy graph
Ĝp = (X̂p, Êp). Both the original graph Gp and the noisy graph
Ĝp are then processed by the encoder fθ to generate node
representations:

Zp = fθ(Xp, Ep), Ẑp = fθ(X̂p, Êp) (23)

For self-supervised learning, positive samples are defined as
the dot product of representations for a masked node and its
connected node in the original graph, while negative samples
are the dot product of the representations for a masked node
and its connected node in the noisy graph. The contrastive self-
supervised objective is then formulated as:

Lcon =
∑

u∈mask

∑
v∈N (u)

−ln(σ(Zp
T
u · Zpv))

− ln(σ(−Ẑpu

T · Ẑpv)) (24)

where u represents a masked node, v ∈ N (u) denotes a node
connected to u, Zpu and Zpv are their respective representations

in the original graph, while Ẑpu and Ẑpv are their representations
in the noisy graph. The function σ represents the Sigmoid
function.

Information-Maintain Representation Reconstruction: We
further introduce the information control theory mentioned
in Proposition 1 into the node representation learning of the
original graph. Here, to obtain the representation Zp of the
original graph by encoder fθ, we let the conditional probability
pθ(Zp|Xp, Ep) be the variational approximation of the true con-
ditional probability p(Zp|Xp, Ep). To calculate qϕ(Xp, Ep|Zp),
we employ a decoder fϕ consisting of two single-layer GNNs to
reconstruct node features X̃p and edge features Ẽp of the original
graph from Zp, i.e.,

X̃p, Ẽp = fϕ(Zp) (25)

The optimization goal of our information reconstruction task
can be calculated as the cross-entropy (CE) loss between recon-
structed features and original features, and it can be simplified
as the upper bound derived in (7).

Lpi = −EZp∼pθ(Zp|Xp,Ep)[log qϕ(Xp, Ep|Zp)] (26)

Here, Lpi allows the representation to retain more information
from the pre-trained dataset by encouraging the reconstructed
nodes and features to have more similarity to the original graph.
It is not only an approximation of our proposed information
control objective, but also indicates that the latent representation
encoded by fθ has the potential to be restored to the original
representation.

Pre-training Objective: The above representation contrast
and reconstruction components work jointly to extract general
knowledge from pre-training data and simultaneously suppress
information compression in latent representation learning. This
jointly working mechanism determines that the pre-trained
model can effectively avoid information forgetting in extracting
general knowledge, and information compression is delayed to
the fine-tuning phase. Therefore, the overall loss of pre-training
should be the sum of the objectives of these two components,
i.e.,

Lpre = Lcon + α · Lpi

=
∑

u,u′∈mask

−ln(σ(Zp
T
u · Zpv))− ln(σ(−Ẑpu′

T · Ẑpv′))

− α · EZp∼pθ(Zp|Xp,Ep)[log qϕ(Xp, Ep|Zp)]
(27)

where α is a hyper-parameter for adjusting the weight of infor-
mation control.

C. Information Controlled Fine-tuning

Similar to recent studies, during fine-tuning, we also
employ the same encoder fω, whose parametersω are initialized
with the parameter θ of fθ, as in the pre-training phase. Notice
that the labeled map Gf = (Xf , Ef ) in downstream task is
encoded to obtain the latent representation Zf by fω which
calculates the modeling probability pω(Zf |Xf , Ef ), i.e.,

Zf = fω(Xf , Ef ). (28)

As demonstrated in Fig. 2(b), different from other pre-training
and fine-tuning works, to avoid information forgetting, the in-
formation compression in pre-training is suppressed, therefore,
we should enhance this operation in the fine-tuning phase.

