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Abstract

Learning on molecule graphs has become an increasingly important topic in Al for science,
which takes full advantage of Al to facilitate scientific discovery. Existing solutions on mod-
eling molecules utilize Graph Neural Networks (GNNs) to achieve representations, but they
mostly fail to adapt models to out-of-distribution (OOD) samples. Although recent advances
on OOD-oriented graph learning have discovered the invariant rationale on graphs, they still
ignore three important issues, i.e., 1) the expanding atom patterns regarding environments
on graphs lead to failures of invariant rationale-based models, 2) the associations between
discovered molecular subgraphs and corresponding properties are complex where causal sub-
structures cannot fully interpret the labels, and 3) the interactions between environments and
invariances can influence with each other and thus are challenging to be modeled. To this end,
we propose a soft causal learning framework, to tackle the unresolved molecule OOD chal-
lenge, from the perspective of negatively modeling the molecule environments and bypassing
the invariant subgraphs. Specifically, we first incorporate chemistry theories into our graph
growth generator to imitate expanded environments and then devise a GIB-based objective to
disentangle environment from whole graphs and finally introduce a cross-attention-based soft
causal interaction, which allows dynamic interactions between environments and invariances.
We perform extensive experiments on seven datasets by imitating different kinds of OOD
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generalization scenarios. Extensive comparison, ablation experiments as well as visualized
case studies demonstrate well generalization ability of our proposal.

Keywords Graph neural network - Al for Science - Molecule science - Out-of-distribution
generalization

Learning on molecules has increasingly become a powerful research topic to enable
various applications from molecular property estimation [1], drug discovery to molecule
retrosynthesis [2, 3], hence benefiting the community of scientific computing [4, 5]. How-
ever, molecule properties are mostly tested by labor-intensive experiments with the risk of
poisonousness, while the drug discovery process usually costs numerous trial and errors. To
this end, how to ensure the efficiency of implementing both academia and industry exper-
iments and maximumly exploiting the power of data intelligence for practical biology and
chemistry production become the central attention of researchers.

There have been numerous efforts of various Graph Neural Networks (GNNs). Technically,
graph learning on molecular science either focus on finding support invariant substructures for
property estimation [6-9], or exploring the homophily and heterophily on graphs to improve
the representation capacity for final classification [10]. However, given the explosions of
emerging materials [11] and diversity of biological medicine [12], molecular science suffers
the inherent insufficiency of the training sets for model learning. Therefore, generalizing
learning models for molecular graph property prediction becomes the core obstacle for GNN-
based molecular research toward material-oriented industrial practices and further advances.

Recent efforts have been made to construct a series of OOD learning frameworks [7, 9,
13—15]. These solutions can be divided into three aspects, i.e., finding invariant substructure
rationales [9], counterfactual-based data augmentation [14] as well as the environment aug-
mentations [16-18]. Specifically, pioneering research devises a dual optimization strategy,
which allows the joint condensation on content subgraph and neural structures [19].

Indeed, a graph is widely acknowledged that it can be decomposed into environments
and causal invariant rationales. However, with the scale and diversity of molecular graphs
increasing, there are two significant issues hindering the generalization of existing OOD
solutions [7, 9, 14, 19, 20], as shown in Fig. 1. First, the increasing types of molecules lead
to expanding patterns of environments on graphs, as illustrated in Fig. 1a where the envi-
ronmental information can dominate the entire graph, resulting in the failure of invariant
rationale-based models. Second, the associations between discovered molecular subgraphs
and corresponding properties (i.e., labels) are complex. Given a molecule graph with specific
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Fig. 1 Motivation of CauEMO. a Increasingly growing environments can finally dominate the property of
whole graph. b Two substances, ethyl alcohol and phenol, are with the same functional group of hydroxyl, but
are with different environmental substructures connection, resulting in different solubility properties
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functional groups, the deterministic property (e.g., solubility) is not fully dependent on the
specific functional groups but may partially rely on the environmental substructures around
the functional group, which is demonstrated in Fig. 1b-c. From the perspective of information
theory, the information encapsulated in invariant subgraphs is incomplete to interpret labels,
and the reason lies in that environments usually have interactive effects with invariant ratio-
nales. Therefore, only modeling invariant rationales leads the model trapping into suboptimal
results. A potential solution toward more powerful generalization capacity is to maximize
the informativeness by exploiting the auxiliary environments and coordinating between envi-
ronment and invariance substructures. Unfortunately, most existing works focus on subgraph
extraction from invariance perspective [8, 9], while very few literature reports to decouple
environmental parts and dissects how to couple extracted invariance with environmental sub-
structures. Given the expanding molecules and unlimited synthetic materials, boosting the
representation of graph environments and model-aware informativeness for generalization
improvement is still faced with two specific challenges.

e The environment patterns are diverse and variable; thus, it is challenging to separate
and imitate, especially how to imitate the expansion and diversity environments with
theoretical guarantee.

e With environments and label-interpreted part well separated, how to cooperatively exploit
the environment and invariant signals to achieve diverse property predictions?

To address the above two challenges, we propose a Molecular Property prediction net-
work named CauEMO, to systematically tackle the OOD issue. Firstly, to promote the
diversity of environments on graphs thus alleviating the potential dominance of environ-
ments in predictions, we design a knowledge-enhanced environment growth generator to
simulate the environments for diverse expansions. Secondly, to improve quality of envi-
ronmental representation, we treat the environment as a mediating variable and explicitly
extract such representation via constructing an Environment-Graph Information Bottleneck
learning objective to disentangle label-irrelevant environmental signals and label-relevant
signals, allowing sufficient environment squashing. Lastly, given the potential interactions
between rationales and environments and limited interpretability between rationales and
labels, it is difficult to obtain a complete view of labels solely relying on invariant infor-
mation. We then design an Environment-Invariance Soft Causal Interaction, which refines
environment and allows information interactions between environments and causal invari-
ance. An environment-invariance cross-attention is introduced to realize adaptive information
fusion with soft scores dependent on input features. The contributions of our work can be
fourfold.

e We discover two main factors constraining molecular graph generalization capacity. The
first is that the ever-growing and expanding environmental signals on graphs gradu-
ally suppress primary information, and the second is the potential interactions between
causal invariance and environments. We then propose an environment-oriented solution
to increase graph diversity and capture environment-rationale interactions to enhance
graph representation.

e Technically, bypassing the exploration of invariant subgraphs, we start the research from
negative environmental modeling. We first explicitly incorporate chemistry principle into
our graph growth generator to imitate the environment expansions and introduce a cross-
attention soft causal interaction, which allows flexible and dynamic interactions between
environments and invariances.

e Empirically, we conduct experiments on seven datasets, including two categories of
DrugOOD datasets and one synthetic Motif dataset. These experiments demonstrate the
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effectiveness of CauEMO, and the practical capacity on generalizing models to unseen
graphs with increased environments and designed neural architecture.

e Our CauEMO illustrates that data-driven, Al-based approaches, specifically a framework
grounded in causal invariance and invariant-environment interactions, can enhance both
efficiency and interpretability in molecular property prediction, which accelerates the
chemical research and support applications in drug discovery and material design.

