
STONE: A Spatio-temporal OOD Learning Framework Kills Both
Spatial and Temporal Shifts

Binwu Wang

University of Science and Technology

of China

Hefei, China

wbw1995@mail.ustc.edu.cn

Jiaming Ma
∗

University of Science and Technology

of China

Hefei, China

jiamingma@mail.ustc.edu.cn

Pengkun Wang

Suzhou Institute for Advanced

Research, University of Science and

Technology of China

Suzhou, China

pengkun@mail.ustc.edu.cn

Xu Wang

Suzhou Institute for Advanced

Research, University of Science and

Technology of China

Suzhou, China

wx309@mail.ustc.edu.cn

Yudong Zhang

University of Science and Technology

of China

Hefei, China

zyd2020@mail.ustc.edu.cn

Zhengyang Zhou

Suzhou Institute for Advanced

Research, University of Science and

Technology of China

Suzhou, China

zzy0929@mail.ustc.edu.cn

Yang Wang
∗

University of Science and Technology

of China

Hefei, China

angyan@ustc.edu.cn

ABSTRACT
Traffic prediction is a crucial task in the Intelligent Transportation

System (ITS), receiving significant attention from both industry

and academia. Numerous spatio-temporal graph convolutional net-

works have emerged for traffic prediction and achieved remarkable

success. However, these models have limitations in terms of gen-

eralization and scalability when dealing with Out-of-Distribution

(OOD) graph data with both structural and temporal shifts. To tackle

the challenges of spatio-temporal shift, we propose a framework

called STONE by learning invariable node dependencies, which

achieve stable performance in variable environments. STONE ini-

tially employs gated-transformers to extract spatial and temporal

semantic graphs. These two kinds of graphs represent spatial and

temporal dependencies, respectively. Then we design three tech-

niques to address spatio-temporal shifts. Firstly, we introduce a

Fréchet embedding method that is insensitive to structural shifts,

and this embedding space can integrate loose position dependen-

cies of nodes within the graph. Secondly, we propose a graph in-

tervention mechanism to generate multiple variant environments

by perturbing two kinds of semantic graphs without any data aug-

mentations, and STONE can explore invariant node representation
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from environments. Finally, we further introduce an explore-to-

extrapolate risk objective to enhance the variety of generated en-

vironments. We conduct experiments on multiple traffic datasets,

and the results demonstrate that our proposed model exhibits com-

petitive performance in terms of generalization and scalability.

CCS CONCEPTS
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tion systems→ Data mining.
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1 INTRODUCTION
With the increasing prevalence of GPS-enabled mobile devices and

sensors, a significant amount of spatio-temporal data is being gath-

ered in various fields such as urban transportation and atmospheric

conditions. This data has become a valuable asset, fueling progress

in the realm of urban computing [7, 22, 38, 41, 42, 54, 57, 63]. Among

the many applications, predicting traffic flow is a standout task in

urban computing, providing dependable future road insights and

enhancing traffic management systems [20, 26, 27, 56, 65].
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Current prevailing traffic flow prediction method processes data

into graph-structured data incorporating relationship induction,

namely spatio-temporal graphs (STG), and then spatio-temporal

graph convolutional networks are employed as engines to learn

spatio-temporal features and make prediction [25, 39, 43, 59]. Given

a graph G and training data X denoted as the training environment

𝑒 : {X,G}, the goal of STG prediction is to learn a function F which

can predict target label 𝑦 given associated input 𝑥 :

min

F
E(𝑥,𝑦)∼P(𝑥,𝑦 |𝑒 ) [L(F (x), 𝑦) |𝑒] . (1)

While existing models have been highly successful, they heavily

depend on the IID assumption, which states that testing and train-

ing data are independently sourced from the same environment.

Unfortunately, many cutting-edge models like D
2
STGNN [31] and

PDFormer [9] are coupled with the training STG. However, this

assumption does not always hold in real-world settings where spa-

tial and temporal features of STG may change over time, leading to

varying testing environments and posing challenges related to Out-

of-Distribution (OOD) scenarios. A few recent studies [8, 48, 64]

have started exploring methods for OOD spatio-temporal learning.

Yet, these methods primarily focus on temporal shifts and overlook

significant spatial changes. In this paper, we first comprehensively

define spatio-temporal shift from two concepts: temporal shift
and spatial shift, as shown in Figure. 1.

Train Val Test
Shift
······

Train /Val Test 

New node Removed node

(a) Temporal shift 

(b) Spatial shift

Evolve

Figure 1: Spatio-temporal shift is interpreted into the tempo-
ral and spatial shifts. Temporal shift refers to the changes
in the distribution feature (such as mean and variance) of
traffic data over time. Spatial shift refers to the evolution
of the graph structure, typically involving changes in the
graph’s size.

(1) Temporal shift refers to the change in the temporal data distri-

bution (e.g., mean and variance), meaning that P(Xte) is not equal
to P(Xtr). For example, Figure 1(a) shows the traffic flow of a node

(sensor) in the PeMS system over a long period and reveals its

shifted flow distribution.

(2) Spatial shift refers to the evolution of underlying graph struc-

tures, as depicted in Figure 1(b). In a modern transportation system,

the road network tends to gradually expand over time. New nodes

may emerge due to increasing sensors, while existing nodes may

disappear due to engineering renovations or equipment failures.

Further, we formally formalize the spatio-temporal OOD chal-

lenge as, 𝑒tr : {Xtr,Gtr} ≠ 𝑒te : {Xte,Gte} with P (Xte) ≠ P (Xtr)
and Gte ≠ Gtr. When dealing with the OOD challenge, we argue

that existing models have two limitations: inflexible scalability and

unreliable generalization. One major reason behind these limitations

is that they use GCN to learn node representations on pre-defined

training graphs, and this learned knowledge is tied to these specific

graphs, which cannot accurately represent unseen graphs. In par-

ticular, when dependencies between nodes change dynamically due

to spatial-temporal shifts, such as the addition or removal of nodes,

the representations aggregated through the original dependency

paths fail to respond to these shifts, substantially impeding their

generalization ability in various environments. Moreover, GCN

cannot effectively generalize the learned knowledge to emerging

nodes that are unknown to the model during the training phase.

thus, the scalability of models in variable environments also poses

a significant challenge. Traffic management personnel might be

particularly interested in the traffic conditions of these nodes to

devise updated scheduling plans.

Causal learning has garnered considerable attention in dealing

with OOD problems within the image and NLP fields [30, 62]. Cur-

rent approaches in these domains primarily focus on extracting

stable knowledge that can consistently perform well across diverse

data distributions. However, spatio-temporal OOD tasks present

twomajor challenges: (1) How to leverage GCN to learn reliable rep-

resentations that are resilient to spatio-temporal shifts. (2) How to

devise intervention mechanisms to explicitly enhance environment

environmental modeling for robust generalization.

In this paper, we propose a novel causal graph learning frame-

work for spatio-temporal OOD learning. The key idea is to ex-

tract invariant spatio-temporal dependencies among nodes that

can consistently represent the relationship of nodes across vari-

ous STG distributions, enabling a reliable aggregation path that

empowers GCN to learn generalizable representations irrespective

of specific graphs. To generate a range of distributions, we model

spatio-temporal shift by perturbing learned node dependencies

instead of manipulating the spatio-temporal graph data.

Specifically, we propose Spatio-Temporal OOD Graph Learning

Networks with Fréchet Embedding (STONE) for spatio-temporal

OOD learning. STONE comprises twomain components: a semantic

graph learning component and a graph intervention mechanism.

The first component of STONE utilizes a transformer with a gate

to effectively capture spatio-temporal heterogeneity and generate

two kinds of semantic graphs that represent dependencies among

nodes in the dimensions of temporal and spatial, respectively. To

extract stable dependencies, we first employ a Fréchet embedding

method to encode the topology information of the graphs. The

embedding space serves as a loose mapping of the global position

of nodes within the graphs and exhibits flexibility for spatial shifts.