Delayed Information Compression: To achieve delayed in-
formation compression in fine-tuning, we add a compression
module consisting of two MLPs between fω and the classifier
to learn the mean μ and variance σ2 respectively.{

μ, σ2
}
= MLPs(Zf ) (29)

Then we sample the graph representationZf from the multivari-
ate normal distribution N (Zf |μ, σ2) with a reparameterization
trick to realize back-propagation, i.e.,

Zt = μ+ σ2 � ε (30)

where ε ∼ N (0, 1). We further refer to the information control
theory mentioned in Proposition 2 to calculate the Kullback-
Leibler (KL) divergence of distribution N (Zf |μ, σ2) and Gaus-
sian prior distribution r(Zf ) to realize information control dur-
ing fine-tuning. The optimization objective is the term in formula
(6) to enhance compression,

Lfi = EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )] (31)

Fine-tuning Objective: Furthermore, we first take Zf as the
input of classifier fγ to compute the variational approximation
qγ(y|Zf ), and the classification loss is the first term in (6),

Lcls = −EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )]. (32)
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And based on this, the overall loss of fine-tuning can be defined
as,

Lfine = Lcls + β · Lfi

= −EZf∼pω(Zf |Xf ,Ef )[log qγ(y|Zf )]

+ β · EZf∼pω(Zf |Xf ,Ef ) KL[pω(Zf |Xf , Ef ), r(Zf )],
(33)

where β is a hyper-parameter for adjusting the weight of infor-
mation control.

V. EXPERIMENTS

In this section, we compare the performance of our proposed
DBP and various state-of-the-art pre-trained baselines on both
chemistry and biology domains. Then, we conduct a series of
comprehensive model analyses to witness our motivation and the
effectiveness of our delayed bottlenecking information control
strategy.

A. Experimental Settings

Datasets: Following the setting of [25], we conduct exper-
iments on data from two domains: molecular property predic-
tion in chemistry and biological function prediction in biology.
For chemistry domain, we use Zinc-2M - 2 million unlabeled
molecules sampled from the ZINC15 database [53] in the
pre-training phase and eight binary classification datasets in
MoleculeNet [54] in the fine-tuning phase, which are split by
the scaffold splitting scheme. For biology domain, we utilize
395K unlabeled protein ego-networks [25] for self-supervised
pre-training and predict 40 fine-grained biological functions of
8 species in the fine-tuning phase.

Setups: Following the setting of [25], we employ a five-layer
GNN with 300-dimensional hidden units as the encoder and
two single-layer GNNs as the decoder in the pre-training phase.
We use an Adam optimizer [55] with a learning rate of 1×
10−3 to pre-train the GNN for 100 epochs. In the fine-tuning
phase, an information control module and a linear classifier are
appended upon the pre-trained GNN and the information control
module consists of two MLPs. We also train the model for 100
epochs using the Adam optimizer with learning rate of 1× 10−3

and batch size of 32. We utilize a fixed-step-size learning rate
scheduler, which multiplies the learning rate by 0.3 every 30
epochs. All the results are the average of five independent runs
with the same configuration and different random seeds.

Attribute Masking Scheme: On chemistry domain, before
pre-training on large-scale molecular graphs, we randomly mask
nodes in 25% of attributes to obtain perturbed graphs. To com-
pare and learn the node representation of the masked position
and the node representation of the same position in the original
graph, we need to record the index of the mask position for
each training data. On biology domain, before pre-training on a
large-scale protein self-network graph, we randomly mask the
attributes of 25% of its edges to generate a perturbation graph.
We also record the index while controlling the mask by setting
additional weights for the variables.

GNN Architectures: Our experiments are mainly conducted
on GIN, but to verify the effectiveness of our method, we conduct
experiments with different GNN architectures in Table 3 in
the original manuscript. All GNNs in our experiments (e.g.,
GCN [56], GraphSAGE [57], GAT [58], GIN [59]) are with
5 layers, 300-dimensional hidden units, and a mean pooling
readout function. In addition, two attention heads are employed
in each layer of the GAT model.