1 Related Work

Graph neural network and subgraph learning. Graph neural networks (GNNs) are initially
introduced by [21] for graph-structured data mining by iteratively aggregating informa-
tion from neighbors. Recently, with the increasing prosperity of deep learning, GNNs have
developed by stacking layers and simplifying the node-level adjacencies to gain powerful
representation capacity, such as GCN [22], GraphSAGE [23], and Graph Attention Net-
works (GAT) [24], where GAT allows flexible node-level attention. However, conventional
deep GNNs usually lack interpretability to explain which specific substructure contributes
most to final predictions. To this end, subgraph learning is leveraged to boost the inter-
pretability and generalization. Specifically, SUbGNN [25] decouples the graph topology into
three property-aware channels to extract subgraph patterns on position, neighborhood, and
structure. Furthermore, Sugar [26] and XGNN [27] devise the reinforcement learning to
help extract interpretable subgraphs, and P2GNN [8] is proposed to extract the asymmetric
patterns of substructures in large-scale graphs with considering pivot nodes. However, gen-
eralizing models to other unseen scenarios requires capturing invariance across scenarios.
Even so, these solutions to graph and subgraph learning fail to explicitly involve invariant
factors thus trapped into suboptimal results in most generalization tasks.

Invariant learning for OOD generalization. Generalization issues are common in learning-
based solutions, ranging from computer vision [28, 29], static graph learning [9, 30, 31] to
dynamic graph learning [32, 33]. Among them, existing solutions to graph out-of-distribution
generalization usually divide the whole graph into environments and invariant rationales [9],
which is inherited from causal theory [34]. Representative invariant learning frameworks [30,
35] have been proposed to handle distribution shifts where it minimizes the summarized
risks across different conditions and environments. Following it [30], graph-level learning
for OOD generalization such as DIR [9], OOD-GNN [31], and MoleOOD [36] has been
proposed for molecular scientific research. And an OOD solution on dynamic graph learning
CauSTG is devised to capture invariance across sample groups [33]. Recently, EERM [37]
overcomes the non-i.d.d. issue on node-level learning and takes a reinforcement learning
to enhance the environment diversity. Even though, all these solutions only focus on the
invariant factors, directly ignoring the valuable information within environments. Actually,
graph environments can be deemed as the conditions to invariances, where environments
are also equipped with valuable information and can potentially interact with invariances to
influence label interpretation. Therefore, how to exploit environments to enhance cooperative
learning on both environment and invariant factors for better generalization still remains
under-explored.

Environment-aware learning for graph OOD generalization. Modeling the environments
such as environment representation, generation [17, 38], and augmentation [14, 18] can be
another way to promote OOD capacity. For instance, Zhao, et, al. consider the graph topology
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as the virtual environment and devise a counterfactual strategy by imposing perturbation on
environments, which can be viewed as a data augmentation [14]. CaST employs the back-
door adjustment by a novel disentanglement block to separate the temporal environments
via structural causal model [18]. Moreover, [16] imposes an environment augmentation
by introducing an assistant model by maximizing the variations to handle the OOD issue.
Besides, [17] designs a sampling-generative process to generate new environments, while
[38] disentangles the environment representation and imposes an environment-aware con-
trastive representation learning. Even though, above solutions either construct the closed
environment set, or devise IRM and contrastive learning-based strategies to disentangle envi-
ronments. In fact, the types of molecules are usually becoming more and more diverse and
the number of atoms are increasing. Then, the molecules as well as corresponding graph
environments cannot be fully enumerated where the limited extracted invariance cannot fully
reflect the summarized properties. Hence, these above-mentioned solutions fail to mimic the
increasing growths of spurious substructures and cannot capture the environment-invariance
interactions.

Summary. Considering abovementioned graph learning frameworks for molecular sci-
ence, there are still two significant issues that remain unresolved in OOD tasks, i.e.,

e The increasing types and numbers of molecules lead to expanding patterns of environ-
ments and result in the failure of invariant rationale-based models.

e The associations between molecular graphs and corresponding properties are complex,
while interactions between environment-invariance are intractable to capture. To this
end, detouring the invariance and directly enhancing environment modeling can be a
promising avenue toward OOD learning improvement.

2 Preliminary and problem definition

Consider a molecule graph G = (V, £) where the node and edge in G can be denoted as
v; € V and ¢;; € £. The deterministic observation in node v; is written as x; € X, where
it shows the representation of atom. Given a graph G ;, the molecular science learning is to
predict a series of property y ;, which consists of both graph-level regression for continuous
property and graph-level classification for categorical properties.

OOD settings. Given a series of molecular graphs in training set (Y, G;,) and testing set
(Ytest, Grest) where P(Gy) # P(Grest), We are going to derive a neural function y = f*(G)
with OOD learning capacity that can transfer invariance and adapt new environments to new
scenarios.

3 Methodology
3.1 Framework overview

As shown in Fig. 2, the proposed CauEMO is composed of three well-designed components,
i.e., a Knowledge-enhanced environment generator, an E-GIB for irrelevant environment dis-
entanglement and an Environment-Invariance Soft Causal Interaction (SCI), to, respectively,
imitate the increasing expansions of environments on molecule graphs with chemical knowl-
edge constraints, disentangle environment information from whole graphs with information

@ Springer



L. Lietal.

E-GIB for irrelevant

| | Chemical bond
principle

Environment-Invariance
Soft Causal Interaction

Disentangled

envir t envir

I 1 !
1

i | | | !