Secondly, we design a spatio-temporal graph intervention mecha-

nism that involves perturbing two generated semantic graphs. This

perturbation process effectively simulates spatio-temporal shifts,

thereby creating variable environments. By extracting invariant

spatio-temporal dependencies from these environments, the model
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is guided by these dependencies as aggregated paths to learn a ro-

bust representation. Finally, we introduce an explore-to-extrapolate

risk term to enhance the variety of generated environments, en-

abling the model to explore and extrapolate beyond the observed

data, thereby improving its ability to handle unseen distributions.

Experiment results on various OOD traffic datasets demonstrate

that our model achieves competitive performance in generalization

performance and scalability. The main contribution of this paper

can be summarized as follows:

• To the best of our knowledge, we are the first to comprehen-

sively investigate spatio-temporal OOD learning, consider-

ing both temporal shift and structural shift.

• We propose a novel framework called STONE, which aims

to learn invariant node dependencies between nodes. This

allows the model to maintain consistent prediction perfor-

mance in variable environments.

• This framework incorporates several innovative components,

including a novel Fréchet embedding, a graph intervention

mechanism, and an intervention loss term. These compo-

nents are designed to enhance the generalization and scala-

bility of the model.

• Experimental results on multiple real-world traffic datasets

demonstrate that our model achieves competitive general-

ization and scalability across various OOD scenarios.

2 RELATEDWORK
2.0.1 Spatiotemporal graph prediction. Traffic prediction plays

a vital role in the intelligent transportation system domain [10–

12, 18, 40]. Currently, the prevalent approach transforms traffic

data into spatio-temporal graphs and employs cutting-edge spatio-

temporal graph convolutional networks to handle intricate spatio-

temporal dynamics [14, 17, 34–37, 49, 55]. Notably, D
2
STGNN [31]

combines diffusion graph convolutional networks with RNNs to

capture temporal patterns effectively. STGCN [53] utilizes TCN

to efficiently model time dependencies. HGC-RNN [52] leverages

optimization techniques based on hypergraph convolution, while

STSGCN [33] employs local graph convolution to address large-

scale graph scenarios. Nevertheless, existing models may exhibit

suboptimal performance when dealing with OOD challenges. This

limitation stems from their fundamental assumption that the test

and training environments are drawn from the same distribution.

2.0.2 OOD graph learning. Several methods have been proposed

in the field of graph representation learning to enhance gener-

alization performance for OOD problems [28, 46]. For instance,

GAUG [58] improves downstream training and inference processes

by modifying the input graph using an edge prediction module. Dis-

enGCN [24] focuses on learning representations that disentangle

distinct and informative factors within the graph data, assigning

these factors to different parts of the factorized vector representa-

tions. OOD-GNN [16] introduces a nonlinear graph representation

decorrelation approach utilizing random Fourier features to elimi-

nate statistical dependence between causal and noncausal graph

representations generated by the graph encoder.

2.0.3 OOD learning in the time domain. There are some OOD

learning models in the time domain to address shifts of time se-

ries data. For example, AdaRNN [5] clusters historical time se-

quences into different classes and dynamically matches input data

to these classes to identify contextual information. Other invariance

learning models for sequential data are commonly used to learn

disentangled seasonal-trend representations [44] or environment-

specific representations [50]. DIVERSIFY [23] attempts to exploit

subdomains within a whole dataset to counteract issues induced

by non-stationary generalized representation learning. However,

these models fail to model spatial dependencies.

2.0.4 Spatio-temporal OOD learning with temporal shift. Influenced
by the advancements in OOD graph learning within the recommen-

dation domain, researchers have recently moved their attention

towards exploring the problem of OOD with temporal shifts. For

example, CauSTG [64] presents a causal framework that is capable

of transferring local and global spatio-temporal invariant relations

to out-of-distribution scenarios. CaST [48] utilizes a causal model

(SCM) to interpret the data generation process of spatio-temporal

graphs. It employs back-door adjustment to separate the invariant

components from the temporal environment. STEVE [6] encodes

traffic data into two disentangled representations and utilizes spatio-

temporal environments as self-supervised signals to incorporate

contextual information into these representations. This enhances

the generalization ability of the learned context-oriented representa-

tions, thereby improving OOD generalization. However, the current

research primarily focuses on investigating the effects of temporal

drift and fails to consider the evolution of the graph structure.

3 PROBLEM PRELIMINARIES
3.0.1 Spatio-temporal graph. We use a graph structure to represent

spatio-temporal data denoted as G = (𝑉 , 𝐸,A), where 𝑉 means the

node set with 𝑁 nodes and 𝐸 means the set of edges, A ∈ R𝑁×𝑁 is

the adjacency matrix. We use 𝑥𝑡 ∈ R𝑁×𝑑 to represent the historical

graph data of 𝑁 nodes at 𝑡-th time step, where 𝑑 means the number

of features.

3.0.2 Spatio-temporal graph prediction. Given a training environ-

ment 𝑒 comprising two parts: the graph G and the training data

X, this task aims to learn a prediction function F that takes the

observed data of the past 𝑇 time steps as input, x ∈ R𝑇×𝑁×𝑑 =

{𝑥1, · · · , 𝑥𝑇 } sampled from X, to predict the future data in 𝑇𝑃 time

steps. The parameters of F are optimized by calculating the loss

between the predicted value and the ground truth 𝑦 as follows:

min

F
E(x,𝑦)∼P(𝑥,𝑦 |𝑒 ) [L(F (x), 𝑦)] . (2)

3.0.3 Spatio-temporal OOD learning. The goal of spatio-temporal

OOD learning is to find a function F that effectively makes predic-

tions for given input graph data from any of support environments

E.
min

F
max

𝑒∗∈E
E(x,𝑦)∼P(x,𝑦 |𝑒∗ ) [L(F (x), 𝑦)] . (3)

Definition: Self-attentionmechanismSA (·). Self-attentionmech-

anism can learn the global correlation between different positions

in the input sequence, which is widely applied in the field of time

series analysis [61]. Given an input H ∈ R𝑁×𝑑ℎ , the self-attention
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Figure 2: The details of the proposed model. Our framework first models spatio-temporal heterogeneity and extracts two
semantic graphs, and then we perturb semantic graphs to create variable environments, enabling the model to learn invariant
dependencies from these environments.

mechanism SA (·) computes the attention coefficient by the dot

product operation:

SA (H) = Softmax

[ (
H𝑊𝑞 + 𝑏𝑞

)
(H𝑊𝑘 + 𝑏𝑘 )⊤√
𝑑𝑥

]
. (4)

where𝑊𝑞 ,𝑊𝑘 ∈ R𝑑ℎ×𝑑𝑥 , 𝑏𝑞 , and 𝑏𝑘 are learnable parameters. We

can obtain an attention matrix with size 𝑁 × 𝑁 .

4 METHOD
In this section, we present the details of STONE, as illustrated in Fig-

ure 2 and Algorithm 25. We provide an overview of the framework

and subsequently explain each component of the model individu-

ally.

4.1 Overview of STONE
STONE consists of three main modules that contribute to its func-

tionality: a semantic graph learning module for acquiring semantic

graphs from input data and prior knowledge, a spatio-temporal

graph convolution module for consolidating information across se-

mantic graphs to make predictions, and a graph intervention mech-

anism that aims to create diverse spatio-temporal environments

where the first two modules can extract invariable knowledge.

