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Abstract

Air quality prediction plays a crucial role in the
development of smart cities, garnering significant
attention from both academia and industry. Cur-
rent air quality prediction models encounter two
major limitations: their high computational com-
plexity limits scalability to nationwide datasets, and
they often regard weather covariates as optional
auxiliary information. In reality, weather covari-
ates can have a substantial impact on air quality in-
dices (AQI), exhibiting a significant causal associa-
tion. In this paper, we first present a nationwide air
quality dataset to address the lack of open-source,
large-scale datasets in this field. Then we propose a
causal learning model, CauAir, for air quality pre-
diction that harnesses the powerful representation
capabilities of the Transformer to explicitly model
the causal association between weather covariates
and AQI. To address the high complexity of tradi-
tional Transformers, we design CachLormer, which
features two key innovations: a simplified archi-
tecture with redundant components removed, and
a cache-attention mechanism that employs learn-
able embeddings for perceiving causal association
between AQI and weather covariates in a coarse-
grained perspective. We use information theory to
illustrate the superiority of the proposed model. Fi-
nally, experimental results on three datasets with 28
as the baseline demonstrate that our model achieves
competitive performance, while maintaining high
training efficiency and low memory consumption.
The source code is available at CauAir Official
Repository.

1 Introduction

Air quality prediction, a fundamental task in smart cities,
plays a vital role in pollution control and public health pro-
tection [Liang et al., 2023]. In recent years, spatiotemporal
graph convolutional networks have become the predominant

*Yang Wang and Binwu Wang are corresponding authors.
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Figure 1: Distribution of nationwide quality monitor stations
in China and imbalanced distribution of three pollution levels.

approach to this task. These models incorporate graph in-
ductive bias by employing GCNs or Transformers as spatial
modules to capture correlations among monitoring stations,
while using temporal modules such as TCNs or LSTMs to
model the evolution of AQI over time. Despite their success
in advancing air quality forecasting, these models still face
three key challenges:

Scalability on the large-scale air quality datasets. While ex-
isting models have significantly improved accuracy, their suc-
cess has been primarily demonstrated on small-scale air qual-
ity datasets. A potential reason for this limitation is the lack
of large-scale open-source datasets, particularly for nation-
wide applications, as illustrated in Figure 1. The high com-
putational complexity of these models hampers their practi-
cality [Shao et al., 2022b; Liang et al., 2023]. This chal-
lenge is particularly pronounced for Transformer-based mod-
els, which currently represent the most advanced architec-
ture. Their time complexity increases quadratically with the
number of monitoring stations, complicating their scalabil-
ity. Furthermore, Transformers integrate attention mecha-
nisms and MLP sub-blocks with skip connections and nor-
malization layers. This intricate architecture leads to high
memory requirements [Wang et al., 2024c].

Imbalance pollution level distribution. Researchers may tol-
erate minor numerical errors in predictions but be strict for
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misclassifications of pollution levels, especially for severe
pollution level cases. Taking PMs 5 as an example, meteo-
rologists classify PM; 5 pollution levels into three categories
based on current concentration per cubic meter: No Pollution
Level (< 35 pg/m3), Pollution Level I (35-75 pg/m3), and Pol-
lution Level I (> 75 ug/m3). In Figure 2, we reveal an imbal-
anced air quality pollution level distribution, with Pollution
Level II being extremely rare. Deep learning models typi-
cally struggle with learning from tail data. These severe level-
two pollution events pose serious threats to human health and
should be emphasized in air quality prediction.

Causal modeling of AQI and weather conditions. Weather
conditions are crucial covariates that significantly influence
AQ], i.e., causal association. For example, rainy and typhoon
weather typically leads to substantial decreases of PMs 5, and
severe PMs 5 pollution events typically occur under stagnant
weather conditions [Zhang et al., 2017]. Weather covari-
ates should serve as valuable resources for improving predic-
tion accuracy. Unfortunately, existing models predominantly
concentrate on the spatiotemporal dynamics of AQI, treating
weather covariates merely as optional auxiliary information.
Most models just employ shallow neural networks to encode
weather covariates, subsequently concatenating the resulting
high-dimensional embeddings with the final AQI representa-
tions before passing the output to the decoder for future pre-
dictions. This simplistic approach fails to explicitly capture
the causal associations between weather covariates and AQI.