1
H Knowledge-enhanced | ! disentanglement i representation i i
H environment generator N PN | J— \ Crom Toins H
[, S, ! ! == 1 - 1
" ! { . .‘ :‘: Information | :.‘:.’ - | Attention * Gate i
" Dy O /AN squash | Ha : | [@IKIV] .
v . LAY 4 . ! :
[N ! - [ e " P - ! 1
i Input ! | Il Environmentgraph i FERRES L__________ & !
[N} 1 1 inf i ;
" graphs ) Environment growth | | ! 1:;:]1::;«:? ::' _, % = memmm e e e mmoo o
b essmemmmm------- b Causal

I

i
i I . :D]:EH:D:D‘ Classifier/ * Label

i ] nvariance [ |

1 New :‘: min (Y, Gp) - BI(G,Gp) | o | L) CIEEE 7| Regressor

\  graphs 4Bl | representation | Representation

! 1

Fig.2 Framework overview of CauEMO

theory guarantee, and dynamically implement environment refinement and environment-
invariance interactions for OOD-oriented representation improvement.

3.2 Knowledge-enhanced environment generator

The environment, separated from core property substructures, within a molecular graph is
also vital for property forecasting, especially for Out-of-Distribution scenarios. The diversity
of graph environments can determine the accuracy and epistemic uncertainty of substructure
extraction. Unfortunately, existing OOD learning either exploit the disentangled environ-
ments within the dataset itself [39], or explore an augmentation without any constraints of
domain knowledge [17]. In contrast, in our paper, we devise an environment generator with
the help of domain knowledge, to imitate the growth of environment over molecular graphs
and simultaneously maintain the primary principle of chemistry. We first introduce the chemi-
cal knowledge-based grouping strategy to decompose the chemical unit into functional group
set G5 = {G;} and non-deterministic group set Gy = {G,}, where the former ones can be
seen as the causal invariance for labels, while the latter ones are environment sets. In this way,
we can dynamically combine the causal invariance with the environment part to increase the
environment of graphs by generating substantial new graphs. To realize it, we rank the sub-
structures in G, by the number of atoms for imitation of increasing scales of environments,
i.e., EgoGraph = {s1, 52, ..., s»}, we can iteratively replace the s; in the combined graph.
However, regarding graph editing tasks, a serious issue is how to guarantee the rationality of
new graphs, i.e., how to ensure the new graphs to satisfy the required chemistry properties,
and then it can be synthesized for real-world industrial chemical engineering in advanced
material or other fields. Hence, we introduce the chemical crosslinks to help judge whether
the substructure connection between two set items are reasonable, where the domain-specific
knowledge is interpreted as the law of conservation of charge. Given the connected atom v;
from Gj, we check the summation of its chemical crosslinks. Let us denote the chemical
bond of v; as d;, v; are a series of neighboring nodes which is going to connected to v; in
set Gy, then we can derive the equation according to the principle of chemical bond, i.e.,

d ZZEN(Ui)pij S v — v (D
J

If such combination v; € Gy, v; € Gy can satisfy Equation. (1), we can make the concate-
nation on the node-level to achieve the new graph, i.e.,

Go = Gi, Gpew = Concat[Go; G ] 2)
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Instead of constructing an environment set from closed training samples without introduc-
ing any new molecules [17, 18], we especially inherit the chemical domain knowledge and
concatenate the causal invariant part with auxiliary environment part iteratively. To this end,
our environment growth generator can increase the uncertainty and diversity of molecules
with limited training data and simultaneously ensure fundamental chemistry-specific princi-
ple for generated new samples. We believe this environment generator can work cooperatively
with following learning modules to benefit downstream OOD tasks.

3.3 E-GIB-based irrelevant environment disentanglement

Most solutions to graph OOD challenges emphasize the causal invariance for transfer. But
unfortunately, in real-world molecule-oriented tasks, the invariance across all graphs is lim-
ited; in other words, there is limited common invariant parts across all scenarios that can
sufficiently support the transfer. In our work, we focus more on the environments, which
can be further refined to enhance the improvement and informativeness of causal parts. We
thus bypass modeling invariant associations and propose an Environment-Graph Informa-
tion Bottleneck (E-GIB) to explicitly extract the environments that are mostly irrelevant with
deterministic graph labels, from the perspective of information theory.

Given a graph G, the initialized environment representation G g, and the label Y of G,
our E-GIB is expected to find out the most label-irrelevant representation on graph G g. Our
E-GIB will not only squash the environment representation away from labels but also ensures
the environment G g can cover most of the graph G. By borrowing the theoretical guarantee
from information theory, the guided training objective can be preliminarily described as,

ncl;in I(Y,Gg) — BI(G,GE) 3)
E

where f is the hyperparameter setting as 1 according to common practices [40—42]. We will
then elaborate the implementation of above E-GIB.

For the first term in Equation. (3), we take the standard cross-entropy loss to instantiate
the preliminary objective, which aims to suppress the label-relevant information on graphs
by inheriting the tractable lower bound obtained from literature [42]. This learning objective
is specified as the environment predictor Py(Y|GEg) (a.k.a. fp). Regarding the second term,
since there is no premise or apriori information for marginal distribution p(G ), we derive a
variational estimator Q(G g) to approximate p(Gg), i.e., p(Gg) ~ Q(GEg), and obtain the
variational upper bound with KL-divergence [43]. It can be formally derived by,

1(G,GE) <KL (Ps(GIGE)IIQ(GE)) “

Then, we can take such KL-divergency to estimate the marginal probability p(Gg) with
parameterized Q(Gg; Wg,), where W, are learnable parameters to this probability distri-
bution estimation. We can designate the Py (a.k.a. g¢) as the environment extractor.

Learning objective. Considering both cross-entropy for label-irrelevant information sup-
pression and the KL-divergence for variational estimator, we can obtain the final learning
objective for our environment disentanglement, i.e.,

min E[logPy(Y|GE)] — BE[KL(Ps(G|GE)IQ(GE)] (&)
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Fig.3 Environment-invariance soft causal interaction

With above learning objective, we can sufficiently disentangle the environment G g over
graph G. Then, we can provide the details of how to implement our environment extractor
and environment predictor.