Spatio-temporal graph learning module. The input data x ∈
R𝑇×𝑁×𝑑 and the adjacency matrix A ∈ R𝑁×𝑁 of the graph are

passed through embedding layers, which integrates static prior

information into the model. Subsequently, gated transformers are

employed to effectively model spatio-temporal heterogeneity. This

process generates two types of semantic graphs: a spatial semantic

graph denoted as 𝐷𝑠 , and a temporal semantic graph denoted as

𝐷𝑡 . 𝐷𝑡 captures the similarity of time-varying features between

nodes, providing insights into their temporal dependencies. On the

other hand, 𝐷𝑠 encodes graph topology information, describing the

affinity between nodes based on their positions within the graph.

We use spatiotemporal graph convolutional networks to aggregate

temporal and spatial information from these two semantic graphs

separately, and the generated node representations are denoted as

𝑋𝑜 and 𝑆𝑜 . Finally, a gated decoder is employed to decode 𝑋𝑜 and

𝑆𝑜 for making predictions.

Graph intervention mechanism.We design a graph interference

mechanism for spatio-temporal OOD learning, and this mechanism

perturbs two generated semantic graphs, 𝐷𝑠 and 𝐷𝑡 by randomly

masking edges within them. In fact, This process simulates spatial

and temporal shifts, resulting in the creation of diverse intervention

environments. By extracting invariant spatio-temporal dependen-

cies from these environments, spatio-temporal graph convolutional

networks can generate generalizable node representations. Further,

we introduce an explore-to-extrapolate risk term to enhance the

variety of intervention environments which can prompt the model

to explore and extrapolate beyond the observed data.

4.2 Spatial Semantic Graph Learning
4.2.1 Node embedding. Node embedding technique has been proven

to enhance prediction performance by incorporating graph topol-

ogy information [60]. However, traditional node embedding meth-

ods struggle with spatial shifts. For instance, Random-walk based

methods, such as node2vec, sample local substructure, and this is

sensitive to shifts.

To solve this problem, we develop a novel Fréchet embedding.

This method can preserve graph local and global context infor-

mation by encoding the distance affinity between the nodes and

the selected anchor points, which can well response to the dy-

namic nature of the graph. Specifically, given the adjacency matrix

A of a graph, this method can return a low-dimensional vector

𝑆𝑖𝑛 ∈ R𝑁×𝑑𝑒 .
Definition 1: Fréchet Embedding. For a metric space (𝑉 ,𝑑𝑉 ), we
define an function 𝑓 : 𝑉 → ℓ

𝑑𝑒
𝑝 as Fréchet embedding, if each of the
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coordinates 𝑓𝑖 is proportional to the distance with anchor setsV ,

that is,

𝑓𝑖 (𝑢) = 𝛼𝑖 · 𝑑𝑉 (𝑢,V𝑖 ) = 𝛼𝑖 ·min

𝑣∈𝑉𝑖
𝑑𝑉 (𝑢, 𝑣), ∀𝑢 ∈ 𝑉 ,∀𝑖 = 1, . . . , 𝑑𝑒 .

(5)

whereV𝑖 means 𝑖-th anchor set with𝑑𝑒 anchors, and 𝑎𝑖 is a numeric

factor. 𝑉 is the node set, and a metric function 𝑑𝑉 (·) on the set 𝑉

is called an ℓ𝑝 metric if there exists a natural number 𝑑𝑒 and an

embedding of (𝑉 ,𝑑) into the space ℓ
𝑑𝑒
𝑝 . For 𝑝 = 2, ℓ2 would be an

Euclidean metric. A pseudometric ℓ𝑝 is defined similarly.

Proposition 1: Spatio-temporal graph Fréchet embedding. To
define spatio-temporal graph Fréchet embedding, we select K-order

Manhattan distance [29] as the metric 𝑑𝑉 with nodes set 𝑉 of 𝐺

to form the metric space (𝑉 ,𝑑𝑉 ). Each dimension of the Fréchet

embedding represents the minimum of the metric between nodes

concerning a fixed subset V of the set of nodes 𝑉 , and we call

such a fixed subset the anchor sets. We obtain ⌈𝑙𝑜𝑔𝑁 ⌉ anchor sets
for each resampling, and a total of 𝑅 rounds of resampling are

performed to obtain 𝑅 × ⌈𝑙𝑜𝑔𝑁 ⌉ anchor sets {V}𝑅×⌈𝑙𝑜𝑔𝑁 ⌉
1

. In each

round 𝑖 ∈ {1, . . . , 𝑅}, we sample 𝑁 ∗ 2− 𝑗 nodes into anchor setV𝑖 𝑗 1
for 𝑗 ∈ {1, 2, ..., ⌈𝑙𝑜𝑔𝑁 ⌉}, following a specific rule: for 𝑗-th anchor

set V𝑖 𝑗 in 𝑖-th resampling round, any node 𝑢 in 𝑉 is selected as

anchor node inV𝑖 𝑗 with probability 2
− 𝑗
. Given the metric space

(𝑉 ,𝑑𝑉 ) and {V}
𝑅×⌈𝑙𝑜𝑔𝑁 ⌉
1

, we define spatio-temporal graph Fréchet

embedding as 𝑓 : 𝑉 → ℓ
𝑅×⌈𝑙𝑜𝑔𝑁 ⌉
𝑝 , where 𝑓𝑖 𝑗 (𝑢) = 𝛼𝑖 𝑗𝑑 (𝑘 )𝑉

(
𝑢,V𝑖 𝑗

)
,

where 𝛼𝑖 𝑗 is a learnable parameter with

∑𝑅
𝑖=1

∑⌈𝑙𝑜𝑔𝑁 ⌉
𝑗=1

𝛼
𝑝

𝑖 𝑗
=1 for

given metric space ℓ𝑝 .

Property. The Fréchet embedding can preserve the structural in-

formation of the original metric space by the relative positions

between the perceptual nodes and the selected anchor set. This

means that closely connected nodes within the graph also have

close embeddings, thus the embedding space has good generaliza-

tion and scalability. On the one hand, spatial shifts do not lead

to significant deviations in this embedding space, hence the node

dependencies are elastic; on the other hand, new nodes can easily

obtain good initial embedding in this space by calculating their

distances to the anchors, thereby enhancing the model’s scalability.

We carefully illustrate this through ablation experiments in 5.4 and

visual studies in 5.5.

The Fréchet embedding, in reality, is not isometric; it undergoes

slight changes in distances while maintaining the graph structure

to a certain extent. These alterations in the distances reflect the

deviation between the embedding space and the original space. Sub-

sequently, we will demonstrate that our embedding is characterized

by a low distortion upper limit of 𝑂 (𝑙𝑜𝑔𝑁 ).
Definition 2: Distortion. Given a metric space (𝑉 ,𝑑𝑉 ) and em-

bedding metric space (𝑌,𝑑𝑌 ), an injective mapping 𝑓 : 𝑋 → 𝑌 is

called a 𝐷-embedding, where 𝐷 ≥ 1 is a real number if there exists

a constant 𝑟 > 0, 𝑎 ≥ 1:

𝑟 · 𝑑𝑉 (𝑢, 𝑣) ≤ 𝑑𝑌 (𝑓 (𝑢) , 𝑓 (𝑣)) ≤ 𝐷𝑟 · 𝑑𝑉 (𝑢, 𝑣) , ∀𝑢, 𝑣 ∈ 𝑉 . (6)

The infimum of the numbers 𝐷 such that 𝑓 is a 𝐷-embedding is

called the distortion of 𝑓 .

1
The value ⌈log𝑁 ⌉ can guarantee that the expected number of anchor nodes per set

is greater than 1 and achieves less distortion.

Theorem 1: Bourgain theorem. This tells us that the mapping

function 𝑓 in spatio-temporal graph Fréchet embedding constructed

by the random sample algorithm satisfies:

1

𝑂 (𝑙𝑜𝑔𝑁 )𝑑
(𝑘 )
𝑚ℎ
(𝑢, 𝑣) ≤ E𝑓 ∥ 𝑓 𝑢 − 𝑓 𝑣 ∥𝑙𝑝≤ 𝑑

(𝑘 )
𝑉
(𝑢, 𝑣) ,∀𝑢, 𝑣 ∈ 𝑉 .

