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ABSTRACT
Subgraph learning has received considerable attention in its capac-
ity of interpreting important structural information for predictions.
Existing subgraph learning usually exploits statistics on predefined
structures e.g., node degrees, occurrence frequency, to extract sub-
graphs, or refine the contents via only capturing label-relevant
information with node-level sampling. Given diverse subgraph pat-
terns, and mutual independence with local correlations on graphs,
current solutions on subgraph learning still have two limitations in
extraction and refinement stages. 1) The universality of extracting
substructure patterns across domains is still lacking, 2) node-level
sampling in refinement will distort the original local topology and
none explicit guidance eliminating redundant information con-
tribute to inefficiency issue. In this paper, we propose a unified sub-
graph learning scheme, Poly-Pivot Graph Neural Network (P2GNN)
where we designate the centric node of each subgraph as the pivot.
In the extraction stage, we present a general subgraph extraction
principle, i.e., 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 between the centric and affiliated
nodes. To this end, we asymmetrically model the similarity between
each pair of nodes with random walk and quantify mutual affil-
iations in Affinity Propagation architecture, to extract subgraph
structures. In the refinement, we devise a subgraph-level exclusion
regularization to squash the target-independent information by
considering mutual relations across subgraphs, cooperatively pre-
serving a support set of subgraphs and facilitating the refinement
process for graph representation. Empirical experiments on diverse
web and biological graphs reveal 1.1%∼7.3% improvements against
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best baselines, and visualized case studies prove the universality
and interpretability of our P2GNN.
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1 INTRODUCTION
Graph-structured data is ubiquitous across various real-world sce-
narios, ranging from social networks [30, 46], citation networks [12,
50], to molecular graphs [17, 42]. Recently, Graph Neural Networks
(GNNs) have achieved great success to materialize diverse down-
stream tasks through a sparse message-passing process. However,
there is a growing recognition that the message-passing paradigm
has inherent limitations [22], i.e., the expressiveness of message
passing in traditional GNNs is upper bounded by the first order
Weisfeiler-Leman (1-WL) isomorphism test [39]. The limitation of
GNNs motivates researchers to explore more expressive architec-
ture. Most notably, subgraph-level explanations are more intuitive
and useful, as subgraphs are simple building blocks of complex
graphs and concerned with the functionalities of graphs. As a re-
sult, there is a growing trend to extract the subgraph patterns from
original data for more efficient and accurate predictions [15].

Even flourishing, there remains two open issues in subgraph-
based methods. 1) How to clearly extract major substructure pat-
terns in a graph which mostly explain the predictions [32, 47], 2)
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Figure 1: Examples of Local asymmetry in three different
scenarios by contrast observation and spectral theory. (i) The
asymmetric status between the pivot nodes and the affiliated
nodes forms a stable substructure. (ii) The low-frequency
eigenvectors often resonate with central nodes in local struc-
tures.

how to remove non-useful information, and obtain subgraphs that
maximally benefit final prediction for better generalization [18, 26].
Therefore, finding a local structure descriptor to accommodate
majority of subgraphs and reducing the target-detrimental infor-
mation to achieve the minimal but sufficient subgraphs, are two
main targets of subgraph-based methods.

Regarding substructure extractions, the mainstream solutions
often predefined the subgraph structure with prior knowledge,
such as EgoNets in social networks [41, 46], high-frequency func-
tional groups in molecular graphs [19, 20]. However, these crite-
rions of subgraph discovery require knowledge and experiences
on specific domains, and consequently hampers the universality
in extracting different substructural patterns across various do-
mains [3, 4, 19, 36, 48, 49]. Concerning information refinement, the
pioneering Graph Information Bottleneck (GIB) explores the infor-
mation theory to squash and refine information with edge-wise
sampling or node-level dropping [11, 37, 43, 44]. Unfortunately,
these existing refinement solutions suffer two limitations. First,
refining the whole graph on node levels inevitably distorts the orig-
inal local topology and corrupt the node-wise correlations, leading
to the intervention on following refinements. Then, without an
explicit guidance for redundant information elimination, existing
refinement solutions only exploit the labels to preserve the minimal
information, which is inefficient for their convergence processes.
To this end, we can summarize two issues that hinder the existing
subgraph learning from achieving universal and robust graph repre-
sentations, i.e., 1) the predefined substructure derived from domain
knowledge usually lacks universality in subgraph extraction,
2) sampling on node levels and lacking guidance of redundance
elimination introduce the distorted and inefficient refinement
process. Therefore, how to find a support subgraph set that is
minimal but sufficient for learning tasks, is still an open challenge.
Fortunately, the following two observations can potentially facili-
tate to tackle above challenges.

Firstly, to address the universality limitation of previous meth-
ods, we discover that there exists a special common pattern of 𝐿𝑜𝑐𝑎𝑙
𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, shared across the majority subgraphs. As shown in
Figure 1(i), subgraphs in web social networks are usually forged
by an EgoNet centering with Internet celebrity, which also obeys

asymmetric influencer-follower relations, urban functional regions
are dominant by the density of major functional POIs but also with
several affiliated sites, and the functional groups in molecules are
usually identified with the statistical frequencies where it also can
be interpreted by anisotropical inter-atomic attractions. Despite
the diversity of subgraph formation principles, we can still sum-
marize a common property that contributes to subgraphs, i.e., the
𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 between the centric and affiliated nodes. Quan-
titatively, consider the well-known property of Spectral Theorem
discriminating between different graph structures and substruc-
tures [22], we exploit eigenvalues to prove our observations. In
practices, the k-smaller eigenvectors depict smooth encoding co-
ordinates and reveal a comprehensive electric potential field of
neighboring nodes [13, 35]. Such principle motivates us to obtain
Figure 1(ii), which theoretically supports our 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦.
More details are provided in Appendix C.

Secondly, the content refinement is usually realized by Informa-
tion Bottleneck [37], which is prone to be fragile and inefficient as it
performs on node levels and lacks guidance for actively eliminating
redundance. Therefore, we have two observations about the refine-
ment of subgraphs. 1) nodes in a subgraph exhibit clustering effects
and a large real-world graph usually consists of multiple subgraphs
with each subgraph accounting for specific properties [2, 5, 48].
2) on inter-subgraph relationships, each subgraph should inher-
ently reveal remarkable independence where nodes in a specific
subgraph can be deemed as a collectivity and such individual col-
lectivity is informative to represent all its members. These two
observations, which are considered as the local dependence within
subgraphs and inter-independence among subgraphs [37], can ad-
vance the refinement towards a more robust and efficient manner.
Motivated by the local dependence, simultaneously discovering a
bag of subgraphs and improving sampling from node to subgraph
levels can promisingly avoid the corruptions of local topology with
redundant subgraphs removed integrally. Considering the ineffi-
ciency induced by none guidance of information elimination, the
inter-independence potentially provides a gathering and dispersion
principle for excluding redundant information and thus facilitating
the sampling process.

Present work. In this paper, to address the challenges of both
general subgraph pattern extraction and subgraph-level refine-
ments, we propose a novel and general subgraph learning scheme,
Poly-Pivot Graph Neural Network (P2GNN) where we designate the
centric node of each subgraph as the pivots in graphs. Our P2GNN
composes of an extractor and a refiner, which extract substructure
and refine subgraph information, respectively. For the extractor,
we propose a substructure extraction strategy Hitpath based on the
principle of 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦. Firstly, we design an improved ran-
dom walk, to measure the node-wise asymmetry by the differences
between pairwise random walk distances, preserving both local
topology and feature correlation. Secondly, to adaptively discover
diverse subgraphs centered with different pivots, we take Affin-
ity Propagation (AP) clustering as a basic framework and receives
node-wise asymmetric similarity from random walk, where the AP
clustering enjoys the nice property of modeling interactive relation-
ships between pivot nodes and underlying affiliated points without
pre-defining the number of subgraphs. In refiner, we refine infor-
mation on the subgraph level to maximally avoid the corruption of
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local topology, and devise a novel Exclusion-based regularization to
actively obtain support subgraphs. We also design Information Shift
Method (ISM) to verify whether the subgraphs learned from P2GNN
are with the nice support property for prediction. Specifically, we
propose to rank all the subgraphs based on sampling confidence and
realize the information shift with probability reassignment. With
our proposed ISM, we can easily exploit the prediction performance
trends to explore the support property of discovered subgraph set.