Implementation of environment extractor g,. The environment extractor g4 encodes input
graph G via GNN and for each edge (u, v) € £, g4 consists of an MLP layer and a sigmoid
function that maps the concatenation of two node representation into p,, € [0, 1], i.e.,

Puv = MLP(hy, hy; W) (6)

where (h,, h,) are representations of node u and v, W, are learnable parameters for envi-
ronment extractor. For each forward pass during training process, we sample stochastic
attention from Bernoulli distributions oy, , ~ Bern(p,,). We also apply the gumbel-softmax
reparameterization trick to ensure the continuous gradient for computable p,, [44]. Then,
the extracted graph G will have an attention-based selected subgraph as,

As=a A ™

Therefore, the environment subgraph extractor falls into a Stochastic Attention mechanism
controlled by Bernoulli distribution.

Implementation of environment predictor fy. The predictor fy adopts the same GNN to
encode the extracted graph G to a graph representation and finally passes such representation
through an MLP layer plus softmax to model the distribution of Y. This procedure enables
the variational distribution Py (Y |GEg).

Finally, the Marginal Distribution can be controlled via Q. Then, we can simultaneously
obtain the maximal label-irrelevant information G g and achieve the complementary sub-
graph to G, i.e., G; = G, which allows further refinement and environment-invariance
Interactions.

3.4 Environment-invariance soft causal interaction

Motivation. It is observed that the only invariance across environments cannot sufficiently
contribute to final property as some environments can be taken as the conditions and account
for some molecular properties, which is illustrated in Fig. 1. Thus only exploiting the invari-
ance for generalization is limited in information loss. In this subsection, we propose to
refine the environment and enable interactions between extracted environment and invari-
ance. Specifically, we argue that the environment-invariance interactions should include three
crucial technical issues,

e Ensuring sufficient mutual interactions between environment and causal invariant sub-
structures.
e The interpretability during learning and aggregation process.
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e The dimension alignment for easy-to-implement interaction.

Solution. To systematically address above issues, we propose our Soft Causal Interaction
(SCI) scheme. In order to capture the interactions between environment representation and
invariant causal representation on graph, we allow partial associated environment aggregating
with causal invariance in a learnable manner in our SCA. As shown in Fig. 3, our SCA
consists of two parts, i.e., an Environment-invariance Cross-Attention to capture the potential
correlations within environment itself and then between environment and invariance. And a
Gated Causal Bridge is designed to dynamically allow the sufficient information injection and
interactions between invariances and associated environment to boost the transfer capacity.

Algorithm 1 The training process of CauEMO

Input: graph dataset G
Initial: Functional group set G; = {G;}, non-deterministic group set Gy = {G}, the number of epochs
K.
fori = 1to K do
Knowledge-enhanced environment generator:
G < {Gnew} = Concat[Go; G ], where G; € Gy
Puv = MLP(hy, hy; Wg)
ay,v ~ Bemn(pyy), Gg ~As =a - A
E-GIB environment disentanglement:
Ze =Py(Gp), Zc = Py(G)

728 =z,wQ, zK =z.wK 7V =z.wY

0 ,k\T
Z, = Softmax(%)ly +¢

k29 Ly
Z. = Softmax(#)zc +¢
Implement invariance and environment interactions with Gated Causal Bridge (Equation. 11).
Y = MLPy (Zce)
Learning optimizing:
min — E[logPy (Y|G)] + EllogPy (Y |G £)] — BEIKL(Py(G|G )| Q(G )]
end for
Return ¢/, 0, and ¢.

In detail, our Environment-invariance Cross-Attention is composed of three learnable
parameters, w2 WK WV, we feed the representation of environment G g(Z,) and causal
representation Z. into the attention mechanism. The three hidden representation for soft
score calculation can be derived,

28 =z,we zX =z.wkX zV =z.w" ®)

Then, we can impose the cross-attention to capture the mutual interactions thus obtaining the
environment representation Z, and causal invariance representation Z,

z2zK)"
Z.= Softmax(%)ly te ©)
T
zK(z8
Z. = Softmax(Ze ) yzv 1, (10)

where the random noise satisfying ¢ ~ A(0, I) is added to boost the robustness of represen-
2825 zkzf)

Nzl ), Softmax( Nzl

tations. Then, the learnable coefficient {Softmax ( )} between 0

and 1 is considered as the correlations.
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By obtaining the correlation enhanced representation, we further introduce a Gated Causal
Bridge to allow partial relevant environments to be aggregated with invariance substructure
representations. It is followed by three steps,

e Dimension alignment between environment and invariant substructure for the generation
of our gate where the dimension of Z, is aligned to the same with Z..

e Absorbing the mutual information to update the respective Z, and Z . with interpretability.

e Implementing the interactions between Z, and Z,. for achieving final interacted repre-
sentation Z ..

We can formulate the above steps in following equations,

fgate = tanh(WgateZe)
Ze:Ze+Zc®fgare
Zc:Zc+Ze®fgare
Zee=Z:0 fgate

where © denotes element-wise product, the activation function tanh allows both positive and
negative signs for the environment output, satisfying the information filtering from environ-
ment to invariance. The f,,, can be viewed as the squashed environment representation,
and the updated Z, can be considered as incorporating the partial relevant environment rep-
resentation with a soft weighted parameter f 4, for final prediction. When the training set is
already, it can be further extended with knowledge-based environment generation and then
fed into the our neural network to obtain,

an

where 1 are parameters for final classifier or regressor. Assuming Y, and ?G ; are the ground-
truth and predicted molecule properties of given graph G;, then the training objective is to,

Loss= Y. (Yg —7Yg) (13)
GiEGrra[n

3.5 00D prediction stage

As the out-of-distribution molecules G,.s; = {Gy,, G1,, 7} come, we can feed the new graph
G, into the molecular learning framework CauEMO. Following the irrelevant environment
disentanglement and environment-invariance soft causal interaction, CauEMO can efficiently
disentangle the environment part Z§ on G, and further boost the causal invariance into Z,
with a cross-attention and environment gate. Then, we can take the environment-enhanced
causal invariance representation with well soft aggregation Z., for final prediction can be
Y = MLPy (Zc.).

4 Experiment

We evaluate CauEMO using both synthetic and real-world datasets by explicitly involving
distribution shifts. Both practices of causal invariance and environment-based methods are
taken for comparison. Specifically, we would like to answer the following two questions via
empirical experiments:

e On scenarios where environmental information dominates the graph, can our CauEMO
outperform existing methods?
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e When the associations between invariant rationales and labels are implicit, can CauEMO
capture true causal associations?

4.1 Dataset

The datasets for evaluation are threefold. We choose totally 6 datasets, including four real-
world molecular datasets, two categories of drugOOD datasets and one synthetic dataset of
Motif to verify the effectiveness of CauEMO.