(7)

Thus, the distortion of the embedding is 𝑂 (𝑙𝑜𝑔𝑁 ).

4.2.2 Spatial gated transformer for graph leanring. Given the out-

put from the spatial Fréchet embedding layer 𝑆𝑖𝑛 ∈ R𝑁×𝑑𝑒 where

𝑑𝑒 = ⌈𝑙𝑜𝑔𝑁 ⌉ × 𝑅, we further propose a spatial gated transformer to

extract deep embedding. Then, we use the self-attention mechanism

to generate a spatial semantic graph.

Specifically, we use two MLP layers to map 𝑆𝑖𝑛 into another

dimensional feature space as follows:

𝑆 (1) = 𝑅𝑒𝐿𝑈
(
𝑆𝑖𝑛𝑊

(0)
1
+ 𝑏 (0)

1

)
𝑊
(0)
2
+ 𝑏 (0)

2
. (8)

where𝑊
(0)
1

, 𝑏
(0)
1
,𝑊
(0)
2

, and 𝑏
(0)
2

are learnable parameters. Then a

spatial gated transformer uses the self-attention function SA (·) to
calculate the similarity between nodes: 𝛼

(𝑙 )
𝑆

= SA

(
𝑆 (𝑙 )

)
∈ R𝑁×𝑁 ,

where 𝑆 (𝑙 ) ∈ R𝑁×𝑑
(𝑙 )
𝑠 means the input of 𝑙-th layer. The output

vectors are then fused to obtain spatial representations with a gate:

𝑆 (𝑙+1) = 𝜎 (𝑙 )
𝑆
⊙ ReLU

[
𝛼 (𝑙 )

(
𝑆 (𝑙 )𝑊 (𝑙 )𝑣 + 𝑏 (𝑙 )𝑣

)]
+
(
1 − 𝜎 (𝑙 )

𝑆

)
⊙ 𝑆 (𝑙 ) ,

𝜎
(𝑙 )
𝑆

= Sigmoid

[
𝑆 (𝑙 )𝑊 (𝑙 )𝜎 + 𝑏 (𝑙 )𝜎

]
∈ R𝑁×𝑑

(𝑙+1)
𝑠 .

(9)

where𝑊
(𝑙 )
𝑣 ,𝑏

(𝑙 )
𝑣 ,𝑊

(𝑙 )
𝜎 , and𝑊

(𝑙 )
𝜎 are learnable parameters. 𝑆 (𝑙+1) ∈

R𝑁×𝑑
(𝑙+1)
𝑒 is the output spatial representation. 𝜎

(𝑙 )
𝑆

is a gate to filter

out redundant information. After two spatial gated transformer

layers, the output embedding vector is denoted as 𝑆𝑠 . Then we use

the attention mechanism to generate spatial semantic graphs 𝐷𝑠 :

𝐷𝑠 = SA (𝑆𝑠 ) ∈ R𝑁×𝑁 . (10)

where this spatial semantic graph 𝐷𝑠 encodes relative position

relationships of nodes.

4.3 Temporal semantic graph learning
4.3.1 Temporal position embedding. Thismodule encodes temporal

prior information such as the date type and holiday type of the

input sequence into x ∈ R𝑇×𝑁×𝑑 , this information can help the

model better analyze temporal trends. The output of this layer is

denoted as 𝑋 0

𝑇
∈ R𝑇×𝑁×𝑑𝑡 .

4.3.2 Temporal gated convolution for graph learning. We use the

TCN architecture to extract temporal trends from spatio-temporal

graph data of each node. TCN is configured with 𝐿𝑡 causal con-

volution networks with different receptive fields to model long-

and short-term dependencies. We also introduce a gate to improve

performance. Specifically, given the input 𝑋 (𝑙 ) ∈ R𝑁×𝑇𝑙×𝑑𝑡 in the

𝑙-the layer, where𝑇𝑙 means the time-step length of input time series,

the forward process is shown as follows:

𝑋
(𝑙+1)
𝑇

= 𝜎𝑙𝑡 ⊙
(
𝜃𝑘𝑡 ∗𝑡 𝑋

(𝑙 )
𝑇

)
∈ R𝑁×𝑇𝑙+1×𝑑𝑡 ,

𝜎𝑙𝑇 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

[
𝜃𝑘𝑑 ∗𝑡 𝑋

(𝑙 )
𝑇

]
∈ R𝑁×𝑇𝑙+1×𝑑𝑡 .

(11)
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where 𝜃𝑘𝑡 and 𝜃𝑘𝑑 are learnable parameters, 𝑘𝑡 and 𝑘𝑑 are kernel

sizes of causal convolution networks. 𝜎𝑙
𝑇
is a gated and the residual

connection technique is used for smooth learning. Finally, we splice

the output of each layer to and merge information of all time-steps:

𝑋𝑡 = 𝑅𝑒𝐿𝑈

[
𝑋
(0:𝐿𝑡 )
𝑇

×2𝑊 1

𝑡

]
×2𝑊 2

𝑡 ∈ R𝑁×1×𝐶𝑡 ,

𝑋
(0:𝐿𝑡 )
𝑇

= 𝑋
(0)
𝑇
⊕ 𝑋 (1)

𝑇
⊕ . . . ⊕ 𝑋 (𝐿𝑡 )

𝑇
∈ R𝑁×

(∑𝐿𝑡
𝑙=0
𝑇𝑙

)
×𝐶𝑡

.

(12)

where𝑊 1

𝑡 ∈ R
(∑𝐿𝑡

𝑙=0
𝑇𝑙

)
×𝑑𝑡𝑤

and𝑊 2

𝑡 ∈ R𝑑
𝑡
𝑤×1 are learnable parame-

ters, ×2 means tensor multiplication in the second dimension and

⊕ means the concatenation of tensors. Finally, we also use the

attention mechanism to calculate the similarity between nodes:

𝐷𝑡 = SA (𝑋𝑡 ) ∈ R𝑁×𝑁 . (13)

where the similarity matrix 𝐷𝑡 ∈ R𝑁×𝑁 means the correlation of

the flow distribution between nodes.

4.4 Spatio-temporal Graph Convolutional
Network

GCN has been shown to be effective in processing graph data in

multiple tasks [2? –4]. Given learned temporal feature vector 𝑋𝑡
with temporal semantic matrix𝐷𝑡 and spatial feature vector 𝑆𝑖 with

the spatial semantic matrix 𝐷𝑠 , we use diffusion graph convolution

with 𝑍 diffusion steps as spatio-temporal graph convolutional net-

works to aggregate the information of two dimensions separately.

We exchange the two matrices to fuse spatio-temporal information:

𝑋𝑜 =

𝑍∑︁
𝑖=1

𝜃𝑠 ∗𝑠 (𝐼𝑠 + 𝐷𝑠 )𝑖 𝑋𝑡 ∈ R𝑁×𝑑𝑜 ,

𝑆𝑜 =

𝑍∑︁
𝑖=1

𝜃𝑡 ∗𝑠 (𝐼𝑡 + 𝐷𝑡 )𝑖 𝑆𝑠 ∈ R𝑁×𝑑𝑜 .

(14)

where 𝜃𝑠 and 𝜃𝑡 are learnable kernel parameters. 𝐼𝑠 and 𝐼𝑡 denote

the identity matrices of 𝐷𝑡 and 𝐷𝑠 , respectively.