To address the challenges outlined above, we first release
LargeAQ, a nationwide air quality dataset collected from
1,341 monitoring stations. This dataset offers comprehensive
coverage across 33 major administrative regions in China. In
contrast to the commonly used and open-source air quality
datasets, detailed in Table 1, LargeAQ is distinguished by its
large-scale and long-term coverage. This extensive dataset is
anticipated to facilitate significant advancements in air qual-
ity prediction.

Furthermore, we propose a causal learning model for na-
tionwide air quality prediction called CauAir, which ex-
plicitly models the causal association between AQI and
weather covariates to improve the model’s predictive per-
formance and its ability to forecast severe pollution lev-
els in the tail distribution. Specifically, CauAir first uses
a channel mixing module to separately model spatiotempo-
ral dynamics within AQI and covariates. We propose us-
ing a Transformer architecture to model causal association
between AQI and covariates. Considering the trade-off be-
tween performance and efficiency, we propose a Cache-
based Lightweight Transformer, termed CachLormer. This
model is a parallelizable adaptation of the vanilla Trans-
former, achieved by simplifying its complex architecture
through the removal of skip connections and normalization
layers. CachLormer also employs a cache-attention mech-
anism with learnable caches to perceive causal association
between covariates and AQI. By implementing feature inter-
actions at a coarse granularity, this approach enables robust
recognition of causal patterns across heterogeneous data. We
also provide a theoretical explanation for the advantages of
our model. Our contributions are summarized as follows:

* We introduce LargeAQ, a nationwide large-scale air
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Dataset #Sites #Months # Steps Granularity Volume Accessibility
China sites [Yu er al., 2025] 1,200 82 59,720 1h
KnowAir [Wang et al., 2020] 184 48 11,688 3h 76.0M 4
CCAQ [Chen et al., 2023] 209 28 20,373 1h 71.M 4
LargeAQ (Ours) 1,341 96 70,128 1h 1.03B 4

Table 1: Comparison of commonly used air quality datasets.
M: million (10%). B: billion (10°).

quality dataset. We anticipate that this pioneering work
will create promising avenues for the advancement of air
quality prediction techniques.

* We propose CauAir, a lightweight and effective model
that explicitly captures causal associations between AQI
and weather covariates to achieve notable performance
improvements, supported by mutual information theory.

» Experimental results on three datasets with 28 baselines
demonstrate that CauAir achieves competitive perfor-
mance with high efficiency and low memory usage.

2 Preliminary

2.1 Task Statement

Let X; € RY*¢ to denote the AQI of N air quality moni-
toring stations at a given time step ¢, where c is the number
of air pollutants measurements (e.g., PMs 5, PM1g, or NO3).
We denote Z;, € RV*/ as the weather covariates collected
from the vicinity of each station at time step ¢, where f repre-
sents the number of covariates, such as temperature and wind
speed. ZP and Z7 refer to the covariates observed in the past
and those predicted for the future, respectively.

Given observed AQI of all stations from the past 7' time
steps X¢_741:¢ € RT*NV ¢ observed covariates Z}_,._ ;. €

RT*N*/ and predicted covariates Z], |, ; , € REXN*J,

we aim to learn a function F that can predict future
AQI over next L time steps Yy 141 € RIXNVxe:

D f F()
thTJrl:ta Zt7T+1;ta Zt+1:t+L71 R Yt+1:t+L71~

2.2 Transformer

Transformer has demonstrated its impressive representation
capabilities in various fields. The learning process of the
vanilla transformer is expressed as follows:

Hyis = Norm (MH-Attn (H;) + H;) ,

1
H, = Norm (FFN (Hpia) + Hyiq) M

where H; and H, are the input and output of the transformer,
respectively. FFN (-) uses two-layer MLP with ReLU ac-
tivation function, and Norm (-) is the normalization opera-
tion. The core of Transformer is the self-attention mecha-
nism, which can be expressed as:

Attn (Q, K, V) = Soft (QKT) v,  ©
n(Q, K, V) = Softmax ,

Vdp
where Q, K,V represent query, key, and value vectors, re-
spectively, and they come from the mapping transformation
of the input. To improve the representation ability, Trans-
former uses the multi-head self-attention mechanism.
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3 Methodology

In this section, we provide the details of the proposed CauAir
framework. CauAir initially models the dynamics of the AQI
and the covariates independently. Subsequently, we design
a lightweight Transformer to explicitly model the causal as-
sociations between AQI and the covariates. The overview of
CauAir is shown in Figure 2.