Our main contributions are summarized as:
•We emphasize the universality and efficiency of subgraph learn-

ing, and summarize a general principle of substructure extraction
𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, which is further justified by spectral theory.
• We present a two-stage subgraph learning scheme P2GNN,

which composes of an extractor and a refiner. The analysis of
Hitpath provides theoretical guarantee onmodeling the asymmetric
relationship between nodes.
• Extensive experimental results reveal that our P2GNN excels

best baselines, where our 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 can exactly cover sub-
graph patterns across datasets. A novel evaluation method ISM is
designed to verify the support property of refined subgraphs.

2 PRELIMINARIES AND DEFINITIONS
Graph. Let 𝐺 = (V, E,𝑾 ) denote a graph with |V| nodes. In par-
ticular,V = {𝑣1, 𝑣2, ..., 𝑣 |V | } is the node set, E = {𝑒𝑖 𝑗 :

〈
𝑣𝑖 , 𝑣 𝑗

〉
} is

the edge set with each pair of 𝑣𝑖 and 𝑣 𝑗 connected, and𝑾 = {𝑤𝑣𝑖 𝑣𝑗 }
denotes the weight of the edge

〈
𝑣𝑖 , 𝑣 𝑗

〉
. Besides, 𝑑(𝑣𝑖 ) denotes the

degree of node 𝑣𝑖 and N (𝑣𝑖 ) is the set of 𝑣𝑖 neighbor nodes.
Subgraph. Given a graph 𝐺 , it can be decomposed into a set

of 𝑀 subgraphs 𝐺𝑆 = {𝐺1
𝑆
,𝐺2
𝑆
, . . . ,𝐺𝑀

𝑆
}, where 𝑀 is adaptively

variable to different 𝐺 . Each disentangled subgraph is denoted as
𝐺𝑖
𝑆

= (V𝑖
𝑆
, E𝑖
𝑆

). All subgraphs in 𝐺𝑆 must satisfy the following two
conditions: (1)V = V1

𝑆
∪V2

𝑆
∪ . . . ∪V𝑀

𝑆
, (2)V𝑖

𝑆
∩V 𝑗

𝑆
= ∅ (∀𝑖, 𝑗 ∈

[1, 𝑀], 𝑖 ̸= 𝑗 ).
RandomWalk. It is a time-reversible Markov chain [24]. Given

a graph 𝐺 , and a starting node 𝑣𝑖 , in the random walk, 𝑣𝑖 will
first jump to one of its neighbors with a transition probability,
i.e., 𝑝(𝑣𝑖 → 𝑣 𝑗 ) = 1

𝑑(𝑣𝑖 ) (𝑣 𝑗 ∈ N (𝑣𝑖 )), and then it will successively
jump to high-order neighbors with corresponding probability. The
sequence of nodes 𝑣𝑖 walking through is defined as the walk path
on the graph, andH (𝑣𝑖 , 𝑣 𝑗 ) is denoted as walking distance from 𝑣𝑖
to 𝑣 𝑗 , which is the expected distance that 𝑣𝑖 first arrives at 𝑣 𝑗 .

Problem Definition. The goal of our work is to perform a sys-
tematical subgraph learning that finds a support subgraph set for
graph representation. Given a graph 𝐺 , first, we are expected to
learn a general subgraph extraction model 𝑃𝜃 (𝐺𝑆 |𝐺) to obtain a
subgraph set 𝐺𝑆 = {𝐺1

𝑆
,𝐺2
𝑆
, . . . ,𝐺𝑀

𝑆
}. Second, we further impose

the subgraph-level refinement model 𝑃𝜙 (𝐺∗
𝑆
|𝐺𝑆 ) on 𝐺𝑆 to derive

a support subgraph set 𝐺∗
𝑆
that consists of minimal but sufficient

subgraphs, simultaneously improving the performance and inter-
pretation of graph-level classification.

3 POLY-PIVOT GRAPH NEURAL NETWORK
Our P2GNN is a two-stage subgraph learning scheme, consisting of
a Local Asymmetry-based substructure extractor and a subgraph-
level information refiner via mutual exclusions. Thewhole technical
process is illustrated in Figure 2.

3.1 Substructure Extractor via Local Asymmetry
The goal of the first stage is to generalize the 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦
principle to extract subgraph structure, and to disentangle origi-
nal graph into a subgraph set. Inspired by the analogy between
node clustering and subgraph extraction, we propose a subgraph
extractor based on AP algorithm, which employs HitPath as the
asymmetric similarity measurement.

As shown in Figure 1, we discover that almost all subgraphs,
even graphs across domains, share two rules, i.e., 1) members in
a subgraph tend to be physically neighboring, and 2) there is the
disparity of statuses among different members where some piv-
ots are prone to attract affiliated nodes to formulate a subgraph
community. We summarize such common properties as 𝐿𝑜𝑐𝑎𝑙 and
𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 and formalize 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 as a novel principle
for subgraph discovery. Given these observations, it is not proper
to just mimic previous predefined substructure extraction. We then
introduce an approach on how to implement the 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦
principle in graph.

A vital cognition about 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 is that the cluster
formed by the asymmetric attraction of the pivot nodes to the mem-
ber nodes constitutes the subgraph, which is analogous to clustering
of nodes. However, our task is significantly more complex, i.e. irreg-
ularity of graph structure leads to uncertain numbers of subgraphs,
the determination of the pivot nodes is complicated, and asymmet-
ric metrics are difficult to quantify. These factors hinder applying
traditional symmetric clustering strategy to extract subgraphs. For-
tunately, Affinity Propagation (AP) clustering algorithm based on
message passing mechanism has many excellent properties, which
lights up our idea. AP algorithm does not need to prespecify the
number of clusters, can find the centers adaptively, and more im-
portantly supports asymmetric similarity matrix. Note that these
satisfactory properties all depend on appropriate similarity crite-
ria. Given these evidences, the core challenge is how to design a
similarity criteria according to 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 principle.

Technically, 𝐿𝑜𝑐𝑎𝑙 can be easily implemented by calculating the
hop distance ℎ𝑜𝑝(𝑣𝑖 , 𝑣 𝑗 ) between pairwise nodes

〈
𝑣𝑖 , 𝑣 𝑗

〉
, while

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, which is expected to quantify the status disparity
among members, is too abstract to describe. Random Walk en-
joys the nice property of modeling node-wise asymmetric sta-
tuses [28, 29]. Nodes in a random walk will stochastically jump
to one of its neighbors with a transition probability inversely pro-
portional to the node degree. In this way, the asymmetric statuses
induced by the disparate local topology can be exactly captured.
However, we argue that traditional random walk suffers two limi-
tations when adopted in our subgraph discovery. First, since node
features usually play significant roles in forming subgraphs, these
solutions of Random Walk only consider the topology but fail to
involve the semantic correlations induced by node features. Second,
computing the expectation of walking distances introduces the
inefficiency issue [33]. Therefore, we expand a weighted random
walk, HitPath, by two modifications on the traditional one.

First, to accommodate the semantic similarity of node features,
the walking path in our HitPath is not only determined by the node-
wise connectivity, but also the disparity between node-specific rep-
resentations. Specifically, consider a walking path 𝑝 = (𝑣𝑝0 , 𝑣𝑝1 , . . .)
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Figure 2: The architecture of our two-stage P2GNN. In the substructure extraction stage, the node-wise associations on both
topology and features are explored by HitPath to obtain the re-weighted 𝐺 . Then all nodes are disentangled into a subgraph
set𝐺𝑆 . In the subgraph refinement stage, the subgraph-level exclusions are imposed to GIB for facilitating learning process.
Finally, P2GNN outputs a set of support subgraphs𝐺∗

𝑆
and performs graph classifications. Note that ℎ(·) and ℎ′(·) share the same

GNN encoder. The orange nodes are pivots of subgraphs while the blue nodes are affiliated member points.

in graph 𝐺 , each neighboring transition pair
〈
𝑣𝑝𝑖 , 𝑣𝑝𝑖+1

〉
∈ E con-

sists of the sequential walking steps. Then we revise the degree-
based transition probability into a weighted distance. For node 𝑣𝑖 ,
the probability jumping to 𝑣 𝑗 in its neighborhood is,

𝑃 (𝑣𝑖 → 𝑣𝑗 ) =
𝑤𝑣𝑖 𝑣𝑗∑
𝑣𝑘

𝑤𝑣𝑖 𝑣𝑘
(𝑣𝑘 , 𝑣𝑗 ∈ N(𝑣𝑖 )) (1)

where𝑤𝑣𝑖 𝑣𝑗 is instantiated as the Euclidean distance between their
representations learned by a GNN-based encoder ℎ(·),

𝑤𝑣𝑖 𝑣𝑗 = | |ℎ(𝑣𝑖 ) − ℎ(𝑣𝑗 ) | |2 (2)

For the transition probability 𝑃 (𝑣𝑖 → 𝑣 𝑗 ), the number of summed
terms in the denominator implies the node degree of 𝑣𝑖 and thus
capturing the topological property, while 𝑤𝑣𝑖 𝑣𝑗 serves as a node-
wise weighted distance, encapsulating the proximity of feature
information. Due to the potentially disparate local neighborhood
environments (both topology and feature distributions over neigh-
bors) of different nodes, the node-wise asymmetric relationship can
be well characterized by our modified transition probability.