There are five real-world datasets on molecular property prediction.

e DrugOOD datasets, which will be exploited to evaluate our CauEMO. To evaluate the
OOD performance of CauEMO, we adopt 6 sub-datasets from two categories of Dru-
gOO0D benchmark [45]. It focuses on the challenging real-world task of Al-aided
drug affinity prediction. The distribution shift happens on different Assays, Scaffolds
and molecule Sizes. In particular, DrugOOD-1bap-core-ec50-assay, DrugOOD-lbap-
core-ec50-scaffold, DrugOOD-lbap-core-ec50-size, DrugOOD-lbap-core-ki-assay,
DrugOOD-lbap-core-ki-scaffold, and DrugOOD-lbap-core-ki-size are selected.

e Open Graph Benchmark (OGB) [46] is a series of real, large-scale and diverse datasets
which are utilized for machine learning on graphs. It covers almost all real-world tasks,
including node-level, link-level and graph-level property prediction. We choose MOL-
HIV, BBBP and SIDER to verify our method.

e MUTAG [47] is a binary dataset of molecular property, where nodes indicate atoms and
edges denote chemical bonds. Each graph is associated with a binary label based on its
mutagenic effect.

For synthetic datasets, we select a synthetic dataset to assiduously verify the validity and
interpretability of CauEMO. Spurious-Motif is a synthetic dataset proposed by [9] with
three graph classes. Each graph is composed of one base S and one motif C. The motif
C directly determines the label of the graph. We can create Spurious-Motif datasets with
different spurious correlations, which represents the degree (b) between the base S and the
label. In our implementation, we let b = 0.5, 0.7, 0.9 for dataset generation.

4.2 Baselines

We choose three categories of baselines, including conventional GNN backbones, subgraph-
based invariant learning methods and environment-based graph learning models.

Conventional backbone baselines. Three popular backbones in most practices are taken
as our baselines for evaluation.

e GCN [22] is a vanilla Graph Convolution Neural Network via capturing the spatial
adjacency for aggregating neighborhood.

e Graph-SAGE [23] takes arandom neighbor sampling strategy to simplify the computation
of information fusion and it allows inductive learning on new nodes.

e GIN [48] is an isomorphism graph network to ensure the consistent structure to be with
similar representations.

Subgraph-based invariant learning methods. We adopt four typical subgraph-based learn-
ing baselines for evaluation.
e SUN [49] studies the characteristics of node-based subgraph learning and aligns the
permutation group of nodes and subgraphs, modeling the symmetry with a smaller single
permutation group.
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e [B-subgraph [42] first implements the information bottleneck with graph learning, which
is not only a subgraph learning based on partition (edge drop) but also an important
exploration of interpretability.

e GSAT [50] follows this practice and designs a subgraph extraction strategy with edge
deletions based on stochastic attention mechanism.

e DIR [9] splits the input graph into causal and non-causal subgraphs and utilizes invariant
features to construct interpretable model.

Environment-based graph learning models. We exploit five baselines with explicitly
considering the modeling of graph environments. All of them focus on the graph-level out-
of-distribution generalization from the perspective of environment modeling.

e CIGA [51] is an environment-base learning architecture, which utilizes contrastive learn-
ing within the same class labels, and assume samples with the same label share invariant
substructures.

e GALA [16] is a symmetric graph convolutional autoencoder for unsupervised graph rep-
resentation learning.

e IGM [52] proposes to exploit the environment to augment the learning of invariance.

e NeGo [53] is an environment-aware solution, which emphasizes environment as negative
part for inference and tackle the OOD challenge.

e EAGLE [54]is also a state-of-the-art environment-aware framework for OOD generaliza-
tion by modeling complex coupled environments and exploiting spatiotemporal invariant
patterns.

4.3 Evaluation metrics and implementation details

We employ the same metrics as the previous approach to evaluate specific dataset. For the
MUTAG and Spurious-Motif datasets, we exploit accuracy as the evaluation metric.

For the DrugOOD and OGB datasets, we evaluate the performances using the ROC-AUC
metric where the value of this metric is the higher, the better. We report the mean results and
standard deviations across ten runs. We exploit GIN as the backbone of CauEMO, and all
experiments are conducted on an NVIDIA A100-PCIE-40GB.

4.4 Performance comparison

OOD generalization performance under distribution shifts. In Table 1, we report the
ROC-AUC on six distribution-shift datasets. We can clearly observe that our CauEMO
consistently achieves the best performance across five datasets. This demonstrates that
our environment-centered design can achieve superior performance under distribution shift
scenarios. Moreover, we also have the following two observations. 1) Compared with conven-
tional backbone GNNs, those graph learning models specially designed for OOD scenarios
have better performance. Even GIN reaches the best result on Ki-Assay, it suffers severe
performance fluctuations. This explicitly confirms the validity and rationality of existing
invariant learning methods and environment-based models. 2) Compared with the methods
based on causal invariance theory, the environment-oriented models perform better. GALA,
IGM as well as NeGo and EAGLE-mole obtain sub-optimal results across all datasets, sug-
gesting these environment associated solutions can potentially improve OOD generalization
capacity with environment-oriented strategy. This serves as the practical foundation of our
work on explicit environment modeling and disentanglement. Therefore, we can conclude

@ Springer



Soft causal learning for generalized molecule...

that our CauEMO achieves nearly best performances among all baselines, and we believe
our environment-aware and invariance-environment interaction module are superior to peer
models.

Prediction performance of real-world tasks and interpretability. In Table 2, we show the
prediction performance of CauEMO on four real-world datasets and three synthetic datasets.
The results suggest that CauEMO achieves competitive performance in real-world molecular
classification tasks, reaching five best performances across seven datasets. Noted that IGM,
which utilizes the cooperative mix-up strategy combining both environment and invariance
parts, slightly outperforms our CauEMO on two datasets and it can potentially verify that
the intuition of environment-invariance cooperation makes sense. It is worth noting that
CauEMO has gained more capacity on generalization over other five datasets, which may
be attributed to the sufficient mutual interactions in environment-invariance SCA, and label-
irrelevant information squash of E-GIB. We choose the synthetic dataset to explore whether
CauEMO could identify specific causal substructures. As shown in Fig.4, we present the
ability of CauEMO to discover the structure of *house’ around various environments in
Spurious-Motif dataset. Despite the diversity of surrounding four environments in Motif,
our CauEMO can always accurately identify the invariant property substructures and we
believe the potential reason behind the superior performances derived from perceiving broader
various environments that is complementary to invariances.