Baselines: To demonstrate the effectiveness and robustness
of DBP, we compare it with state-of-the-art self-supervised
pre-training methods on chemistry and biology domains:
EdgePred [57], InfoGraph [60], AttrMasking [25],
ContextPred [25], GraphPartition [61], GraphCL [26],
GraphLoG [27], GraphMAE [62], S2GAE [63], MGSSL [64],
MICRO-Graph [65] and GraphFP [66]. EdgePred infers
link existence between node pairs. ContextPred explores
graph structure distribution by sampling and predicting
surrounding structures. AttrMasking masks and predicts
node or edge attributes based on the neighborhood to learn
their distribution. InfoGraph constructs contrastive loss using
node representations of the graph instance and other graphs.
GraphPartition is a topology-based method that partitions nodes
into subsets to minimize cross-subset edges. GraphCL utilizes
node dropping, edge perturbation, attribute masking, and
subgraph sampling to construct views for contrastive learning.
GraphLoG aligns embeddings of related graphs/subgraphs to
construct a locally smooth latent space, and models global
structure with a hierarchical model. GraphMAE conducts
self-supervised pre-training by masking and reconstructing
node features, introducing the masked autoencoding idea from
computer vision. S2GAE randomly masks edges and learns to
reconstruct them with direction-aware masking strategies and a
cross-correlation decoder, demonstrating superior performance
on link prediction, node classification, and graph classification
tasks. MGSSL introduces motif-based self-supervised learning
using BRICS to extract functional groups as motifs for GNN
pre-training. MICRO-Graph leverages motif-driven contrastive
learning to sample informative subgraphs using EM-clustering,
improving GNN performance. GraphFP performs fragment-
based pretraining on molecular and fragment graphs, enhancing
results on both molecular and biological benchmarks.

B. Performance Comparison

Results on Chemistry Domain: The performance comparison
between the proposed DBP and SOTA methods on chemistry
domain is shown in Table I. DBP achieves the highest average
ROC-AUC score and gain among all self-supervised learning
strategies and performs best on six of eight tasks. We believe that
such significant improvements can be attributed to the proposed
information compression delayed pre-training strategy, which
preserves more beneficial information in the pre-training phase
and benefits downstream tasks in the fine-tuning phase.

Results on Biology Domain: The results in Table II show that
DBP also achieves the best performance on biology domain,
especially achieving a gain of 6.3% compared to the No-pretrain
baseline. This illustrates that the proposed strategy is general
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TABLE I
ROC-AUC SCORES (%) ON DOWNSTREAM MOLECULAR PROPERTY PREDICTION TASK COMPARED WITH STATE-OF-THE-ART METHODS

TABLE II
ROC-AUC SCORES (%) ON DOWNSTREAM BIOLOGICAL FUNCTION

PREDICTION TASK COMPARED WITH STATE-OF-THE-ART METHODS

TABLE III
ROC-AUC SCORES (%) UNDER VARIOUS GNN ARCHITECTURES. ALL

RESULTS ARE REPORTED ON BIOLOGY DOMAIN

and generalizable. We argue that these properties are mainly
affected by reasonable information control, which can learn
more transferable prior knowledge and transfer them to the fine-
tuning phase, thus benefiting more downstream tasks involving
fine-grained classification.

Results w.r.t. Different GNN Architectures: Table III com-
pares the performance of DBP and state-of-the-art pre-training
baselines, w.r.t. four different GNN architectures: GCN [56],
GraphSAGE [57], GAT [58], and GIN [59]. It can be observed
that the proposed DBP consistently yields the best performance
among all methods across architectures. This demonstrates
that our strategy is pluggable and applicable to various GNN
architectures. We deem that this improvement over previous
works is mainly from the information compression delayed
pre-training strategy in DBP, which is not included in existing
methods.

C. Analysis of the Training Process

To gain a deeper understanding of our model, we analyzed
various aspects of the training dynamics.

Dynamics of Predictive Information: Fig. 3 illustrates the
changes in mutual information between the representation Z
and the label Y during the fine-tuning phase for different meth-
ods. Different values of β represent the varying intensities of
the information control during the fine-tuning phase, where
the blue line represents the DBP without information control,
and AttrMasking represents the traditional masking pre-training
strategy. Across different variants (e.g., GCN, GAT, and GIN)
and datasets (e.g., BBBP, ToxCast, SIDER, and ClinTox), these
comparisons exhibit similar trends. Overall, the DBP method
with information control strategies achieves higher mutual in-
formation I(Y ;Z) during the fine-tuning phase as compared to
the traditional methods and DBP with less information control,
which demonstrates the universality and effectiveness of our
information control strategy across different datasets and models
in enhancing the extraction of predictive relevant information
during the fine-tuning stage.