Second, to alleviate the inefficiency issue, a restart strategy along
with truncated walking steps is devised to approximate the walking
distanceH . Given the path 𝑝 starting at 𝑣𝑝0 , the hitting distance
from 𝑣𝑝0 to any other node 𝑣𝑝𝑘 ∈ 𝑝 is truncated by a fixed step of 𝑙 ,
i.e., walking distance makes sense only when 𝑣𝑝0 is accessible to
𝑣𝑝𝑘 within 𝑙 steps, and thus 𝑝 is modified as 𝑝 = (𝑣𝑝0 , 𝑣𝑝1 , . . . , , 𝑣𝑝𝑙 ).
We then also impose a fixed restart times 𝐾 , to accommodate the
tradeoff between performance and efficiency in HitPath.Therefore,
we have the one-time hitting distance 𝐻 (𝑣0, 𝑣𝑘 ) from 𝑣𝑝0 to any
other node 𝑣𝑝𝑘 by summing step-wise feature-based distances along
the path 𝑝 ,

𝐻 (𝑣0, 𝑣𝑘 ) =

{ ∑
𝑣𝑖 ∈(𝑣0,...,𝑣𝑘−1)

𝑤𝑣𝑖 𝑣𝑖+1 , 𝑣𝑘 ∈ 𝑝

𝜎, 𝑣𝑘 /∈ 𝑝
(3)

where a large upper limit 𝜎 will be set as the hitting distance if
𝑣𝑘 is out of range of path 𝑝 . By repeating walking for 𝐾 times, we

can obtain the modified random walking distance in our HitPath
(directional walking distance) H̃ between nodes 𝑣𝑖 and 𝑣 𝑗 ,

H̃(𝑣𝑖 , 𝑣𝑗 ) = HitPath(𝑣𝑖 , 𝑣𝑗 ) =
1
𝐾

𝐾∑︁
𝑘=1

𝐻𝑘 (𝑣𝑖 , 𝑣𝑗 ) (4)

Such step truncation in HitPath can naturally eliminate the influ-
ences from nodes within high-order neighborhoods, and preserve
the localization constraint to satisfy 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 principle.

Furthermore, in the process of subgraph discovery, what we
actually focus on is not distinguishing the exact nodes with higher
status, but to identify a clustering of nodes with locally asymmetric
relationships. In this way, we can leverage the difference between
the asymmetric HitPath(𝑣𝑖 , 𝑣 𝑗 ) and HitPath(𝑣 𝑗 , 𝑣𝑖 ) to characterize
the disparity of statuses between 𝑣𝑖 and 𝑣 𝑗 .

Finally, considering the 𝐿𝑜𝑐𝑎𝑙 property with hop distances, we
derive the quantitative node-wise relationship between 𝑣𝑖 and 𝑣 𝑗
under the 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 principle,

𝑠(𝑣𝑖 , 𝑣𝑗 ) = 𝛾 · e−hop(𝑣𝑖 ,𝑣𝑗 ) + (1−𝛾 ) · | |HitPath(𝑣𝑖 , 𝑣𝑗 )−HitPath(𝑣𝑗 , 𝑣𝑖 ) | |2 (5)

This 𝑠(𝑣𝑖 , 𝑣 𝑗 ) can also be viewed as a node-wise similarity measure-
ment, where 𝛾 balances the importance between the former term
for localization and the latter one for asymmetry. Noted that there
are two major hyper-parameters in HitPath. We empirically let the
truncated step 𝑙 be |V |2 , while the balance coefficient 𝛾 be 0.8, and
then fine-tune these settings with experiments. More settings can
be found in Appendix B.

3.2 Mutual Exclusion-based Subgraph Refiner
In this subsection, we present our subgraph refinement model
𝑃𝜙 (𝐺∗

𝑆
|𝐺𝑆 ) as well as the classifier 𝑃𝜓 (𝑌 |𝐺∗

𝑆
) for downstream tasks,

where 𝐺∗
𝑆
is the set of support subgraphs refined from 𝐺𝑆 . Recall

that we have pointed out that conventional node-level refinement
will potentially distort the original local topology and lead to inter-
vention on following refinements [32]. What’s more, existing refine-
ment solutions only exploit the label information to preserve the
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minimal information but neglect any other guidance for redundant
information elimination, leading to their inefficient convergence.

To break up above two dilemmas, we devise a subgraph-level
refiner. From the perspective of statistics, we are expected to obtain
a series of independent and label-relevant subgraphs, which shares
similar goals of GIB [37]. However, GIB-based refinements usually
seek for one subgraph in a given graph by node-level sampling [43,
44], which are trivially dropped into the topology corruption. In
this work, we make modifications to GIB on two aspects, 1) expand
the sampling unit of nodes into subgraphs and 2) impose a mutual
exclusion regularization to decentralize each subgraph and facilitate
the learning process.

Given a graph 𝐺 , a discovered subgraph set 𝐺𝑆 and the label 𝑌
of𝐺 , our subgraph-level GIB is expected to find a support subgraph
set𝐺∗

𝑆
, which not only squashes the subgraph information towards

labels but also constrains the least number of reserved subgraphs.
It is formulated as,

min
𝐺∗
𝑆

−𝐼 (𝑌,𝐺∗𝑆 ) + 𝛽𝐼 (𝐺𝑆 ,𝐺∗𝑆 ) (6)

where 𝛽 is set as 1 according to common practice [37, 43, 44]. We
then elaborate the implementation of above GIB. For the first term
𝐼 (𝑌,𝐺∗

𝑆
), we exploit the tractable lower bound obtained by [44], and

realize it with the standard cross-entropy loss. In particular, this
cross-entropy loss is also minimized to materialize the classifier
𝑃𝜓 (𝑌 |𝐺∗

𝑆
) for downstream tasks. For the second term 𝐼 (𝐺𝑆 ,𝐺∗𝑆 ), we

introduce a variational estimator𝑞(𝐺𝑆 ) for the marginal distribution
𝑝(𝐺𝑆 ), and derive the variational upper bound with KL-divergence,
i.e., 𝐼 (𝐺𝑆 ,𝐺∗𝑆 ) ≤ 𝐾𝐿

(
𝑃𝜙 (𝐺∗

𝑆
|𝐺𝑆 )| |𝑞 (𝐺𝑆 )

)
[1]. Actually, since there

is no premise or prior knowledge and further and an inaccurate
𝑞(𝐺𝑆 ) will terribly mislead the refinement and deteriorate the effi-
ciency, finding an accurate variational approximation of 𝑝(𝐺𝑆 ) is
intractable. To explicitly guide eliminating redundant information
on subgraph-level sampling, besides a KL-divergence objective, we
further introduce another principle of mutual exclusion on sub-
graphs. This principle interprets a generally recognized but less
exploited knowledge on subgraph refinement, i.e., the node repre-
sentations within the same subgraph should be as close as possi-
ble while the representation disparity among different subgraphs
should be large. Then we consider this mutual exclusion as a regu-
larization term in our objective to jointly optimize a decentralized
and effective set of subgraphs. Technically, let 𝑝𝑠𝑢𝑏 ({𝑣∗} ∈ 𝐺𝑡𝑆 ) be
the probability that all the nodes 𝑣∗ in a tentative 𝐺𝑡

𝑆
forming an

exact subgraph, and 𝑝𝑠𝑢𝑏 (𝐺𝑝
𝑆
,𝐺
𝑞

𝑆
) be the joint occurrence probabil-

ity of both subgraphs 𝐺𝑝
𝑆
and 𝐺𝑞

𝑆
. Therefore, the support subgraph

set 𝐺∗
𝑆
considering the mutual exclusion are expected to obtain the

maximal ∑
𝐺𝑖
𝑆
∈𝐺∗

𝑆

𝑝𝑠𝑢𝑏 (𝐺𝑖
𝑆

) and the minimal ∑
𝐺𝑖
𝑆
∈𝐺∗

𝑆

∑
𝐺−
𝑆

𝑝𝑠𝑢𝑏 (𝐺𝑖
𝑆
,𝐺−
𝑆

),

where 𝐺−
𝑆
denotes any other subgraph except 𝐺𝑖

𝑆
. We can formally

derive the regularization objective of mutual exclusion as,
𝑀𝐸(𝐺∗𝑆 ) = E

𝑝𝑠𝑢𝑏 (𝐺𝑖
𝑆

)E𝑝𝑠𝑢𝑏 (𝐺−
𝑆

)[𝑝𝑠𝑢𝑏 (𝐺𝑖𝑆 ,𝐺
−
𝑆 ) − 𝑝𝑠𝑢𝑏 (𝐺𝑖𝑆 )]