4.5 Detailed evaluation on challenging cases

Given the real-world scenarios usually meet up with noise in labels, and some molecules
may reveal conflict properties of environments and invariances, it is essential to provide more
detailed evaluations on these more challenging cases and observe how our CauEMO behave
under these cases, which can facilitate the effectiveness and significance of our research. In
this subsection, we implement two detailed cases for evaluation, 1) the label noise and 2)
environment-invariance conflicts.

Performance comparisons on challenging cases with label noise. We conducted a robust-
ness test by injecting 10% and 20% random label noise into MUTAG datasets, i.e., inverse the
label from 1 to 0 and O to 1 on randomly selected samples. The experimental results are shown
in Tab. 4, and it reveals that CauEMO degrades 17.10% (| ) on Accuracy performances when
the label noise increase from 0 to 30%, while other baselines, GIN degenerates 22.48%(J,)
and GALA degenerates 21.92%(|,), indicating stronger resilience to noise.

Performance comparisons on challenging cases with environment-invariance conflicts.
To facilitate the understanding the interpretability and specific superiority of our CauEMO,
we also provide an example of environment-invariance conflict, where the revealed property
of environment and invariant parts are conflict with each other. Specifically, we constructed a
synthetic conflict sample where benzene rings (invariance) determine the true label = 1, while
hydroxyl groups (environment) spuriously suggest label = 0, as shown in Fig. 8. We conduct
experiment on GIN and our CauEMO. As shown, in such conflict molecules (benzene + OH),
our CauEMO can present the inference result 1’ while other baseline GIN outputs *0’. This
verifies our CauEMO can counteract the conflict with well-designed E-GIB and soft causal
interaction.

@ Springer



L. Lietal.

PAUI[IOPUN ST 1S9q PUOJAS AU} PUE ‘P[OQ UT I SI[NSAI JSAq Y],

T6TFITSL OT'TTFESPL IS TFCISL €OTFLL'S9 79'0F16'99 WITIPSL (s1Q) OWdNeD
LT FTEEL 99T F90'IL TrEF 818 0S°€ F SS¥S 01'CF ¢€99 SLT FShyL Aow-g 1OV
PP T FEISL ISTF0HL 0LV F L'€8 0T F01TS 16'T F 0£°S9 09T FOTTL 09aN

61 TFS69L 09 TFESEL 0 TFEISL 61 1FSH'€9 YO TFHL S9 01'CF09°LL DI

YO TFOV LL 88°0FLIEL SYTFC6LL TTIFSTYY SP'0F8T99 88°CTFISLL VIVD

TETTFOV YL TCETFLYIL 0STFS6EL 80 IFO01'+9 9I'IFIH'S9 LY TFEOSL VOID

96’ I F86PL €7°0F95°69 €TIFTOIL YO TFTS 19 PP IFETE9 TITFISHL (el

09°TF8LSL 08'0F9T'1L 9L TFITTL 99°0FCI'19 9€° TF8S €9 S6'TFLO9L IVSD

YETTFSOEL 0ETFLYOL ETIFIVTL €0°TFLS 09 LY TFI6T9 90 TFIESL ydei3qns -g1

09T F0'6€ 1€1 F 6'6€ T9°S F 168 09T F 79 00T F +'99 T€TF 8L NID

0STFSTE 00T F 8¢ TESF P8 €91 F $TS Y8TF I't9 oF'e F YL gOV'S -yde1n

LTFOIE 181 FTee 0Ly F L'€8 0TFITS 161 F €69 09°'1 F0T19 NOO

o715 LIS Kessy-Iy] 9715-060d ©35-050d Kessy-050d

(DNV-D0Y) s19seIep OO3INI uo souewiofrod uoneziferouds OO L djqel

pringer

as



Soft causal learning for generalized molecule...

PAUTISPUN ST JS2qQ PUOIAS AY) PUB P[OQ UT AT SINSAI J$q A,

S6'SFLI'LL 18°TFC89L SO9FSH I8 9" 1FC6°96 8T IF06°6S L IFICTL PS'IFI6LL (sInQ) ONENED
98'8FIT 9L £9°ST60°SL 6€° LTI TS 10°CTF+0°96 €Y IFETSS 6L0FE0TL 6 1F0TLL DI
YETFC8 69 TEEF95°89 Y SFSHEL 0L TF9L96 0¢ TFH0°6S 1€ TFITOL 09 TFH0°LL VIVD
8CLFIH'€9 90°€F6T 69 €I'6FECLL €TIFLLS6 TTIFS6'8S TETIFS9'69 TEIFY69L VOID
95" 0FLY'6€ Y9 IF9E €Y SITFEL'SS YT TF10'96 Y8 IFI8'8S YS ITFEL'69 10 TFPE9L (el
LS STFTTHY 6T €Tl 6y 80 VFrLTS ST TFLE96 €0 TF61°6S T0TTFEI'69 €S TFLYOL IVSD
€9°SF619Y 9L'SFIS 8 60" LFIE S PrOTFEET6 YITFILLS TITFCI'89 SO TFEF L ydes3qns-g1
€€TFT98E 09 TFH0'6€ SETFI6'6¢€ €9°SFTH 68 Y9 TFHT9S 00'ZF9+'99 0E TFI8'SL NID
LY €FTH0OE 0STFESTE 80'TTSS tE PEST09PS 69 TFCSTS €8°TFI1+9 TWETFTS YL govs-ydein
€T9FI96T ELTTFSYT1E T8 IFCTEE YLYFSL'ES €0'TFTITS Y6 TFFES9 19'TFCSSL NOD
60 L0 S0
Jno-snoundg DVLOAW yaais dddd AIHTON

uoneneAd 10j JNoJN-snoundg pue DY NN U0 Aoeinooy 11odor osfe am ‘sapisog YHJIS Pue ‘d99d ‘ATHTON 10 DNV-DOY Hodo1 opp ‘uostredwos souewIojod g ajqel

pringer

Qs



L. Lietal.

\ _
| =
— \
\ —
(a) 'House' identification in environment (1) (b) 'House' identification in environment (2)
/ \
\ ~ \
(c) House' identification in environment (3) (d) 'House' identification in environment (4)

Fig.4 The ability of CauEMO to identify "house’ in Spurious-Motif dataset

4.6 Ablation study

We conduct ablation studies from following four aspects:

e For chemistry-guided environment generator, whether the knowledge can exactly
improve the generator and the OOD prediction performance, and whether our design
can benefit uncover environment diversity?

e Whether the environment-centered graph information bottleneck design is superior to an
invariant subgraph-centered approach?

e Whether the interaction mechanism between invariant subgraphs and environment sub-
graphs through cross-attention in soft causal-invariance interaction is beneficial to
performance improvement?

e Whether the design of a Gated Causal Bridge is helpful forisolating environment variables
while preserving the causal invariant subgraph?