4.5 Spatio-temporal OOD learning
The traditional spatio-temporal learning process only allows the

model to adapt to the specific training environment, which limits

its ability to handle out-of-distribution data with spatio-temporal

shifts. To overcome this limitation, it is necessary to expose the

model to diverse training environments, enabling it to learn invari-

ant node representations. However, directly generating variable

out-of-distribution spatio-temporal data is computationally com-

plex. To tackle this challenge, we propose a novel graph intervention

mechanism that perturbs generated semantic graphs, thereby sim-

ulating training data from variable environments. Additionally, we

introduce a loss term that encourages the model to explore and

extrapolate beyond the observed data, enhancing its capability to

handle unseen scenarios.

4.5.1 Noise disturbance. We randomly add noise𝛾 ∼ 𝜋 (0, 1), which
is drawn from the standard normal distribution, into the output

vector 𝑆𝑠 from the Fréchet embedding layer. This process changes

the spatial dependencies of nodes and simulates spatial shifts, which

can help the model explore a more robust embedding space.

4.5.2 Spatio-temporal graph intervention mechanism. To illustrate

the graph intervention mechanism, let’s consider the spatial se-

mantic 𝐷𝑠 as an example. We create an intervention matrix𝑀𝑠 ∈
[0, 1]𝑁×𝑁 , where each row𝑢 follows a binomial distributionB (1, 𝑝 (𝑢)).
The probability 𝑝 (𝑢) is calculated using the softmax function with

learnable parameters𝜋𝑢 . Thus, its 𝑖-th row and 𝑗-th column𝑀𝑆 [𝑖, 𝑗]
is a binary to indicate whether 𝐷𝑠 [𝑖, 𝑗] is masked. The setting that

each row in𝑀𝑆 is sampled from the same learnable binomial distri-

bution is to improve computational efficiency. Then, By performing

the dot product between𝑀𝑆 and 𝐷𝑠 , we can generate a new adja-

cency matrix 𝐷𝑠 , which would be used in the graph convolution

operation in Equ.14. This matrix can be viewed as a changed spatial

dependence caused by spatial shifts.

In an ideal scenario, the training environment would encom-

pass all possible data distributions. However, achieving such an

exhaustive coverage is not impractical. To move towards this ob-

jective, our aim is to enrich the training environment, enabling the

model to learn from a broader spectrum of data distributions. This

enhancement facilitates better adaptation to unforeseen circum-

stances. Specifically, we create 𝐾𝑀 intervention matrices denoted

asM =

{
𝑀1

𝑠 , · · · , 𝑀
𝐾𝑀
𝑠

}
, where 𝐾𝑀 is a hyper-parameter. Similar

to the spatial semantic graph 𝐷𝑠 , we also perform a comparable

intervention strategy on the temporal semantic graph 𝐷𝑡 .

4.6 Decoder and optimization loss
We use a gate unit with MLP layers as a decoder to predict future

graph data:

𝜎𝑜𝑢𝑡 = Sigmoid

[
𝑆𝑜𝑊

𝑠
𝑜𝑢𝑡 + 𝑋𝑜𝑊 𝑖

𝑜𝑢𝑡

]
∈ R𝐾𝑀×𝑁×𝑑𝑜𝑢𝑡 ,

𝑌 = 𝜎𝑜𝑢𝑡 ⊙
(
𝑋𝑜𝑊

𝑜
𝑜𝑢𝑡 + 𝑏𝑜𝑜𝑢𝑡

)
∈ R𝐾𝑀×𝑁×𝑇𝑝 .

(15)

where 𝑊 𝑠
𝑜𝑢𝑡 , 𝑊

𝑖
𝑜𝑢𝑡 , 𝑊

𝑜
𝑜𝑢𝑡 , and 𝑏

𝑜
𝑜𝑢𝑡 are learnable parameters. 𝑇𝑝

means the prediction window length. The prediction loss between

predicted values 𝑌 and ground-truth values 𝑦 ∈ R𝑁×𝑇𝑝 can be

computed as follows:

L (𝑦 |M,Θ) = 1

𝐾𝑀

𝐾𝑀∑︁
𝑚=1

LΘ

(
𝑌 [𝑚] , 𝑦

)
=

1

𝐾𝑀

𝐾𝑀∑︁
𝑚=1



𝑌 [𝑚] − 𝑦


𝑙1
.

(16)

where 𝑌 [𝑚] ∈ R𝑁×𝑇𝑝 means the 𝑚-th row of 𝑌 and Θ is the

parameter set of prediction function F .
To enhance the extraction of consistent representations from

various simulated environments, we propose the Invariant Risk

Minimization (IRM) objective [1]. Furthermore, the presence of di-

verse environments can enhance the model’s capacity to generalize

to unfamiliar distributions. Therefore, we incorporate an Explore-

to-Extrapolate risk [45] to increase the variance of the intervention

matrix, enabling thorough exploration of environments and pro-

moting robust learning of the models. Hence, the optimization loss

function we employ is:

min

Θ
Var

(
L

(
𝑦 | M∗,Θ

) )
+ 𝛽L

(
𝑦 | M∗,Θ

)
,

𝑠 .𝑡 . M∗ =
{
𝑀1

∗ , . . . , 𝑀
𝐾𝑀
∗

}
= argmax

𝑚∈{1,· · · ,𝐾𝑀 }
Var

{
L

(
𝑦 | 𝑀𝑚,Θ

)}
.

(17)
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where Var(·) means the loss variance, 𝛽 is a trade-off to balance two

loss terms.

5 EXPERIMENT
In this section, we conduct a comprehensive evaluation of the gen-

eralization performance (Section 5.2) and scalability performance

(Section 5.3) of STONE
2
. We then perform ablation experiments

in Section 5.4 to verify the validity of each component. Addition-

ally, we visualize the Fréchet embedding to study its properties in

Section 5.5 and analyze the learned semantic graph in Section 5.6.

5.1 Datasets and setting
5.1.1 Original dataset. In our experiments, we utilize two datasets,

namely the SD and GBA datasets, to evaluate the effectiveness of

STONE. These datasets are subsets of the LargeST dataset [21],

which records the traffic flow data from thousands of sensors span-

ning the period from 2017 to 2021 in the Caltrans Performance

Measurement System (PeMS). SD and GBA datasets collected traffic

information from 716 and 2352 sensors, respectively, where their

spatio-temporal graphs are constructed based on the travel distance

between sensors.

5.1.2 Data processing. We use two processing methods to process

SD and GBA to imitate both spatial and temporal shifts for testing.

Temporal shift.We choose the data from 1/2019-8/2019 with 21010

timestamps for training, 9/2019-10/2019 with 7003 timestamps as

validation data, and 11/2020-12/2020 with 7022 timestamps as test-

ing data. The ratio of these three subsets is about 6:2:2.

Spatio-temporal shift.With the temporal shift, we select a certain

number of nodes for training, which amounts to 550 in the SD

dataset and 1809 in the GBA dataset. For validation sets, We select

10% of the number of training nodes from the remaining nodes

to add to training graphs and then mask 10% of them. For testing

sets, we consider three different ratios of new nodes compared to

training graphs: 10%, 15%, and 20%. Additionally, we also randomly

mask 10% of nodes in testing sets to simulate node disappearance.

Two spatio-temporal shift datasets with 𝑟% new nodes are denoted

as STSD-r and STGBA-r, where 𝑟 ∈ {10, 15, 20}. The details of these
datasets are presented in Table 1.

Table 1: Details of STSD and STGBA datasets.

Dataset STSD STGBA

Training

Time span 1/2019-8/2019 1/2019-8/2019

Nodes 550 1809

Val

Time span 9/2019-10/2019 9/2019-10/2019

Removed Nodes 55 180

New Nodes 55 180

Test

Time span 11/2020-12/2020 11/2020-12/2020

Removed Nodes 55 180

New Nodes 55/82/110 180/270/360

2
The code is available at https://github.com/PoorOtterBob/STONE-KDD-2024, where

also provides the pseudocode for STONE.