= E
𝑝𝑠𝑢𝑏 (𝐺𝑖

𝑆
)E𝑝𝑠𝑢𝑏 (𝐺−

𝑆
)[log

∑︁
𝐺𝑖
𝑆
⊂𝐺∗

𝑆

exp(ℎ(𝐺𝑖𝑆 )𝑇ℎ(𝐺−𝑆 ))

− log
∑︁

(𝑣𝑘 ,𝑣𝑚 )∼𝐺𝑖
𝑆

exp(ℎ(𝑣𝑘 )𝑇ℎ(𝑣𝑚 ))]

(7)

In this way, the second term 𝐼 (𝐺𝑆 ,𝐺∗𝑆 ) can be realized by integrat-
ing both variational approximation of KL-divergency and mutual

exclusion regularization,

𝐼 (𝐺𝑆 ,𝐺∗𝑆 ) = 𝐾𝐿
(
𝑃𝜙 (𝐺∗

𝑆
|𝐺𝑆 )| |𝑞(𝐺𝑆 )

)
+𝑀𝐸(𝐺∗𝑆 ) (8)

Optimization objective. Considering the mutual exclusion
regularization, we jointly optimize the integrated objectives of
P2GNN,

min
𝜃,𝜙,𝜓

−E(𝑃𝜓 (𝑌 |𝐺∗𝑆 )) + 𝛽E
[
𝐾𝐿

(
𝑃𝜙 (𝐺∗

𝑆
|𝐺𝑆 ) | |𝑞 (𝐺𝑆 )

)
+𝑀𝐸(𝐺∗

𝑆
)
]

(9)

So far, we can finally obtain the refined subgraph set 𝐺∗
𝑆
from the

discovered subgraph set 𝐺𝑆 .

3.3 Detailed Implementation of P2GNN
P2GNN includes an extractor 𝑃𝜃 (𝐺𝑆 |𝐺), a refiner 𝑃𝜙 (𝐺∗

𝑆
|𝐺𝑆 ) and

a classifier 𝑃𝜓 (𝑌 |𝐺∗
𝑆

) for prediction. Besides, a support property
evaluation ISM is also designed to explore whether the discov-
ered subgraph set 𝐺∗

𝑆
satisfies the expected support property. We

introduce the detailed implementation of P2GNN as follows:
Substructure extractor 𝑃𝜃 (𝐺𝑆 |𝐺). Our substructure extractor

is instantiated as the combination of HitPath and AP clustering.
The AP clustering exploits two metrics of "Responsibility" and
"Availability" [16] to jointly measure the interactive relationships
between pivot nodes and potentially affiliated points by consider-
ing influences from other nodes, which opportunely match our
𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 principle. Concretely, consider the potential
pivot node as 𝑣𝑘 and other affiliated point as 𝑣𝑖 . The "Responsibility"
𝑟 (𝑣𝑖 , 𝑣𝑘 ) reflects the accumulated evidence for how well-suited the
node 𝑣𝑘 is to serve as the pivot for 𝑣𝑖 , while "Availability" 𝑎 (𝑣𝑖 , 𝑣𝑘 )
reflects the accumulated evidence for how appropriate 𝑣𝑖 chooses
𝑣𝑘 as its pivot. In this way, by exploiting the 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦-
based node-level relationship measurement 𝑠(·, ·), the responsibility
𝑟 (𝑣𝑖 , 𝑣𝑘 ) and availability 𝑎 (𝑣𝑖 , 𝑣𝑘 ) in AP clustering can be respec-
tively formalized by,

𝑟 (𝑣𝑖 , 𝑣𝑘 ) =

𝑠(𝑣𝑖 , 𝑣𝑘 ) − max

𝑘′ ̸=𝑘
{𝑎(𝑣𝑖 , 𝑣𝑘′ )+𝑠(𝑣𝑖 , 𝑣𝑘′ )},𝑣𝑖 ̸= 𝑣𝑘

𝑠(𝑣𝑖 , 𝑣𝑘 ) − max
𝑘′ ̸=𝑘
{𝑠(𝑣𝑖 , 𝑣𝑘′ )},𝑣𝑖 = 𝑣𝑘

(10)

𝑎(𝑣𝑖 , 𝑣𝑘 ) =


min{0, 𝑟 (𝑣𝑘 ,𝑣𝑘 )+ ∑

𝑣𝑗 ̸=𝑣𝑖
max{𝑟 (𝑣𝑗 , 𝑣𝑘 ), 0}},𝑣𝑖 ̸= 𝑣𝑘∑

𝑣𝑗 ̸=𝑣𝑘
max{𝑟 (𝑣𝑗 , 𝑣𝑘 ), 0},𝑣𝑖 = 𝑣𝑘

(11)

Based on the responsibility and availability iteratively updated
by Equation 12, we can obtain a set of pivot nodes {𝑣𝑐1 , 𝑣𝑐2 , ..., 𝑣𝑐𝑀 },
and subsequently construct the corresponding subgraphs 𝐺𝑆 =
{𝐺1
𝑆
,𝐺2
𝑆
, . . . ,𝐺𝑀

𝑆
}. The node setV𝑖

𝑆
consists of the node member-

ship in 𝑖-th subgraph.

max
𝑣𝑘

𝑟 (𝑣𝑖 , 𝑣𝑘 ) + 𝑎(𝑣𝑖 , 𝑣𝑘 ) (12)

Subgraph refiner 𝑃𝜙 (𝐺∗
𝑆
|𝐺𝑆 ). Subgraph refiner consists of two

submodules, a subgraph-level GIB and a subgraph-level mutual ex-
clusion for complementing the lacking of prior knowledge on sub-
graph clustering. Concretely, the first term in Equation 6 is imple-
mented by the cross-entropy loss for squashing the subgraph infor-
mation towards labels, and the second term constrained by the KL-
divergence and mutual exclusion is devised to preserve the minimal
but sufficient information. Given a graph 𝐺 = {𝐺1

𝑆
, ...,𝐺𝑀

𝑆
} ∼ 𝑃𝐺 ,

we learn the sampling probability 𝑝𝑖 at the subgraph level, where𝐺𝑖𝑆
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will be removed if 𝑝𝑖 = 1. Inspired by [26], we impose 𝑞𝑖 ∼ 𝐵𝑒𝑟𝑛(𝑡 ) 1
to introduce the stochasticity and further define the variational dis-
tribution as

𝑞(𝐺𝑆 ) = ∑
𝐺
𝑃 (𝐺𝑆 |𝐺)𝑃𝐺 (𝐺)

= 𝑃 (𝐺1
𝑆
,𝐺2
𝑆
, · · · ,𝐺𝑀

𝑆
|𝐺) · 𝑃𝐺 (𝐺)

= 𝑃 (𝐺1
𝑆
|𝐺) · 𝑃 (𝐺2

𝑆
|𝐺) · · · 𝑃 (𝐺𝑀

𝑆
|𝐺) · 𝑃𝐺 (𝐺)

= 𝑃 (𝑞1) · 𝑃 (𝑞2) · · · 𝑃 (𝑞𝑀 ) · 𝑃𝐺 (𝐺)

= 𝑃𝐺 (𝐺)
𝑀∏
𝑖=1

𝑃 (𝑞𝑖 )

(13)

Considering 𝑃𝐺 (𝐺) is a constant that can be ignored in optimization,
the KL-divergence for the variational approximation is formalized
as

𝐾𝐿(𝑃𝜙 (𝐺∗
𝑆
|𝐺𝑆 )| |𝑞(𝐺𝑆 )) =

∑︁
𝐺𝑖
𝑆
∈𝐺𝑆

𝑝𝑖 log
𝑝𝑖

𝑡
+ (1−𝑝𝑖 ) log

1 − 𝑝𝑖
1 − 𝑡 (14)

Therefore, Equation 14 and Equation 7 jointly constitute of the
optimization objective for our 𝑔𝜙 .

Classifier 𝑃𝜓 (𝑌 |𝐺∗
𝑆

). The classifier receives the support sub-
graph set 𝐺∗

𝑆
, which includes a GNN block with an MLP layer. The

GNN block separately encodes each subgraph into corresponding
subgraph-level representation where each block shares the same
parameters. We then exploit a sum-pooling strategy on the refined
set of subgraphs by element-wise addition [39]. The MLP layer
imposes linear transformations on compressed subgraph-level rep-
resentation and finally outputs the categorical predictions for the
downstream classification task.