Firstly, we design two variants of CauEMO, CauEMO-NonKW and CauEMO-Random,
which, respectively, remove the knowledge in the generator (without chemical bond con-
straint) and utilize random noise to achieve environment growth. For effectiveness of
knowledge utilization, we implement such ablation study on OGB (open graph bench-
mark) and MUTAG as well as synthetic datasets (Spurious-Motif) in Tab. 3. Without explicit
molecule principle constraint, the generated molecules may deviate from the real one, that
is to say, the generated molecules may not exist in real world. As observed the third-line
of this table, we can find without knowledge injection, our variant degrades approximately
6%, we can speculate the reason behind it maybe the lacking of knowledge leads to abnor-
mal molecules losing the basic regularity of chemistry and molecules thus the model cannot
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Table 3 The ablative performance comparison on graph causal bridge and knowledge involvement

MOLHIV BBBP SIDER MUTAG Spurious-Motif
0.5 0.7 0.9
CauEMO 7791 72.31 59.90 96.92 81.45 76.82 7717
CauEMO -NonGCB 75.52 70.14 54.02 93.37 76.58 72.41 73.62
CauEMO -NonKW 73.17 68.42 55.33 91.08 75.74 71.08 73.40

The reported are results on ROC-AUC, and the bold texts are the best results among three lines

identify the exact properties. Further, we conduct experiments of random noise injection of
generator on EC50-Size, Ki-Size and MUTAG datasets. Figure 5a shows the comparison
between CauEMO and CauEMO-Random. We observe that CauEMO-Random achieves a
worse performance than CauEMO on most datasets. This indicates that environment vari-
ables in molecules show strong domain-specific characteristics, and we can conclude that
incorporating environment information into molecules in a random and unstructured way
often causes shifts in their inherent properties. Therefore, our designed chemistry-guided
environment generator can effectively enhance the discovery of environmental diversity by
introducing structured and contextually relevant variations, allowing for a more comprehen-
sive exploration of diverse environmental conditions.

Secondly, we propose a variant centered on causal subgraph learning, CauEMO-Subgraph.
This variant does not focus on modeling the environment factors but instead remains
aimed at extracting causal subgraphs. On the Spurious-Motif datasets, we compare the
performance of CauEMO and CauEMO-Subgraph. As shown in Fig. 5b, we observe a signif-
icant performance degradation in CauEMO-Subgraph, highlighting the effectiveness of our
environment-centered approach. We argue that this performance degradation stems from the
fact that positive causal learning often fails to isolate invariant subgraphs in complex envi-
ronments. Modeling the environment factors, which effectively incorporate both positive and
negative learning, provides a more robust solution for OOD generalization in graph learning.

Thirdly, we aim to verify whether the interaction between causal variables and environ-
ment variables in graphs can enhance model robustness. To this end, we propose a variant
without an interaction mechanism, CauEMO-NonlInter, where the learned environment repre-
sentation does not contribute to enhancing the positive invariant learning process. As shown
in Fig. 6, we can observe that the invariant subgraphs learned by CauEMO-Nonlnter are
usually with several environment nodes those erroneously identified (Second line of Fig. 6).
In contrast, our CauEMO can achieve clearer extractions of invariant subgraphs. This can
potentially indicate that the interaction of causal variables and environment variables makes
environment-invariance easier to separate.

Finally, we aim to validate the effectiveness of the Gated Causal Bridge. Thus, we can
obtain a variant of CauEMO, CauEMO-NonGCB, by removing the Gated Causal Bridge
component. As shown in Table 3, the results on all datasets reveal that the ablative variant
is inferior to our CauEMO (integrated one). These empirical results further confirm that the
design of Gated Causal Bridge is beneficial to enhance the effectiveness and robustness of
the model.

4.7 Hyperparameter analysis

The important hyperparameters in our study are twofold. First, in E-GIB, the balance parame-
ter B in Equation.(3) plays the role of balancing the trade-off of compositional invariance and
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(a) Performance comparison between CauEMO (b) Performance comparison between CauEMO
and CauEMO-Random. and CauEMO-Subgraph.

Fig.5 Ablation studies on CauEMO-Random and CauEMO-Subgraph

(b) The casual subgraphs extracted by CauEMO-NonlInter

Fig.6 The comparison between CauEMO and its ablative variant without interaction mechanism, CauEMO-
Nonlnter

environment. We set § in the interval [0.5, 1.4] and visualize the performances on two selected
real-world datasets MUTAG and BBBP for generalization task. Second, in soft causal interac-
tion (SCI), the latent dimension of representation, i.e., molecular environment representation
(Z,), molecular invariance representation (Z.) and gated environment-invariance represen-
tation (Z..), where the dimensions are ranging in the scale {R10%1 R32x1 RO4x1 RI28x1y
The larger dimension may indicate more learning capacity while simultaneously means
more complexity and computational workloads. We also perform such dimension-related
sensitivity tests on datasets of MUTAG and BBBP on generalization task. We visualize our
hyperparameter analysis process in Fig. 7. Regarding B, it experiences a climbing stage and
a downward stage where it achieves best performances during the interval [0.9, 1.1] on both

@ Springer



Soft causal learning for generalized molecule...

100
U e d=32
e Rl ST S d=64
951 r d=128
904
90
o
o
o 1)
85 C 4
g © 80
£ w £
B S
£ L
S 75 ]
A a
70
-+ MUTAG 1
65
BBBP
05 06 07 08 09 1.0 l_vl 12 13 14 50 EC50-Size Ki-Size MUTAG
Balance Coefficient 8 Datasets

(¢) Performance analysis of the (d) Performance comparison of the

hyperparameter 3. dimension of Z,.
100 100
d=32 d=32
d=64 d=64
d=128 d=128
90 90
[V} [}
g 2
© 80 o 80
IS €
£ £
O (el
= 704 T 70
jo jo
-8 a
60 60
50 50
EC50-Size Ki-Size MUTAG EC50-Size Ki-Size MUTAG
Datasets Datasets

(e) Performance comparison of the dimen- (f) Performance comparison of the dimen-
sion of Z.. sion of Z ..