Dynamics of Performance Change: Fig. 4 shows the changes
in performance during the fine-tuning phase for different meth-
ods, using AUC-ROC as the performance metric. Similar to
Fig. 3, different values of β represent the varying intensities
of information control during the fine-tuning phase, where the
blue line represents the DBP without information control, and
AttrMasking represents the traditional masking pre-training
strategy. Across different variants and datasets, our strategy
improves performance, but the performance ceiling is related to
the choice of the intensity of information control β. For instance,
on the ClinTox dataset, GCN exhibits the highest performance
at β = 0.0005, while GIN performs better at β = 0.1. We will
continue to analyze the sensitivity to β in Section V-D.

Dynamics of Generalization Gap: Fig. 6 demonstrates the
changes in the generalization gap during the fine-tuning process
for different methods. Similar to Fig. 4, different values of β rep-
resent the varying intensities of the information control during
the fine-tuning phase, where the blue line represents the DBP
without information control, and AttrMasking represents the
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Fig. 3. Dynamics of the mutual information I(Y,Z) between the target labels Y and the learned representations Z across training epochs for different variants
on two molecular property prediction datasets (BBBP and SIDER).

Fig. 4. ROC-AUC curves across training epochs for different variants of the proposed DBP method on SIDER and ClinTox.

traditional masking pre-training strategy. Tests were conducted
across different variants and datasets. Overall, our information
control strategy achieves a lower generalization error during the
fine-tuning phase compared to traditional methods and DBP with
less information control. This relates to the conclusions drawn
from Fig. 3, as our information control strategy transfers more
usable predictive relevant information, leading to the model
learning more useful representations and thereby resulting in
a smaller generalization error.

D. Further Analysis

Effect of Information Control Objective Function: We attempt
to analyze the effect of individually applying the information
control objective function in the pre-training or fine-tuning phase
on chemistry domain, with the same experimental setups as in
Section V-A. As shown in Fig. 5(a), we have an interesting
observation: When the pre-trained information control objective

function is individually applied, its performance improvement
on downstream tasks is limited, but applying the information
control objective function independently in the fine-tuning phase
can further improve the model performance. The reason might be
that the information control objective in the fine-tuning phase is
more conducive to improving classification performance, while
the additional information retained by the information control
module in the pre-training phase needs to be further compressed
and selected before being applied to downstream tasks.

Analysis on Information Control Hyperparameters: The hy-
perparameters α and β that adjust the strength of information
control are crucial to DBP, so we further investigate the impact of
different hyperparameter combinations on model performance.
Experimental results on three downstream chemistry datasets
are shown in Fig. 5(b). Interestingly, we observed that the per-
formance of the model on downstream tasks degrades when the
hyperparameters are too large or too small. We argue that exces-
sively suppressing information compression in the pre-training
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Fig. 5. Hyperparameter sensitivity analysis and ablation study with respect to DBP. Subfigure (a) shows our ablation experiments on the information control
modules during the pre-training and fine-tuning stages. Subfigure (b) illustrates our analysis experiments on the relationship between the information control
hyperparameters α and β and model performance across three datasets during the pre-training and fine-tuning stages.

Fig. 6. Generalization gap across training epochs for different variants of the proposed DBP method on four molecular property prediction datasets (BBBP,
ToxCast, SIDER, and ClinTox).

phase will interfere with general knowledge extraction, while
excessively enhancing information compression in the fine-
tuning phase will make the latent representation less informative.