3.1 Channel Mixing for Spatiotemporal Learning

We adopt a spatiotemporal learning module to model the spa-
tiotemporal dynamics within both AQI and weather covari-
ates. This module operates as follows: for any input tensor
P € {Xi—ri1:6,Z0 11 Z] 11}, the module first
compresses both temporal and feature dimensions to gener-
ate node-level representations H € RV*4i For example, if
X € RTXNxe ig used as input, d; of the output would be
equal to T x c. The output H is then fed into a feed-forward
network as an encoder with positional embeddings to model
spatiotemporal dynamics through mixing feature channels.
The forward process of our spatiotemporal learning module
is expressed as follows,

H = FFN(H) + E € RV*%

3)
Reshape (P) — H € RV*4i,
where H denotes the output. E € RN*4 js the learn-
able position embedding to capture high-level features of
stations.  Here FFN (-) includes two-layer MLP with
SwiGLU [Shazeer, 2020] as activation function:

FFN(H) = (SILU (HWl) O] HWQ) Wi, @)
SiLU (HW;) = HW; & o (HW),
where Wy, Wy € R%xe*di and W3 € Re*% X4dn are learnable
parameters. e = 4 is the expanding coefficient of hidden
representation. o (-) represents the sigmoid function and ©®
represents the Hadamard product.

We employ two parameter-independent spatiotemporal
learning modules to model the dynamic of the past AQI
X¢_7+1: and historical covariates Zf_T 1t and the outputs

are denoted as X € RV*dr and Z € RN *4x respectively.

3.2 Efficient CachLormer for Causal Learning

Weather covariates, such as precipitation and wind speed,
play a crucial role in influencing AQI. To explicitly capture
these causal associations, we propose employing a Trans-
former as the backbone of our model, leveraging its strong
capability to model dependencies between variables effec-
tively. To mitigate the computational complexity associated
with traditional Transformers, we introduce a Cache-based
Lightweight Transformer (CachLormer). Its efficiency im-
provements arise from two key modifications: a simplified
architecture and an efficient cache-attention mechanism.

Simplified Architecture. In Equation 1 of a standard Trans-
former architecture, the structure typically consists of in-
terleaved attention and feedforward (MLP) sub-blocks, de-
signed with the skip connection and normalization layer. In
fact, such complex designs are not strictly necessary. Inspired

3173

Meteorology data N Concat
X > !

speay Uy xI~

e ‘\.w.m'vwvé\/ﬂmw
VA4 zf
] |

o
Past AQI X
| |

Dimensions Compress

[CFEN J[CFEN ] [CFEN ] [CFEN ]
Weighted Add Weighted Add Query (e
eighte leighte - =
& Norm I S I Linear Linear

CachLormer ~-

CachLormer

[ Weighted Add & Norm

FFN
Future AQI Y

Weighted Add

Figure 2: Overview of the proposed CauAir.

by [He and Hofmann, 2023], we also reformulate the com-
plex structure into a parallelizable version by removing the
skip connection and normalization layer, which is shown in
Figure 2,

CachLormer (H;)

— 5y * MH-Cachattn (H,) + & « FFN (H;), )

where dp and 6; € (0,1) are parameters that control the
mixing ratio of two outputs. The feed-forward network
here includes a two-layer MLP with SwiGLU activation
function. MH-Cachattn (-) represents our design cache-
attention, which will be explained in the following sec-
tion. The elimination of unnecessary components reduces the
memory consumption of Transformer.
Cache-attention Mechanism. The traditional self-attention
mechanism calculates the attention coefficient by taking the
dot product of the key vector K € RM*d: and the query
vector Q € RV resulting in a quadratic complexity of
@) (N th). This dense complexity limits the model’s scal-
ability on large-scale datasets. To address this issue, we
propose cache-attention mechanism, where the underlying
motivation for this approach stems from the urban hierar-
chy theory in the spatiotemporal data analysis field [Guo er
al., 2021]: certain fine-grained nodes may exhibit similar
spatiotemporal features, allowing us to coarsen these fine-
grained nodes into P coarse-regions. Thus, we first randomly
initialize a set of caches E, = [e1,es2,...,ep] € REP*dn
which is a learnable parameterized embedding vectors. The
hyperparameter P is the number of caches with P (<« N) and
dp, is the number of channels. And the embedding vector of
k-th (k € {1,...,P}) cache e, € R represents the con-
textual features of k-th coarse-region. Fine-grained modeling
may prevent the model from perceiving robust causal associ-
ation between two heterogeneous data types, covariates and
AQI, while a coarse-grained perspective can alleviate this is-
sue.