Support property evaluation. To explore whether the discov-
ered subgraph set𝐺∗

𝑆
satisfies the expected support property, we

devise an Information Shift Method (ISM) to reveal the performances
of P2GNN when 𝐺∗

𝑆
is under diverse shifts. In practice, the encap-

sulated information in our model can be quantified as the number
of subgraphs. Specifically, the core idea of ISM to impose inter-
ventions on 𝐺∗

𝑆
by decreasing or increasing subgraphs that input

into classifier 𝑃𝜓 , thus we can further verify the refined subgraph
set 𝐺∗

𝑆
perfectly supports the prediction. This information quan-

tification can lead to one issue, i.e., our learning system will be
considered as experiencing the same information variation if only
the number of subgraph shifts is the same. To this end, a pricinple
guiding the ordering of information variation is required. As the
learned 𝑝𝑖 from P2GNN indicates the removal probability, then it
is less confident with its removal decision when it becomes closer
to 0.5, thus subgraphs with 0.5 removal probability should be first
analyzed. With this insight, we can exploit 𝑝𝑖 to rank the priority
of each subgraph𝐺𝑖

𝑆
and take 0.5 as the threshold to determine the

direction of information shift. Therefore, we divide the𝐺∗
𝑆
into two

categories and rank them as,

𝑆+ =< 𝐺+
1 ,𝐺

+
2 , ...,𝐺

+
𝑙
> (15)

𝑆− =< 𝐺−1 ,𝐺
−
2 , ...,𝐺

−
𝑘

> (16)
where 0.5 ≤ 𝑝(𝐺+

1 ) ≤ 𝑝(𝐺+
2 ) ≤, ..., ≤ 𝑝(𝐺+

𝑚), 𝑝(𝐺−
𝑘

) ≤, ..., ≤ 𝑝(𝐺−2 ) ≤
𝑝(𝐺−1 ) < 0.5. When extending information, we employ the order
of 𝑆+ for subgraph selection to progressively increase information
for shift. Otherwise, the order of 𝑆− will be utilized to decrease
1Parameter 𝑡 controls the sampling probability in Bernoulli distribution.

the information. To perturb the input information to the classifier
𝑃𝜓 , ISM devises a simplified stratege, which modifies the removal
probability 𝑝𝑖 of these selected subgraphs into equal ones, i.e., 0.5.
Specifically, we can formulate this operations by,

ISM(𝐺∗𝑆 , 𝑡 ) =
{
𝑝(𝐺+

1 ) = 𝑝(𝐺+
2 ) = 𝑝(𝐺+

𝑡 ) = 0.5, shift =′ +′
𝑝(𝐺−1 ) = 𝑝(𝐺−2 ) = 𝑝(𝐺−𝑡 ) = 0.5, shift =′ −′ (17)

where 𝑡 denotes the number of selected new subgraphs (informa-
tion), ′+′ indicates information expanding while ′−′ is information
decreasing. With our proposed ISM, we can easily select the sub-
graphs for information shifts and obtain the prediction performance
trends to explore the support property of𝐺∗

𝑆
. The detailed algorithm

of P2GNN is provided in Algorithm 1.
Time complexity analysis. For each graph 𝐺 = (V, E,W),

P2GNN has two parts of calculation: subgraphs extraction and re-
finement. The execution time of the first stage main comes from
calculating the walk distance 𝐻𝑖𝑡𝑃𝑎𝑡ℎ(𝑣𝑖 , 𝑣 𝑗 ) and AP clustering.
Their corresponding complexities are O( |V |2 |V|) and O(𝑇 |V|2),
respectively, where |V |2 is truncated step, 𝑇 is the number of iter-
ations before convergence or max iterations. The reason for not
including the hop distance calculation is that it has been calculated
before training. In the subgraphs refinement stage, exploring the
attention of each subgraph will take O(𝑀) time, where 𝑀 is the
number of subgraphs from subgraphs extraction. Therefore, the
time complexity of P2GNN is O((𝑇 + 1

2 )|V|2 +𝑀).

3.4 Theoretical Analysis
In our work, the asymmetric relationship between nodes is not
directly measured by the ordering of status, but is measured with
the relative status disparity. In this section, we will discuss two
manners of status disparity measurement and justify the rationality
of our solution with theoretical analysis.

Firstly, according to literature [24], we have two principles to
describe the relationships among the walking distances across dif-
ferent nodes, i.e., Lemma 1 and Lemma 2.

Lemma 1. Given any three nodes 𝑣𝑖 , 𝑣 𝑗 and 𝑣𝑘 in graph 𝐺 , the
pairwise walking distances can be described as

H (𝑣𝑖 , 𝑣 𝑗 ) +H (𝑣 𝑗 , 𝑣𝑘 ) ≥ H (𝑣𝑖 , 𝑣𝑘 ) (18)

Lemma 2. (Symmetric walk distances) Given two looped walk
paths, the summations of walking distances on these two paths
preserve invariant,
H(𝑣𝑖 , 𝑣𝑗 ) + H(𝑣𝑗 , 𝑣𝑘 ) + H(𝑣𝑘 , 𝑣𝑖 ) = H(𝑣𝑖 , 𝑣𝑘 ) + H(𝑣𝑘 , 𝑣𝑗 ) + H(𝑣𝑗 , 𝑣𝑖 ) (19)

Proposition 1. Given H (𝑣𝑖 , 𝑣 𝑗 ) > H (𝑣 𝑗 , 𝑣𝑖 ) that the statues 𝑣𝑖
precedes 𝑣 𝑗 , this ordering is ambiguous in the whole graph, i.e., the
ordering Asymmetry in graph is not transitive, while the relative
difference between the walking distanceH (𝑣𝑘 , 𝑣𝑖 ) −H (𝑣𝑖 , 𝑣𝑘 ) can
exactly capture the asymmetry of node-wise statuses, and quantify
the status disparity between two nodes.

Proof. First, consider the three nodes 𝑣𝑖 , 𝑣 𝑗 and 𝑣𝑘 where
𝑣𝑖 precedes 𝑣 𝑗 and 𝑣 𝑗 precedes 𝑣𝑘 i.e. H (𝑣𝑖 , 𝑣 𝑗 ) > H (𝑣 𝑗 , 𝑣𝑖 ) and
H (𝑣 𝑗 , 𝑣𝑘 ) > H (𝑣𝑘 , 𝑣 𝑗 ). We dissect the order of 𝑣𝑖 and 𝑣𝑘 through
progressively deriving the following inequalities,

H (𝑣𝑖 , 𝑣 𝑗 ) +H (𝑣 𝑗 , 𝑣𝑘 ) > H (𝑣 𝑗 , 𝑣𝑖 ) +H (𝑣𝑘 , 𝑣 𝑗 ) (20)

H (𝑣𝑖 , 𝑣 𝑗 ) +H (𝑣 𝑗 , 𝑣𝑘 ) > H (𝑣𝑘 , 𝑣𝑖 ) (21)
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Figure 3: The universality and effectiveness of P2GNN on
social networks and bioinformatics. Nodes with the same
color belong to the same subgraph, and the captured support
subgraphs are circled by the dashed line.

H (𝑣𝑖 , 𝑣𝑘 ) +H (𝑣𝑘 , 𝑣 𝑗 ) +H (𝑣 𝑗 , 𝑣𝑖 ) > 2H (𝑣𝑘 , 𝑣𝑖 ) (22)
H (𝑣𝑖 , 𝑣𝑘 ) −H (𝑣𝑘 , 𝑣𝑖 ) > H (𝑣𝑘 , 𝑣𝑖 ) −H (𝑣𝑘 , 𝑣 𝑗 ) −H (𝑣 𝑗 , 𝑣𝑖 ) (23)

Since H (𝑣𝑘 , 𝑣𝑖 ) ≤ H (𝑣𝑘 , 𝑣 𝑗 ) + H (𝑣 𝑗 , 𝑣𝑖 ) (Lemma 1), we have that
H (𝑣𝑖 , 𝑣𝑘 ) > H (𝑣𝑘 , 𝑣𝑖 ) is not always hold on, demonstrating the
status relationship between 𝑣𝑖 and 𝑣𝑘 is ambiguous. Therefore, we
can conclude that Asymmetry in graphs does not have the property
of transitivity.