Comparison with Existing Work: As graph pre-training re-
search advances, some studies have noticed the negative impact
of differences between pre-training and fine-tuning tasks, al-
though they do not deeply analyze from an information and
neural network training behavior perspective. For example,
L2P-GNN[67] approaches from a meta-learning perspective,
simulating the fine-tuning process during pre-training to quickly
adapt to new downstream tasks. GPPT [68] using ideas from
natural language processing’s prompt learning, proposes a pre-
training method focused on node classification, transforming
downstream node classification tasks into edge prediction tasks
similar to pre-training goals, bridging the gap between pre-
training and fine-tuning objectives.

However, these methods primarily aim to reduce target differ-
ences during the fine-tuning stage, without analyzing the entire
information transfer process across both stages. In contrast,
our method analyzes the fundamental knowledge transfer from
pre-training datasets to fine-tune downstream tasks from an
information compression perspective. This framework could
also be combined with downstream fine-tuning process variants
like prompt learning and meta-learning in the future.

Complexity Analysis: The DBP framework encompasses
pre-training and fine-tuning phases. Pre-training involves self-
supervised and reconstruction tasks, both with a computational
complexity of O(V + E). Fine-tuning introduces an informa-
tion compression module and a classifier, each with a complexity
of O(V ). Overall, DBP maintains a complexity of O(V + E),
similar to traditional GNNs.

VI. CONCLUSION

In this paper, we reexamine the pre-training process within
the traditional pre-training and fine-tuning framework from the
perspective of Information Bottleneck, and confirm that the
forgetting phenomenon in the pre-training phase exactly has
detrimental effects on downstream tasks. Then, we propose
a DBP framework that maintains as much as possible mu-
tual information during the pre-training phase by suppressing
the compression operation and delays the compression oper-
ation to fine-tuning phase. To achieve this, we design two
information control objectives that can be directly optimized
and further integrate them into the model design. Extensive
experiments demonstrate the effectiveness and generalization
of DBP.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 22,2025 at 07:23:21 UTC from IEEE Xplore.  Restrictions apply. 



1152 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 3, MARCH 2025

REFERENCES

[1] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social Network Data Analytics, Berlin, Germany:
Springer, 2011, pp. 115–148.

[2] J. He, H. Liu, Y. Zheng, S. Tang, W. He, and X. Du, “Bi-labeled LDA:
Inferring interest tags for non-famous users in social network,” Data Sci.
Eng., vol. 5, pp. 27–47, 2020.

[3] Y. Wang, P. Li, C. Bai, and J. Leskovec, “TEDIC: Neural modeling of
behavioral patterns in dynamic social interaction networks,” in Proc. World
Wide Web Conf., 2021, pp. 693–705.

[4] F. Zhang, J. Zhai, B. He, S. Zhang, and W. Chen, “Understanding co-
running behaviors on integrated CPU/GPU architectures,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 3, pp. 905–918, Mar. 2017.

[5] S. Zhang, H. Yin, T. Chen, Q. V. N. Hung, Z. Huang, and L. Cui, “GCN-
based user representation learning for unifying robust recommendation
and fraudster detection,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2020, pp. 689–698.

[6] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1263–1272.

[7] S. Liu, M. F. Demirel, and Y. Liang, “N-gram graph: Simple unsupervised
representation for graphs, with applications to molecules,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2019, pp. 8466–8478.

[8] Z. Wu et al., “Chemistry-intuitive explanation of graph neural networks
for molecular property prediction with substructure masking,” Nature
Commun., vol. 14, no. 1, 2023, Art. no. 2585.

[9] P. Reiser et al., “Graph neural networks for materials science and chem-
istry,” Commun. Mater., vol. 3, no. 1, 2022, Art. no. 93.

[10] Z. Li, K. Meidani, P. Yadav, and A. BaratiFarimani, “Graph neural net-
works accelerated molecular dynamics,” J. Chem. Phys., vol. 156, no. 14,
2022, Art. no. 144103.

[11] H. Wang et al., “Knowledge-aware graph neural networks with label
smoothness regularization for recommender systems,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2019, pp. 968–977.

[12] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.
Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2018, pp. 974–983.