Fig.7 Performance variations during hyperparameter adjustment

two datasets, then S is set to 1 in our implementation. For the dimension of representation,
it also experiences a climb and then drop down with dimension increasing, we then set 64
across all datasets as an intermediate trade-off for final experiments.

4.8 Complexity analysis

Since efficiency of artificial neural network is also important for real-world implementation
and concerning about the scalability. In this subsection, we provide a thorough analysis on
complexity and efficiency and further discuss the potential improvement regarding efficiency.
According to our solution of stochastic attention from Bernoulli distributions, we can derive
that our solution enjoys the efficiency of O(L|V|d) of time complexity and O(L|V |d+|E|d),
where |V| is the number of nodes, |E| is the number of edge in graph G. Noted that in this
scenario, we do not introduce any |V|? item that may induce time-consuming and space-
consuming issue, thus there is not a large burden of computation, even for larger molecules.
In addition, we empirically compare the training time efficiency of CauEMO with other
baselines on EC50-Size dataset as shown in Tab. 5. Compared to traditional invariant learning
approaches such as DIR and GSAT, our CauEMO achieves a substantial performance gain
with only a marginal increase in runtime. Compared with state-of-the-art graph invariant
learning strategies (such as CIGA, GALA, and NeGo), our CauEMO offers a significant
advantage in efficiency and performance.
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Table4 OOD generalization performance on DrugOOD datasets (ROC-AUC)

MUTAG MUTAG-10%INV MUTAG-20%INV MUTAG-30%INV
GIN 75.8 £ 1.31 71.25 £ 1.65 65.42 + 1.75 59.18 +3.68
GALA 77.561+2.88 68.451+2.44 64.66+1.93 60.1242.04
CauEMO (Ours) 78.461+1.42 74.15+2.41 68.541+1.67 65.12+1.81

The best results are in bold

_OH 1 O ”
Environment

OH !

Predicted property: -/
661 2

1
1
~

Benzene ’ ;
Invariance \\—/." @ Predicted property:
- T “(”
I GIN

Fig.8 A special case of environment-invariance conflict

Table5 The training efficiency — \jo401c  GSAT DIR  CIGA GALA NeGo CauEMO
of CauEMO with other baselines

on EC50-Size (s/epoch) Time 51.6 526 542 623 587 531

Further, the scalability can be also optimized with following aspects. 1) Divide-and-
conquer scheme on graphs for prediction. For a larger molecule, we can extract the subgraphs
and sub-blocks on such graph and impose the parallel computation to speed up the process.
2) Simplify the complexity of current CauEMO. Since our CauEMO enjoys the comparable
and even better efficiency than other baselines, we can still provide further simplification by
reducing the learnable parameters of stochastic attention in our CauEMO.

4.9 Interpretability discussion

In this subsection, we finally systematically evaluate the interpretability of our CauEMO
from both theoretical and empirical perspectives.

e Theoretical interpretability. The design of CauEMO is inherently grounded in causal
interpretability. The E-GIB module explicitly enforces a trade-off between preserving
environment-relevant information and minimizing spurious correlations with the labels,
which directly corresponds to identifying causal environment factors. The SCI (Soft
Causal Interaction) module further introduces cross-attention combined with a learnable
gating mechanism. This architecture ensures that the contribution of environment and
invariant representations is adaptively re-weighted. When conflicting signals arise, the
gating function allows down-weighting of misleading environmental cues, thus main-
taining causal consistency.

e Empirical interpretability. We enhanced the interpretability analysis with case study
visualizations. For example, in the synthetic conflict molecules, where the benzene ring
determines the true label but the hydroxyl group spuriously suggests the opposite, atten-
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tion heatmaps clearly show that CauEMO prioritizes the benzene substructure while
suppressing the misleading OH group. Also, we have conducted knowledge-dropout
experiments, where predefined functional groups were partially removed. Visualizations
of the extracted subgraphs indicate that CauEMO still recovers chemically meaning-
ful motifs, demonstrating robustness and interpretability even under incomplete prior
knowledge from empirical aspect.

5 Conclusion

In this work, we propose a novel graph learning framework, CauEMO, to address the
OOD challenges in molecule science, from the perspective of environment expansion and
environment-invariance interactions on graphs. We systematically address such OOD predic-
tion over molecular graph property on three aspects. First, to extend the scale of environment
and ensure the augmented quality of molecules, a chemistry bond principle-based domain
knowledge enhanced molecular environment generator is proposed. Second, for maximumly
squashing the irrelevant information from the whole graph, we devise an Environment-GIB-
based irrelevant environment disentanglement via deriving a modified environment-based
graph information bottleneck, which not only decouples the causal invariant substructures,
but also provides the interpretability and theoretical guarantee for our solution. Third, in order
to allow sufficient information interactions between extracted environment and causal invari-
ances, we further devise an environment-invariance soft causal interaction, which consists
of a cross-attention mechanism for weighting the importance of environments and a gated
causal bridge to enable dynamical interactions of two branches. We conduct extensive exper-
iments on 6 datasets against 12 baselines including conventional graph learning backbones,
subgraph-based backbones as well as environment-based learning backbones. The results
on performance comparison and ablation studies demonstrate the overall superiority of our
CauEMO and the effectiveness of each module in CauEMO. We believe our CauEMO can
be a real interdisciplinary solution that intersects data mining, bio-informatics and chemistry
with informative scientific insights.

In future, our research plans can be threefold. First, we will further investigate how to
discover more causal invariant subgraphs to facilitate the OOD learning, i.e., more than one
substructure in the whole graph, regarding properties from diverse chemistry and bioinfor-
matic insights. Second, we are going to study how to design the fusion mechanism among
multiple substructures as well as environments on graphs and enable a multi-substructure to
multi-property research scheme. Third, the efficiency is still the permanent issue in learning-
based mechanism, how to design and implement the divide-and-conquer mechanism to allow
our model to adaptively adapt the newly arrived data, and extremely large molecules can be
the following research direction for large-scale molecule datasets.
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