Second, considering 𝑣𝑘 as a fixed intermediate node and assum-
ing that 𝑣𝑖 precedes 𝑣 𝑗 where these two nodes are both anchored
on 𝑣𝑘 , we can get the following derivations,

H (𝑣𝑖 , 𝑣𝑘 ) −H (𝑣𝑘 , 𝑣𝑖 ) ≥ H (𝑣 𝑗 , 𝑣𝑘 ) −H (𝑣𝑘 , 𝑣 𝑗 ) (24)

H (𝑣𝑖 , 𝑣𝑘 ) +H (𝑣𝑘 , 𝑣 𝑗 ) ≥ H (𝑣 𝑗 , 𝑣𝑘 ) +H (𝑣𝑘 , 𝑣𝑖 ) (25)
H (𝑣𝑖 , 𝑣 𝑗 ) ≥ H (𝑣 𝑗 , 𝑣𝑖 ) (26)

To this end, the relative difference can lead to a unique asymmetric
ordering between 𝑣𝑖 and 𝑣 𝑗 . Therefore, H (𝑣𝑘 , 𝑣𝑖 ) − H (𝑣𝑖 , 𝑣𝑘 ) can
definitely represent the Asymmetry in graphs.

Remark. Since the ordering of status relationships is not trans-
missible, only the relative walking distance can characterize the
status disparity among nodes. In our implementation, we instanti-
ate | |H (𝑣𝑖 , 𝑣 𝑗 ) −H (𝑣 𝑗 , 𝑣𝑖 )| |2 to measure the status disparity, where
H is alternatively approximated by HitPath proposed in Sec 3.1.

4 EXPERIMENT
4.1 Experimental Settings
4.1.1 Datasets. The experimnents are conducted on eight public
datasets regarding bioinformatics and social networks. More details
of these datasets are summarized in Table 2 of Appendix A.
• Bioinformatics datasets:MUTAG [10], PROTEINS [6], and

MOLHIV [38].
• Social network datasets: IMDB-B [40] and IMDB-M [40],

REDDIT-B [40] and REDDIT-M [40], COLLAB [40].

4.1.2 Baselines. Our baselines are three-fold, including GNN
backbones, subgraph learning methods, and interpretable mod-
els. • Backbone baselines: GCN [21], GraphSAGE [17], GIN [39]
and PNA [9].
• Subgraph methods: GNN-AK [48], GIB [44] and SUGAR [32].
• Interpretable models: GSAT [26] and CAL [31].
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Figure 4: The performance discount with shifting the infor-
mation of support subgraphs. ∆ represents the information
of 𝐺∗

𝑆
.

4.1.3 Our Setups. We provide some important training hyper-
parameters and metrics for different datasets.
• Hyper-parameters. We take GIN as the backbone of P2GNN.

The balance coefficient 𝛾 is set to 0.8, and the walking step 𝑙 is set
to |V |2 . The parameter sensitivity analysis is performed in Sec 4.4,
with more detailed implementations presented in the Appendix B.
•Metrics. Following the common practice [39, 48], we report

ROC-AUC on MOLHIV while present classification accuracy for all
other datasets.

4.2 Result Analysis
Table 1 shows the performance comparisons across different meth-
ods, and we can obtain the following three Observations.

Obs 1: The methods based on subgraph discovery consis-
tently outperform the traditional backbone models on all
datasets. In backbone methods, GIN and PNA have achieved com-
petitive performance, GIN (89.9%) on Reddit-B and PNA (79.1%)
on MOLHIV could even obtain the expression ability of subgraph
learning methods. In fact, both of them are often used as the back-
bone in subgraph learning methods. This observation demonstrates
that subgraph learning can indeed improve the graph represen-
tation ability. Almost all subgraph methods greatly improve the
prediction accuracy, however, we obtain the counter-examples on
two complex social network datasets, such as Reddit-M and COL-
LAB. The maximal performance drop among subgraph learning
baselines is 6.9% on Reddit-M, and PNA and GIB achieved compa-
rable prediction accuracy on COLLAB. This phenomenon reveals
the common shortcomings of subgraph learning methods on some
social network datasets.

Obs 2: Compared with other subgraph learning models,
our P2GNN achieves the most competitive results where we
achieve the SOTA on four datasets. Specifically, our P2GNN
outperforms best baselines by 6.3% and 1.3% respectively on IMDB-
B and MUTAG, and encouragingly, P2GNN has significantly im-
proved over other methods on most scenarios except three complex
social network datasets. Such performance superiority can be ex-
plicitly attributed to the coupling effects of both two objectives,
i.e., asymmetry-based subgraph extraction and robust refinement.
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We believe that the two-stage subgraph learning can exactly better
extract label-relevant subgraphs. Further, it is worth noting that
our P2GNN does not have the best performance on the REDDIT-
B, REDDIT-M and COLLAB. The underlying reasons are that 1)
unlike the edges of friends, the interactions of users in REDDIT-B
and REDDIT-M are more random thus it is less discriminative on
QA community and discussion-based community, and due to the
superior performance of CAL on them, we consider that the causal
perspective may be able to further solve the common problem of
subgraph discovery learning. 2) subgraph-level refinement may
lead to information loss if the local pattern is not well captured.
Therefore, given the large number of nodes in graphs, extraction
and refinement on large-scale heterogeneous graphs with noisy or
non-robust edges are still under explored.

Obs 3: The support subgraph set has the most sufficient
andminimal information for prediction.We verify the support
property of our discovered subgraphs using visualization method
and ISM . Figure 3 visualizes the discovered subgraph set𝐺𝑆 and the
support subgraph set𝐺∗

𝑆
with our P2GNN.On IMDB-B, different pat-

terns of the ego-network centering with various actors/actresses are
bond to determine the genre of the movie [40]. Encouragingly, our
support subgraphs captured by P2GNN can reveal prominent con-
sistency with such ego-network. For one graph of MUTAG, P2GNN
tends to take these two functional groups−𝑁𝑂2 and−𝑁𝐻2, or some
substructures containing these functional groups, as support sub-
graphs. By looking into the chemical explanations in literature [25],
we find that the ground-truth interpretation corresponds to our
empirical results on MUTAG. Based on information theory, we
also quantitatively analyze the support property of our discovered
subgraphs via designing ISM. Centered on the support subgraph
set𝐺∗

𝑆
, we respectively explore the performance trends of set when

it expands and decreases information. Figure 4 visualizes the re-
sults of ISM on three datasets. Reducing the information content
of the support subgraph set 𝐺∗

𝑆
will obviously lead to a decrease

in the prediction power. Also, we are more surprised to find that
continuously expanding 𝐺∗

𝑆
doesn’t improve the prediction ability

and even hurt the accuracy of the prediction.
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Figure 5: Ablation studies on HitPath and mutual exclusion
in P2GNN.

4.3 Ablation Study
Ablation studies consist of two aspects. 1) We replace the HitPath
with a symmetrical subgraph discovery measure with hop distance
to verify the effectiveness of asymmetry measures. 2) We ablate the
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Figure 6: Parameter sensitivity analysis.

mutual exclusion (𝑀𝐸) principle in GIB to demonstrate whether
our solution can exactly facilitate the learning convergence. Due to
the limited space, we only illustrate studies on two datasets, more
comprehensive evaluations can be found in Appendix D.

Figure 5(a) and 5(b) respectively illustrate the performances and
visualized discovered subgraphs (with and without HitPath) on
MOLHIV. Subgraph discovery based on asymmetry measures ob-
viously reveals the better performances than hop-based measures,
where solution w.o. HitPath only focuses on the topology and ne-
glects the feature information. And most subgraphs discovered by
solution w.o. HitPath are prone to be in a small size, probably due
to the lacking connections of feature correlations. We can conclude
that the asymmetric topology and feature correlations modeled by
HitPath is superior to original random walk for subgraph discovery.

Figure 5(c) shows the comparison of convergence speeds between
our P2GNN and variant without𝑀𝐸. Intuitively, we have a faster
convergence speed with the mutual exclusion, verifying that the
mutual exclusion principle can be viewed as a prior knowledge,
to provide effective guidance for subgraph sampling and makes
it easier to obtain label-relevant representation. It should not be
ignored that our performance is also better than w.o. 𝑀𝐸, which
suggests that the mutual exclusion also plays an important role in
the downstream tasks for better representation.

4.4 Parameter Sensitivity Analysis
The main hyper-parameters in P2GNN are two-fold. 1) The walking
step 𝑙 in HitPath, and 2) the topology-feature balance coefficient 𝛾
in Equation 5.