[13] L. Yang et al., “DGRec: Graph neural network for recommendation with
diversified embedding generation,” in Proc. Sixteenth ACM Int. Conf. Web
Search Data Mining, 2023, pp. 661–669.

[14] J. Chang et al., “Sequential recommendation with graph neural networks,”
in Proc. 44th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2021,
pp. 378–387.

[15] Y. Hao et al., “Multi-dimensional graph neural network for sequential
recommendation,” Pattern Recognit., vol. 139, 2023, Art. no. 109504.

[16] C. Gao, X. Wang, X. He, and Y. Li, “Graph neural networks for recom-
mender system,” in Proc. 15th ACM Int. Conf. Web Search Data Mining,
2022, pp. 1623–1625.

[17] C. Shi, M. Xu, H. Guo, M. Zhang, and J. Tang, “A graph to graphs
framework for retrosynthesis prediction,” in Proc. Int. Conf. Mach. Learn.,
2020, pp. 8818–8827.

[18] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “GraphAF: A
flow-based autoregressive model for molecular graph generation,” in Proc.
Int. Conf. Learn. Representations, 2019.

[19] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec, “Graph convolutional
policy network for goal-directed molecular graph generation,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2018, pp. 6412–6422.

[20] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on
knowledge graphs: Representation, acquisition, and applications,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 2, pp. 494–514, Feb. 2022.

[21] P. Wang, C. Ge, Z. Zhou, X. Wang, Y. Li, and Y. Wang, “Joint gated
co-attention based multi-modal networks for subregion house price pre-
diction,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 02, pp. 1667–1680,
Feb. 2023.

[22] Z. Zhao, P. Wang, H. Wen, Y. Zhang, Z. Zhou, and Y. Wang, “A twist for
graph classification: Optimizing causal information flow in graph neural
networks,” in Proc. AAAI Conf. Artif. Intell., 2024, pp. 17042–17050.

[23] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “GPT-GNN: Gener-
ative pre-training of graph neural networks,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2020, pp. 1857–1867.

[24] Z. Hou et al., “GraphMAE: Self-supervised masked graph autoencoders,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2022,
pp. 594–604.

[25] W. Hu et al., “Strategies for pre-training graph neural networks,” in Proc.
Int. Conf. Learn. Representations, 2020.

[26] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive
learning with augmentations,” in Proc. Adv. Neural Inf. Process. Syst.,
2020, pp. 5812–5823.

[27] M. Xu, H. Wang, B. Ni, H. Guo, and J. Tang, “Self-supervised graph-level
representation learning with local and global structure,” in Proc. Int. Conf.
Mach. Learn., 2021.

[28] F.-Y. Sun, J. Hoffman, V. Verma, and J. Tang, “InfoGraph: Unsupervised
and semi-supervised graph-level representation learning via mutual infor-
mation maximization,” in Proc. Int. Conf. Learn. Representations, 2020.

[29] Y. You, T. Chen, Y. Shen, and Z. Wang, “Graph contrastive learning
automated,” in Proc. Int. Conf. Mach. Learn., 2021.

[30] L. Wu, H. Lin, C. Tan, Z. Gao, and S. Z. Li, “Self-supervised learning on
graphs: Contrastive, generative, or predictive,” IEEE Trans. Knowl. Data
Eng., vol. 35, no. 4, pp. 4216–4235, Apr. 2023.

[31] M. Tran, S. J. Wagner, M. Boxberg, and T. Peng, “S5CL: Unifying
fully-supervised, self-supervised, and semi-supervised learning through
hierarchical contrastive learning,” in Proc. 25th Int. Conf. Med. Image
Comput. Comput. Assist. Intervention, Singapore, 2022, pp. 99–108.

[32] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph con-
trastive learning with adaptive augmentation,” in Proc. Web Conf., 2021,
pp. 2069–2080.

[33] V. Verma et al., “Graphmix: Improved training of GNNs for
semi-supervised learning,” in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 10024–10032.