5.1.3 Model setting. We set the batch size to 64 and use the Adam

optimizer [15] with a learning rate of 1𝑒−3. The trade-off parameter,

𝛽 , of the loss function is set to 1. We stacked two gated transformer

layers to generate the semantic graphs. In the intervention mech-

anism, we create two intervention matrices, i.e., 𝐾𝑚 = 2. In the

Fréchet embedding, we perform 10 sampling rounds in the STSD

dataset and 30 sampling rounds in the STGBA dataset. We evaluate

the performance of the models using three widely used metrics:

MAE, RMSE, and MAPE at 3, 6, and 9 horizon. Models are directly

tested on testing sets after training without further fine-tuning.

5.1.4 Baselines. We compare our proposed method, STONE, with

SOTA traffic prediction models and spatio-temporal OOD learning

methods. However, it is important to note that some SOTA mod-

els cannot be run under the spatio-temporal shift setting, as their

core component parameters are coupled to the scale of the graph,

such as D
2
STGNN [31] and PDFormer [9]. The traffic prediction

models include Historical Average (HL), GWNet [47], STGCN [53],

and STNN [51]. For spatio-temporal OOD learning methods, we

compare against CauSTG [64] and CaST [48].

5.2 Generalization performance of models
The prediction performance of all nodes on the STSD and STGBA

datasets with varying rates of new nodes is presented in Table 2.

In the realm of various OOD spatio-temporal datasets, GWNet

achieved relatively lower errors, likely attributed to its usage of

diffusion graph convolutional networks. This enables bidirectional

modeling of spatio-temporal dependencies, thereby improving its

capacity to adapt to shifts in space and time. Conversely, STGCN

exhibited higher prediction errors by relying solely on information

aggregation according to a predetermined graph structure, making

it vulnerable to spatial changes. Consequently, its predictive perfor-

mance becomes increasingly limited with the increase in new nodes.

In contrast, STNN outperforms STGCN in prediction accuracy by

incorporating attentional mechanisms to capture general spatio-

temporal correlations independent of a specific training graph. Nev-

ertheless, its prediction accuracy is somewhat compromised due to

the assumption of independently and identically distributed data.

On the other hand, CaST is designed to address temporal shifts

specifically but encounters challenges in effectively accommodating

spatial shifts. These models demonstrate superior performance in

STGBA datasets with larger graphs, offering more comprehensive

spatio-temporal insights.

Our model achieved competitive prediction performance in vari-

ous OOD scenarios, with a maximum improvement of up to 18.13%

in terms of MAPE. This improvement can be attributed to our ap-

proach of creating a range of training environments by perturbing

the learned semantic graphs. By training on these distributions,

STONE can effectively learn generalizable knowledge, which keeps

consistent performance across OOD scenarios.

5.3 Scalability performance of models
We evaluated the scalability of our model by reporting the predic-

tion performance of new nodes in the testing datasets. The experi-

ment results are shown in Table 3. We observe that GCN-based mod-

els can perform neighborhood aggregation mechanisms to generate

representations for new nodes. However, models like STNN and
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Table 2: Generalization performance of each model in OOD traffic datasets with spatio-temporal shifts. The best results are
marked in bold and the second best results are underlined.

STSD dataset with ratio of new nodes: (10%/15%/20%)

Model HL STGCN [53] GWNet [47] STNN [51] CaST [48] CauSTG [64] Ours

3 horizon

MAE 29.66/29.78/29.69 26.62/24.88/23.52 18.86/21.58/19.12 39.82/40.23/35.58 24.23/24.05/23.89 26.42/25.31/26.17 18.16/19.36/19.32
RMSE 44.55/44.66/44.52 36.49/34.55/34.84 29.40/30.25/34.27 58.02/58.66/54.59 38.42/38.06/37.75 40.01/40.17/39.89 29.67/31.42/31.40
MAPE 21.43/21.45/21.41 48.51/40.54/30.76 18.90/18.62/18.44 39.53/39.27/20.76 20.73/20.79/30.76 23.04/21.38/22.16 15.50/16.69/16.87

6 horizon

MAE 52.05/52.31/52.19 34.35/33.32/32.05 27.15/27.01/27.62 39.78/40.20/35.82 35.96/35.71/35.49 40.01/41.76/40.93 26.32/26.23/26.24
RMSE 75.30/75.51/75.34 40.38/42.82/45.97 42.89/41.70/41.35 57.77/58.43/54.91 55.47/55.00/54.63 60.34/66.21/66.31 41.76/40.79/40.91
MAPE 39.43/39.41/39.36 55.77/49.54/43.31 30.88/30.36/30.12 40.40/40.13/44.21 36.35/36.47/36.39 41.46/41.82/42.17 22.08/26.16/26.48

12 horizon

MAE 94.13/94.61/94.44 45.28/47.07/46.71 39.31/39.14/40.32 43.02/43.42/41.51 61.63/61.21/60.86 64.13/66.00/65.34 41.05/36.17/36.19
RMSE 128.11/128.59/128.36 64.04/64.67/65.64 58.09/57.63/59.60 62.31/62.89/63.39 90.39/89.74/89.19 89.42/90.16/91.02 55.26/53.79/54.10
MAPE 82.08/81.94/81.85 56.49/57.87/68.57 45.47/44.89/44.62 43.36/43.10/48.88 60.40/60.72/60.52 65.37/65.31/65.04 35.55/38.57/38.94

STGBA dataset with ratio of new nodes: (10%/15%/20%)

Model HL STGCN [53] GWNet [47] STNN [51] CaST [48] CauSTG [64] Ours

3 horizon

MAE 27.09/26.94/26.97 19.36/25.19/35.65 19.23/17.56/18.53 37.48/37.33/37.55 26.86/26.78/26.82 30.14/30.41/31.13 17.67/18.73/18.83
RMSE 40.37/40.16/40.15 29.13/34.78/36.27 30.01/29.34/32.62 54.31/54.18/54.43 37.05/36.95/36.99 41.03/42.86/43.02 27.84/29.98/30.13
MAPE 18.90/18.86/18.83 15.82/26.85/30.33 13.71/14.77/12.86 31.78/31.94/31.96 34.83/35.20/37.94 36.13/37.40/36.93 12.82/12.84/12.91

6 horizon

MAE 47.04/46.80/46.85 25.68/33.73/35.86 28.10/25.24/26.71 37.07/36.93/37.15 36.89/36.78/36.85 40.35/41.14/41.66 25.35/25.16/25.37
RMSE 67.46/67.14/67.15 43.77/46.36/48.49 42.78/37.81/40.28 53.85/53.71/53.97 51.37/51.23/51.29 55.39/55.49/55.43 37.80/38.55/38.88
MAPE 34.53/34.45/34.41 21.38/34.40/39.09 20.88/20.41/19.09 31.55/31.69/31.73 43.37/43.80/43.50 46.15/46.18/46.24 18.17/18.21/18.39

12 horizon

MAE 84.85/84.45/84.50 34.50/48.59/50.90 39.91/38.94/39.24 41.16/41.03/41.23 58.87/58.67/58.79 63.15/64.28/64.05 36.35/36.04/36.51
RMSE 114.83/114.34/114.36 59.81/66.16/68.18 57.91/56.40/57.33 59.67/59.55/59.77 81.25/80.99/81.12 88.31/89.35/89.02 53.20/52.80/53.55
MAPE 70.53/70.73/70.25 33.18/46.94/51.19 30.53/32.80/28.83 34.16/34.31/34.36 65.61/66.31/65.79 70.14/70.64/70.64 28.38/28.47/28.74

STGCN exhibited larger prediction errors, potentially because their

parameters are coupled with the road network structure, resulting

in insufficient information to generate accurate representations for

emerging nodes. GWNet achieved better prediction performance by

utilizing diffusion graph convolutional networks, which aggregate

bidirectional information to provide more comprehensive insights.