Figure 6 shows the performance and training timewith different 𝑙
on various datasets. With increasing 𝑙 , especially when 𝑙 > |V |2 , the
increased training time haven’t led to better performance. Thus, to
simultaneously balance efficiency and accuracy, we set 𝑙 = |V |2 . We
analyze that the walking distance 𝑙 should be neither set too small
nor a fixed value per graph. When the value of walking distance
𝑙 is too small, the randomness of walking makes the process may
be limited to a few nodes, resulting in local information cannot
be captured. Fixed 𝑙 is often unreasonable for graphs of different
sizes. Therefore, although the purpose of𝐻𝑖𝑡𝑃𝑎𝑡ℎ is to encode local
information, we still walking more than half of the number of nodes
|V |

2 .
Figure 6(c) shows the fluctuation of performances under different

𝛾 . Obviously, we get stable results at 𝛾 ∈ [0.7, 0.9]. Then we set 𝛾 as
0.8 in our experiments. More hyper-parameter settings are carefully
described in Table 3 in Appendix B.
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Table 1: Performance comparisons. The best result is in bold across all methods and the second best is underlined.

MUTAG PROTEINS IMDB-B IMDB-M Reddit-B Reddit-M COLLAB MOLHIV
GCN 74.3±11.0 74.2±3.1 70.0±0.9 51.5±3.2 85.5±2.1 48.6±2.3 69.6±2.1 75.5±1.6

Graph-SAGE 74.3±7.7 73.0±4.5 70.9±4.1 47.6±3.5 84.3±1.9 50.0±1.3 71.6±1.5 74.8±3.4
GIN 89.4±5.6 77.0±4.3 75.6±3.7 48.5±3.3 89.9±1.9 56.1±1.7 73.9±1.7 75.6±1.4
PNA 89.6±5.3 76.7±4.2 79.8±4.5 48.0±2.0 81.7±6.1 54.2±1.2 74.2±2.1 79.1±1.3

GNN-AK 92.3±6.8 77.1±5.1 75.2±3.1 53.2±1.2 94.6±1.0 54.8±2.1 78.5±1.8 79.2±1.1
GIB 83.9±6.4 77.2±3.4 73.7±7.0 51.4±2.1 90.3±1.9 49.2±2.0 74.5±2.0 76.4±2.7

SURGAR 92.4±2.1 81.0±2.4 80.1±2.8 51.1±1.9 89.4±2.1 50.1±2.4 77.4±1.7 77.0±3.1
GSAT 94.1±2.1 76.2±1.4 72.6±4.4 54.5±3.2 85.4±2.0 56.2±1.7 81.8±1.4 78.1±2.0
CAL 89.9±8.3 76.9±3.3 74.1±5.2 52.6±2.4 91.2±2.3 57.1±1.9 82.7±1.3 78.1±2.0

P2GNN 95.4±2.9 82.1±3.1 87.4±3.9 56.2±2.1 91.4±2.4 56.8±2.0 81.6±1.9 79.8±1.4

5 RELATEDWORK
Graph representation model. There is a growing interest in
exploring more expressive graph learning model. Most previous
works designed more powerful node-level learning methods, such
as GCN [21], GraphSAGE [17], GAT [34] and GIN [39], which rely
on stronger Aggregate, Combine and Readout functions. Along
another line of research, subgraph-based representation strategy
has been proposed to provide more intuitive understanding and
better interpretability. These methods expect to obtain subgraphs
or network motifs which are simple building blocks of complex net-
works and determine the functionalities of graphs. More details, we
categorize these strategies into two classes: extracting substructure
patterns to capture certain topological structure of subgraphs, and
removing non-useful information to capture subgraphs that affect
the model predictions the most. The former focuses on extracting
the structure patterns of subgraph from the perspective of topol-
ogy, and the latter aims to refine the most valuable subgraphs for
learning tasks from the perspective of information.
Substructure extraction.Most previous works on substructure ex-
traction tend to determine substructure patterns based on domain
knowledge or directly adopt ego-net structure. [14, 27] propose
density-based subgraph discovery methods for some specific areas,
including network science, biological analysis, and graph databases.
GNN-AK [48] directly applies star-pattern subgraph and convolves
all subgraphs with a base GNN as kernel, which produce multiple
rich subgraph-node embeddings. SubGNN [2] decouples the graph
topology to three property-aware channels, and designs three struc-
ture patterns subgraph which capture position, neighborhood, and
structure. XGNN [45] trains a graph generator to interpret GNNs
by edge-wise sampling, which provides an understanding of which
parts contributing to final predictions. However, these methods
reveal great limitations. First, scenario-based subgraph discovery
models greatly lack generality. Then, the substructure discovery
methods of ego-net still follow MPNNs’ local neighbor aggregation,
which don’t take advantage of subgraph representation learning.
Information refinement. Recent works borrow the information
theory to develop the Graph Information Bottleneck (GIB). These
GIB-based solutions squash the original graph into one minimal

sufficient subgraph by removing the redundant nodes [43, 44]. Un-
fortunately, given the personalized structures of subgraphs across
domains, and the entangled correlations within subgraphs, exist-
ing subgraph learning scheme reveals two limitations. First, there
still lack a general principle to accommodate various subgraph
structures across multiple domains. Second, refinement performing
on node levels without explicit guidance for eliminating redun-
dant information tend to distort the local topology and lead to an
inefficiency convergence process.

6 CONCLUSION
In this paper, we present a two-stage subgraph learning architec-
ture P2GNN, which performs general subgraph extract and efficient
refinement. In the extraction stage, 𝐿𝑜𝑐𝑎𝑙 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 is proposed
to accommodate diverse domain-specific subgraphs discovery tasks.
We design a novel node-wise asymmetry measurementHitPath, and
achieve subgraph extraction via 𝐴𝑃 clustering. Theoretical analysis
of Hitpath is also provided to verify its asymmetry measuring ca-
pacity. In the refinement stage, we propose the principle of mutual
exclusion regularization to explicitly guide eliminating redundant
information and thus boost the efficiency of refinement. Further, we
empirically verify the superiority on universality and effectiveness
via experiments and propose ISM to prove the support property of
discovered subgraph set.

Limitations: In the subgraphs extraction stage, personalizing
the number of subgraphs according to domain knowledge may
result in better predictive power, which remains unexplored. And
in the subgraphs refinement stage, the analysis of our refinement
method from the perspective of causality can be further studied.
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A DETAILS OF DATASETS
We provide the details and statistics of datasets in this section,
where the statistics of these eight datasets are illustrated in Table 2.
•MUTAG [10] is a binary dataset of molecular property, where

nodes are atoms and edges are chemical bonds. Each graph is asso-
ciated with a binary label based on its mutagenic effect.
• PROTEINS [6] is a dataset of proteins that are classified as

enzymes or non-enzymes. Nodes represent the amino acids and
two nodes are connected if they are less than 6 Angstroms apart.
• IMDB-B and IMDB-M [40] are twomovie collaboration datasets,

where nodes represent actors/actress. There is an edge between
nodes if they appear in the same movie.
• REDDIT-B and REDDIT-M [40] are two datasets of social

networks, where nodes represent users. There is an edge between
nodes if the comment interaction has appeared between them.
• COLLAB [40] is a scientific collaboration dataset, derived

from 3 public collaboration datasets, namely, High Energy Physics,
Condensed Matter Physics and Astro Physics.
•MOLHIV [38] is a molecular property dataset, where nodes

are atoms and edges are chemical bonds. Each molecule has a binary
label, which depends on whether the molecule can inhibit HIV virus
replication or not.

Algorithm 1 P2GNN
Input: Graph𝐺 , the number of learning epochs𝑁 , the maximum iterations

of AP clustering𝑇 .
Output: The prediction 𝑌 of graph𝐺 .
1: Initialization: 𝜃, 𝜙,𝜓 , GNN encoder ℎ(·).
2: for 𝑛 = 0 to 𝑁 do
3: 𝑤𝑣𝑖 𝑣𝑗 ← | |ℎ(𝑣𝑖 ) − ℎ(𝑣𝑗 ) | |2
4: for 𝑡 = 0 to𝑇 do
5: /* 𝑃𝜃 (𝐺𝑆 |𝐺 ) */
6: AP clustering to disentangle𝐺 and obtain𝐺𝑆 :
7: if convergence then
8: break
9: end if
10: end for
11: /* 𝑃𝜙 (𝐺∗

𝑆
|𝐺𝑆 ) */

12: Sample a subgraph set𝐺∗
𝑆
from𝐺𝑆 .

13: /* 𝑃𝜓 (𝑌 |𝐺∗
𝑆

) */
14: Calculate L with Equation 9.
15: 𝜃, 𝜙,𝜓 ← Adam(𝜃, 𝜙,𝜓 ).
16: end for
17: Predict by support subgraph set 𝑌 = 𝑃𝜓 (𝑌 |𝐺∗

𝑆
).