[34] Z. Liu, X. Yu, Y. Fang, and X. Zhang, “GraphPrompt: Unifying pre-training
and downstream tasks for graph neural networks,” in Proc. ACM Web Conf.,
2023, pp. 417–428.

[35] C. Li and Z. Qiu, “Targeted bert pre-training and fine-tuning approach
for entity relation extraction,” in Proc.7th Int. Conf. Pioneering Com-
put. Scientists Engineers Educators Data Sci., Taiyuan, China, 2021,
pp. 116–125.

[36] D. Wan and M. Bansal, “FactPEGASUS: Factuality-aware pre-training
and fine-tuning for abstractive summarization,” 2022, arXiv:2205.07830.

[37] M. C. Anderson and S. B. Floresco, “Prefrontal-hippocampal interactions
supporting the extinction of emotional memories: The retrieval stop-
ping model,” Neuropsychopharmacology, vol. 47, no. 1, pp. 180–195,
2022.

[38] T. Gruber, L. Luncz, J. Mörchen, C. Schuppli, R. L. Kendal, and K.
Hockings, “Cultural change in animals: A flexible behavioural adaptation
to human disturbance,” Palgrave Commun., vol. 5, no. 1, 2019, Art. no. 64.

[39] T. Kitazono, S. Hara-Kuge, O. Matsuda, A. Inoue, M. Fujiwara, and
T. Ishihara, “Multiple signaling pathways coordinately regulate forget-
ting of olfactory adaptation through control of sensory responses in
caenorhabditis elegans,” J. Neurosci., vol. 37, no. 42, pp. 10240–10251,
2017.

[40] L. Gravitz, “The importance of forgetting,” Nature, vol. 19, pp. 1–20, 2019.
[41] A. Achille, M. Rovere, and S. Soatto, “Critical learning periods in deep

networks,” in Proc. Int. Conf. Learn. Representations, 2018.
[42] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural

networks via information (2017),” 2017, arXiv: 1703.00810.
[43] J. Li et al., “Enhanced spiking neural network with forgetting phe-

nomenon based on electronic synaptic devices,” Neurocomputing, vol. 408,
pp. 21–30, 2020.

[44] J. Peng et al., “Learning by active forgetting for neural networks,”
2021, arXiv:2111.10831.

[45] A. Cossu, T. Tuytelaars, A. Carta, L. Passaro, V. Lomonaco, and D. Bac-
ciu, “Continual pre-training mitigates forgetting in language and vision,”
2022, arXiv:2205.09357.

[46] Z. Feng et al., “Codebert: A pre-trained model for programming and natural
languages,” 2020, arXiv: 2002.08155.

[47] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” in Proc. Int. Conf. Learn. Representations,
2019.

[48] S. Liu, H. Wang, W. Liu, J. Lasenby, H. Guo, and J. Tang,
“Pre-training molecular graph representation with 3D geometry,”
2021, arXiv:2110.07728.

[49] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational
information bottleneck,” in Proc. Int. Conf. Learn. Representations, 2017.

[50] T. Wu, H. Ren, P. Li, and J. Leskovec, “Graph information bottleneck,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2020.

[51] J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, and R. He, “Graph information
bottleneck for subgraph recognition,” in Proc. Int. Conf. Learn. Represen-
tations, 2020.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 22,2025 at 07:23:21 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: DELAYED BOTTLENECKING: ALLEVIATING FORGETTING IN PRE-TRAINED GRAPH NEURAL NETWORKS 1153

[52] Z. Peng et al., “Graph representation learning via graphical mutual infor-
mation maximization,” in Proc. World Wide Web Conf., 2020, pp. 259–270.

[53] T. Sterling and J. J. Irwin, “ZINC 15–ligand discovery for everyone,” J.
Chem. Inf. Model., vol. 55, pp. 324–337, 2015.

[54] Z. Wu et al., “MoleculeNet: A benchmark for molecular machine learning,”
Chem. Sci., vol. 9, pp. 513–530, 2018.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015.

[56] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2017.

[57] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017.
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