In contrast, our proposed model achieved optimal scalability.

This is because our model learns a robust spatio-temporal semantic

graph structure, enabling accurate predictions by perceiving the

semantic neighborhood information of unseen nodes.

5.4 Ablation experiment
To evaluate the effectiveness of each contribution in the model,

we conducted ablation experiments on the STSD-10% dataset. We

created three variations: (1) W/O IL, where we removed the inter-

vention loss term. (2) W/O Emb, where we removed the Fréchet

embedding. (3) W/O Noi, where we no longer added random noise

to the node embeddings after the Fréchet embedding layer.

The results of the 3-horizon prediction are shown in Table 4.W/O

IL achieved worse errors because the intervention loss term helps

improve the diversity of the variable environment, thereby enhanc-

ing the model’s generalization performance. W/O Emb had higher

errors because the GCN, which is sensitive to structural shifts, failed

to generate accurate representations for the evolved graph. On the

other hand, the Fréchet embedding space loosely preserves the

graph’s structural information, making semantic neighbors more

robust. This property also improves the scalability performance for

new nodes by perceiving their semantic neighbors. In summary,

each variant performed inferior to the proposed model, demonstrat-

ing the effectiveness of each component.

Figure 3: Node position and Fréchet embedding visualization.

5.5 Fréchet embedding study
We selected several nodes from the STSD-10% dataset and extracted

their embedding vectors from 𝑆𝑖𝑛 , which are the output of the

Fréchet embedding module. Then, we applied the t-SNE technique

to reduce the dimensions of these vectors. Figure 3 visualizes the

positions and embedding vectors of these nodes. It is evident that

the Fréchet embedding effectively preserves the structural infor-

mation of the graph. Nodes that are close in the graph also have

close embeddings in space, indicating the preservation of proximity

relationships. Additionally, the Fréchet embedding space is elastic

to the shift of the graph structure, as the addition or removal of

nodes does not cause significant changes in the embedding space.

5.6 Semantic graph visualization study
We extracted optimized spatial and temporal semantic graphs from

STONE trained in STSD-10%. Figure 4 displays the edge weights

of 10 nodes across these two graphs along with the predefined

graph based on geographic location. In the predefined graph, the
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Table 3: Scalability performance of each model in OOD traffic datasets with spatio-temporal shifts. The best results are marked
in bold and the second best results are underlined.

ST-SD dataset with ratio of new nodes: (10%/15%/20%)

Model HL STGCN [53] GWNet [47] STNN [51] CaST [48] CauSTG [64] Ours

3 Horzion

MAE 29.64/30.57/29.85 36.19/34.46/29.59 19.58/19.58/19.58 42.56/44.52/36.37 23.37/22.24/21.75 42.56/44.52/39.37 17.22/18.92/18.51
RMSE 43.26/44.51/43.69 48.46/42.91/41.29 30.11/30.05/29.76 61.74/65.06/55.62 36.11/34.11/33.27 61.74/65.06/59.62 26.85/30.43/29.83
MAPE 21.48/21.56/21.32 48.74/39.05/29.69 19.02/19.35/18.38 37.23/36.00/25.38 19.40/20.30/20.19 37.23/36.00/25.38 14.93/18.67/18.60

6 Horzion

MAE 51.56/53.70/52.63 51.81/45.34/43.07 28.48/28.33/28.55 42.72/44.68/36.63 35.05/33.36/32.69 42.72/44.68/36.63 24.91/26.31/25.71
RMSE 73.30/75.84/74.71 71.92/62.80/60.62 42.82/41.85/41.59 61.88/65.06/55.95 53.09/50.34/49.28 61.88/65.06/55.95 38.60/40.71/40.01
MAPE 40.63/39.79/39.39 61.74/53.30/42.74 30.42/31.71/29.10 38.11/36.70/25.19 32.96/34.98/34.88 38.11/36.70/25.19 22.03/30.77/30.43

12 Horzion

MAE 93.11/97.12/95.46 76.75/68.71/66.13 41.98/41.40/42.12 45.01/47.31/42.13 59.80/57.15/56.06 45.01/47.31/42.13 39.53/37.78/36.74
RMSE 125.86/130.04/128.33 109.81/95.18/92.64 63.23/60.96/61.35 65.25/68.45/64.07 86.98/83.12/81.46 65.21/68.42/64.03 59.37/56.51/55.37
MAPE 85.42/83.31/82.39 74.37/75.54/60.52 46.56/44.25/43.58 40.51/43.05/42.82 52.78/87.73/57.30 41.33/43.02/44.11 34.71/36.95/34.27

ST-GBA dataset with ratio of new nodes: (10%/15%/20%)

Model HL STGCN [53] GWNet [47] STNN [51] CaST [48] CauSTG [64] Ours

3 Horzion

MAE 26.67/25.65/26.16 26.14/32.97/35.14 21.64/18.00/21.39 36.98/36.41/37.70 25.88/25.60/26.17 30.15/27.21/29.87 17.64/18.25/19.59
RMSE 39.20/37.91/38.44 35.91/46.41/46.11 32.79/28.59/32.98 52.98/52.94/54.37 35.19/34.98/35.72 40.04/39.15/40.61 27.03/29.73/30.16
MAPE 18.26/18.13/18.19 21.99/30.60/35.59 14.62/14.87/16.48 29.24/31.54/31.58 30.26/34.56/33.17 34.13/35.16/36.03 12.81/13.02/13.15

6 Horzion

MAE 46.54/44.86/45.62 37.28/47.88/52.03 33.01/25.89/33.46 36.51/35.94/37.23 35.62/35.19/35.98 38.75/39.01/38.40 25.73/24.87/25.46
RMSE 65.93/63.96/64.76 50.74/66.20/68.08 48.41/39.40/51.00 52.40/52.32/53.78 49.12/48.78/49.74 55.46/56.14/55.03 37.55/38.82/39.54
MAPE 33.55/33.29/33.31 32.07/42.58/51.97 22.99/20.55/27.13 29.01/31.27/31.34 37.31/42.68/41.14 40.14/47.43/43.27 18.61/18.69/19.08

12 Horzion

MAE 84.24/81.34/82.46 57.31/74.33/80.60 49.10/39.92/53.09 39.89/39.46/40.86 56.85/55.97/57.40 61.24/64.39/65.15 38.24/36.50/37.60
RMSE 112.84/109.71/110.98 77.88/101.28/105.41 69.42/58.67/79.15 67.16/57.30/58.88 78.24/77.21/78.94 84.32/86.42/85.22 56.56/54.26/55.81
MAPE 68.55/70.37/67.85 47.28/63.89/74.58 35.51/32.68/43.06 31.04/33.31/33.67 54.58/63.70/61.18 59.10/68.91/64.32 29.86/29.84/30.23

Table 4: Ablation experiment on STSD-10% dataset.

Model

Generalization (All nodes) Scalability (New nodes)

MAE RMSE MAPE MAE RMSE MAPE

Ours 18.17 29.67 15.51 17.23 26.85 14.93
W/O Emb 21.91 32.24 26.79 21.64 31.84 25.30

W/O IL 19.66 31.29 17.83 20.49 32.23 20.49

W/O Noi 19.36 31.43 16.69 18.92 30.43 18.67

correlations between nodes are scattered, whichmeans that a spatio-

temporal shift can disrupt the aggregation of neighborhood infor-

mation and propagate through the entire graph via message passing

mechanisms. In learned semantic graphs, nodes primarily establish

connections with a small number of crucial nodes. As a result, the

addition or removal of nodes has minimal impact. Even if some cru-

cial nodes are removed, the model can still aggregate information

from the remaining nodes in both temporal and spatial dimensions,

leading to the generation of accurate representations.