18: return 𝑌

B DETAILS OF THE CONFIGURATION
To ensure fair comparisons on all datasets, we keep the same con-
figurations on all of them and present Table 3 to summarize the
detailed configurations.

C ANALYSIS OF SPECTRAL THEOREM
In this paper, we employ Spectral Theorem to verify the observa-
tion of Local Asymmetry, and our asymmetric metric criterion
(HitPath) using random walk is also inspired by spectral decom-
position. Therefore, it is necessary to construct a comprehensive

Table 2: Statistics of datasets.

Dataset Graphs Classes Avg. Nodes Avg. Edges
MUTAG 188 2 17.93 19.79

PROTEINS 1,113 2 39.06 72.82
IMDB-B 1,000 2 19.77 96.53
IMDB-M 1,500 3 13.00 65.94
REDDIT-B 2,000 2 429.63 497.75
REDDIT-M 4,999 5 508.52 594.87
COLLAB 5,000 3 74.49 2457.78
MOLHIV 41,127 2 25.50 27.50

understanding of Spectral Theorem, and we provide a detailed anal-
ysis in this section.

The idea of Spectral Theorem is to study graph structure via its
Laplacian operator of graph. According to different interpretation
strategies of eigenvectors, many works have achieved great success.

C.1 Position encoding with Spectral Theorem
In this subsection, we provide an analysis of the application of
Spectral Theorem to the field of Position encoding (PE), and demon-
strate the observation of Local Asymmetry from our understanding
perspective as shown in Figure 1(ii).

Given a graph𝐺 ,𝑑(𝑣𝑖 ) denotes the degree of the node 𝑣𝑖 in𝐺 , and
let𝑾 denote adjacency matrix. We perform the following analysis.

In electromagnetic theory, the Green’s function of the Lapla-
cian [8] shows the electrostatic potential of a given charge. This
understanding inspired the PE of nodes on the graph. Consider the
Laplacian 𝐺 and can be computed by its eigenfunctions,

𝐺( 𝑗1, 𝑗2) = 𝑑−
1
2

𝑗1
𝑑

1
2
𝑗2

∑︁
𝑖>0

(𝛼𝑖, 𝑗1𝛼𝑖, 𝑗2 )2

𝜆𝑖
(27)

Further, researchers [7] use the interaction between two heat
kernels to define in Equation 27 the diffusion distance 𝑑𝐷 between
nodes 𝑗1, 𝑗2,

𝑑2
𝐷 ( 𝑗1, 𝑗2) =

∑︁
𝑘>0

𝑒−2𝑡𝜆𝑖 (𝛼𝑖, 𝑗1 − 𝛼𝑖, 𝑗2 )2 (28)

Inspired by it, the biharmonic distance 𝑑𝐵 was proposed as a
better measure of distances [22],

𝑑2
𝐵 ( 𝑗1, 𝑗2) =

∑︁
𝑖>0

(𝛼𝑖, 𝑗1 − 𝛼𝑖, 𝑗2 )2

𝜆2
𝑖

(29)

Equation29 shows that smaller frequencies/eigenvalues are more
heavily weighted when determining distances between nodes. Thus,
we study the 5-th lowest eigenvectors and draw heat maps Fig-
ure 1(ii). We are excited to find that there is a perfect match for our
proposed Local Asymmetry. Therefore, we successfully prove Local
Asymmetry via exploiting Spectral Theorem.

C.2 Random walk with Spectral Theorem
In this subsection, we analyze random walks from the perspective
of spectral theory, and subsequently supplement the preliminary
knowledge of Lemma 1 and Lemma 2.
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(b) Performance comparison on PROTEINS.
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(c) Performance comparison on MUTAG.
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(d) Performance comparison on PROTEINS.

Figure 7: Ablation study on ME and HitPath.

Table 3: Configurations in P2GNN.

Config Description Value
Backbone The backbone of P2GNN GIN
Smoothing coefficient 𝛼𝑟 𝛼𝑟 in Algorithm 1 0.5
Smoothing coefficient 𝛼𝑎 𝛼𝑎 in Algorithm 1 0.5
Balance coefficient 𝛽 𝛽 in Equation 9 1
Balance coefficient 𝛾 𝛾 in Equation 5 0.8
Walking steps 𝑙 Walking steps of HitPath |V|

2
𝐾 Restart times of HitPath 100

𝜎
Distance between inaccessible
nodes 4 |V |

Batchsize Number of graphs in a batch 128
Split Train set/Validation set/Test set 8/1/1
Hidden dimension Hidden dimension of backbone 64
Base learning rate Initial learning rate 1e-3
Dropout Dropout rate of MLP 0.3

Actually, the cornerstone of our theoretical analysis is Spectral
Theorem, which draws the topological characteristics of graphs
from spectral perspective [22]. Here, we will briefly describe the
connection between Spectral Theorem and random walks.

In the traditional strategy, the walking distance is calculated by
the transition matrix 𝑴 = 𝑫𝑾 , where𝑀𝑖 𝑗 represents the probabil-
ity that node 𝑣𝑖 jumps to 𝑣 𝑗 in one step. For a high-order formation,
we let 𝑴𝑡

𝑖 𝑗
stand for the transition probability from 𝑣𝑖 to 𝑣 𝑗 at the

step 𝑡 . Thus, the expected walking distanceH can be calculated by,

H =
∞∑︁
𝑡=1

𝑡 ·𝑀𝑡 (30)

In contrast, exploiting Spectral Theorem to calculate the walking
distance has more elegant properties where we can arrive a closed
form of our distance. Consider the matrix 𝑵 = 𝑫1/2𝑾𝑫1/2 =
𝑫−1/2𝑴𝑫1/2. Due to the symmetry of 𝑵 , it can be written in the
spectral form,

𝑵 =
𝑛∑︁
𝑘=1

𝜆𝑘𝛼𝑘𝛼
𝑇
𝑘

(31)

where 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 are the eigenvalues of 𝑵 and 𝛼1, · · · , 𝛼𝑛
are corresponding eigenvectors of unit length. By Frobenius-Perron
Theorem [23], we have 𝜆1 = 1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 ≥ −1, and

𝑴𝑡 = 𝑫1/2𝑵 𝑡𝑫−1/2 =
𝑛∑︁
𝑘=1

𝜆𝑡
𝑘
𝑫1/2𝛼𝑘𝛼

𝑇
𝑘
𝑫−1/2 (32)

Further, we can obtain walking distance from 𝑣𝑠 to 𝑣𝑡 ,

H(𝑣𝑠 , 𝑣𝑡 ) = 2𝑚
𝑛∑︁
𝑘=2

1
1 − 𝜆𝑘

(
𝛼2
𝑘𝑡

𝑑(𝑡 )
− 𝛼𝑘𝑠𝛼𝑘𝑡√︁

𝑑(𝑠)𝑑(𝑡 )
) (33)

Therefore, Equation 33 can exactly provide a closed-form solution
to obtain the walking distance, which is superior to traditional
strategy. By this exact solution, the principles in Lemma 1 and
Lemma 2 can be easily derived.

D DETAILED ABLATION STUDY
We provide the detailed ablation studies on all datasets, which are
shown in Figure 7. For ablations on HitPath, it is worth noting that
the performance of solution with HitPath is still going to increase
even achieving 100 epochs, manifesting that HitPath can better cap-
ture the correlation between nodes with ever-increasing epochs. For
ablations on ME, we observe that the convergence speeds of these
two solutions are similar on MUTAG and MOLHIV. We speculate
that the subgraphs 𝐺𝑆 discovered by P2GNN in the bioinformatic
datasets are naturally mutually exclusive, so the regularization of
ME does not significantly improve the convergence speeds. Even
so, the performance of our method is still better than that w.o. ME.

E BROADER IMPACTS
As shown in Figure 4, our P2GNN automatically captures label-
relevant functional groups on the chemical datasets. However, we
also mentioned that P2GNN’s performance on the social network
datasets drops slightly.

We consider the main reason of such suboptimal performance on
social networks is the edge diversity property, which is crucial for
subgraph extraction. The node-wise relations in social networks can
be classified into friendship, collaboration, and common interests,
etc. Even, the edges of certain collaboration also tend to contain
diverse information. Unfortunately, such unavailable edges features
in our datasets lead to much difficulty in subgraph extraction. But in
contrast, the edges in the molecular graph described by interatomic
force are homogeneous. Then such edge type homogeneity can
contribute to successful subgraphs extraction. Therefore, we will
explore the homogenous relationship between the nodes of the
graph to facilitate the in-depth study of asymmetry.
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