Figure 4: Edge connectivity of 10 nodes in three graphs.

6 CONCLUSION
In this paper, we introduce a new framework STONE for spatio-

temporal OOD learning. STONE integrates a semantic graph learn-

ing module to capture spatial heterogeneity and generate semantic

graphs in both temporal and spatial dimensions. Then we pro-

pose a graph intervention mechanism to perturb the generated

semantic graph to create diverse training environments. With an

Explore-to-Extrapolate loss term, STONE can extract stable spatio-

temporal aggregation information paths, thereby generating in-

variant spatio-temporal representations, which can generalize well

to unknown environments. We conduct extensive experiments to

evaluate the effectiveness of STONE. The results demonstrate that

STONE achieves competitive performance in terms of both gener-

alization and scalability.
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A PSEUDO-CODE OF STONE
We provide the pseudo-code of STONE for spatio-temporal ODD

prediction in Algorithm 1.

B EXPERIMENT
B.1 Setting
To define the graph topology, we utilized the common practice to

construct the normalized geographic adjacency matrix N (A) ∈
R𝑁×𝑁 for spatio-temporal graph Fréchet embedding computing

via the Gaussian kernel [32] with threshold 0.1, whose entries are

A𝑢𝑣 =

{
exp

(
−𝑑𝑢𝑣
𝜎2

)
, if exp

(
−𝑑𝑢𝑣
𝜎2

)
> 0.1,

0, otherwise.
(18)

N (A) = A𝑢𝑣∑
𝑣∈𝑉 A𝑢𝑣

(19)

Here, 𝑑𝑢𝑣 denotes the road network distance from sensors 𝑢 to 𝑣 ,

and 𝜎 is the standard deviation of all distances.

To optimize performance, we set the batch size to 64 and used

the Adam [15] optimizer with a learning rate of 1𝑒 − 3 and weight

decay of 1𝑒 − 4. Additionally, we implemented a learning rate decay

strategy where the learning rate is reduced by a factor of 0.95 every

10 training steps, and a gradient clipping strategy with a threshold

of 5. The loss function’s trade-off parameter, 𝛽 , is set to 1. The

attention network dimension for the adaptive semantic graphs is

20. The TCN comprises 5 hidden layers with a dimension of 128.

There are 2 layers of gated transformer, with a hidden dimension

of 64 for the SD dataset and 128 for the GBA dataset. The decoder

network has a hidden dimension of 128.

B.2 Baseline setting
• HL [19] selects the data from the last observation as the

predicted value for all future time points.

Algorithm 1: STONE for spatio-temporal ODD prediction

Input: Fréchet embedding 𝑆𝑖𝑛 ∈ R𝑁×𝑑𝑒 , observed sampled

traffic flow data x ∈ R𝑇×𝑁×𝑑 , ST-module of STONE

F with parameters Θ, masking operators

M ∈ R𝐾𝑀×𝑁×𝑁

Output: Predicted traffic flow 𝑌

1 for 𝑙 = 1, 2, ..., 𝐿𝑠 do
2 if 𝑙 == 1 then
3 𝑆 (1) ← 𝑆𝑖𝑛 in Eq. 8; // Shallow encoding

4 else
5 𝑆 (𝑙 ) ← 𝑆 (𝑙−1) in Eq. 9; // Gated transformer

6 end
7 end
8 𝐷𝑡 ← 𝑆 (𝐿𝑠 ) ;
9 𝐷𝑠 ← 𝑆𝑠 in Eq. 10; // Spatial semantic graph

10 for 𝑙 = 0, 1, 2, ..., 𝐿𝑡 do
11 if 𝑙 == 0 then
12 𝑋

(0)
𝑇
← pos-emb.(x); // Shallow encoding

13 else
14 𝑋

(𝑙 )
𝑇
← 𝑋

(𝑙−1)
𝑇

in Eq. 11; // Dilation TCN

15 end
16 end
17 𝑋𝑡 ← 𝑋

(0)
𝑇

, 𝑋
(1)
𝑇

, ..., 𝑋
(𝐿𝑡 )
𝑇

in Eq. 12; // Residual

concatenation

18 𝐷𝑡 ← 𝑋𝑡 in Eq. 13; // Temporal semantic graph

19 if Training phase then
20 𝐷𝑠 ← M ⊙ 𝐷𝑠 ; // Masking temporal semantic

graph

21 𝐷𝑡 ← M ⊙ 𝐷𝑡 ; // Masking spatial semantic graph

22 end
23 𝑋𝑜 ← (𝐷𝑠 , 𝑋𝑡 ) in Eq. 14; // Temporal graph diffusion

24 𝑆𝑜 ← (𝐷𝑡 , 𝑆𝑠 ) in Eq. 14; // Spatial graph diffusion

25 𝑌 ← (𝑋𝑜 , 𝑆𝑜 ) in Eq. 15; // Gate decoder

• GWNet [47] has removed the adaptive adjacency matrix due

to its lack of scalability. The dimensions for the initialization,

skip connections, and output are set to 32, 256, and 512

respectively.

• STGCN [53] consists of 2 ST-Blocks. Each ST-Block has two

layers of TCN with a dimension of 64 and a kernel size of 3,

and a ChebGCN layer with a dimension of 16. The dimension

of the output block is 128.

• STNN [51] has subgraph-conv with hidden layer dimension

32 and 64.

• CaST [48] has removed the random embedding features

of nodes, and set the hidden layer dimension to 64, with a

granularity of 20 for the environment representation.

• CauSTG [64] has removed the node representation. The 4-

layer TCNs have (5, 5, 6, 6) kernels with dimension of (12, 6,

3). We set the sub-environment partition number and model

number of the sub-environment with 6 and 4 respectively.
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B.3 Effect analysis for temporal shift
As shown in Table 5, we report the performance of each model on

STSD with only temporal shift. GWNet achieved relatively lower er-

rors, potentially because it inherited diffusion graph convolutional

networks, enabling bidirectional modeling of spatio-temporal de-

pendencies and enhancing generalization to spatio-temporal shifts.

CaST had better performance than STGCN, because it specifically

introduces causal learning to learn invariant patterns for temporal

shifts. STONE remained competitive in dealing with temporal shifts.

This is because that the proposed graph intervention mechanism

can enable the model to learn the invariable pattern efficiently.

Table 5: Prediction performance of each model on datasets
with only temporal shift.

ST-SD dataset with only temporal shift

Model

3 horizon 6 horizon 12 horizon

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HL 29.42 44.26 21.48 51.71 74.81 39.55 93.65 127.43 82.48

STGCN [53] 24.94 38.23 36.93 31.95 47.36 44.09 38.70 55.49 51.25

GWNET [47] 18.38 29.46 15.70 25.84 40.21 25.31 34.62 53.10 35.70

STNN [51] 39.59 57.73 39.69 39.51 57.42 40.56 42.83 62.04 43.54

CaST [48] 22.83 35.37 27.09 35.45 53.86 41.65 61.00 88.11 70.58

CauSTG [64] 24.97 39.48 43.34 40.04 56.98 47.15 66.83 91.27 75.13

Ours 18.26 31.24 14.95 25.06 40.93 21.84 34.46 52.82 33.35

B.4 Discussion
In this section, we discuss the limitations and the future works:

• When there are many random mask operators, the cost of

training increases exponentially, and the time it takes to

achieve convergence also increases, making it more challeng-

ing. This highlights the need for better theories of stochastic

optimization. However, this topic is beyond the scope of our

work.

• We use gated-Transformers to learn the spatio-temporal se-

mantic graphs. In the future, inspired by the progress of

graph structure learning [13], we will design more effective

spatio-temporal semantic graph learning models.

• STONE is only experimented on the transportation dataset,

and in the future, STONE will be deployed to other spatio-

temporal computing domains, such as the atmospheric do-

main.
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