Given a query matrix Q € RN ¥4 where q, represents the
feature embedding of node v;, we employ a soft assignment
mechanism to determine the association between nodes and
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caches. This mechanism achieves lossless attention capacity
through weighted combinations of attention scores between
nodes and cache elements. Specifically, the affinity between
node v; and k-th cache can be computed as:

QiekT
Si k= .

Vdp
Then we obtain two similarities by normalizing the node

dimension, and the cache dimension, respectively, with the
above calculated assignment weights as follows,

(6)

where s(lk) records the affinity of each node to k-th cache, and

5 ) represents the affinity of each cache to node v;. We can

1nd1rect1y calculate the similarity a; ; between nodes v; and
v; as follows,

ai; = Zsﬁz s € (0,1). (8)

The similarity calculated by this method inherits normal-
ized properties: for any node v;, the attention scores from all
nodes to v; sumto 1, i.e.,

N N
OIS B) S SR TL o S
Jj=1 k=1 j=1

j=1k=1
With the cache-attention calculation process from Equation
(6) ~ (8), the forward process of the cache-attention can be
expressed as follows,

Cache-attention (Q, E,, V)

T T
= Softmax (?/];Lz ) Softmax (E\Z}% ) V. (10)

where the query vector Q = H;W, and the value vector
V = H;W,. And W,,W, € R%* and E,, are learn-
able parameters. Our model also uses a multi-head attention
mechanism:

MH-Cachattn (H;) = [heady, ..., heady,] W, (11)

head,, = Cache-attention (HiVVq(w)7 E;w), HiWéw)> ,
d d

where Wéw), Wi e R&* W , E,(;w) e RP* ™ are the w-th

head part of W, W, and E,,, respectively. W, € R%*dn jsa

learnable parameter to integrate information from N, heads.

Computational complexity analysis. Compared with the

@ (N th) complexity of the self-attention mechanism in

Transformer, our cache-attention mechanism is reduced to
O (PNdy,), where P is be much smaller than N.

Causal Learning between AQI and Covariates

We first deploy a CachLormer, which is denoted as fj, to
model the causal dependencies between past AQI X and past
weather covariates Z. Specifically, we adopt the addition
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strategy with RMSNorm normalization strategy [Zhang and
Sennrich, 2019] to deeply fuse AQI and covariate information
by addition, compared to independent channel concatenation
strategies, the model can analyze deeper causal associations
from entangled representations:

1:16 = Norm (ﬁoX + %z) ; (12)

where By and -y are learnable parameters used to balance
the two terms. In order to integrate future weather covari-
ates. Specifically, we first use two parameter-independent
spatiotemporal learnmg modules to capture the dynamics of

X¢—74+1:+ and Zf+1 A1 and the outputs X and Z are the
future AQI representation and the covariate representation,
respectively. Then we use a CachLormer module, denoted

as fi, to learn the causal associations between X and Z:
H/ = Norm (,815(+%Z>. (13)

Finally, we add the two components together and feed them
into the decoder (e.g., FFN) to predict the future AQI:

Y = FFN (aofo(ﬂf)) tafy (f{’l)) , (14)

where o and «; are learnable parameters that weigh the de-
cision strengths of the two components.

3.3 Theoretical Explanation

Theory 1. Equivalence between MSE and mutual infor-
mation (MI). Minimizing MSE between the predicted values

Y and the ground-truth values Y can be equivalent to maxi-
mize the mutual information of Y and Y, max [ (?7 Y) ,in
the regression tasks [Jing e al., 2022]:

2 ~
<:>maxI(Y;Y). (15)
2

Next, we demonstrate the superiority of our model in mod-
eling causal association between AQI and weather covariates
from the mutual information theory.

Theory 2. MI Monotonicity. For any random variables A,
B, C, and D, the following inequality of the mutual informa-
tion / (-; -) holds [Peng er al., 2020]:

I(A;B) > 1(4;C,D) > 1(4;C). (16)

According to Theory 1, our goal is to maximize I(Y;Y).
Given the fact that weather covariates have significant causal
association with air quality, we incorporate these covariates
Z as auxiliary information into the learning process: the
learned representations of historical weather covariates and
past AQI are input into CachLormer to effectively model the
causal association. The learned knowledge is then propa-
gated to future weather covariates to make accurate predic-
tions. Thus, according to Equation 16, we have (Y; Y) >
I(Y;Xi—r41:4,2) > I(Y;X—741.), indicating that our
model has a higher lower bound on the mutual informa-
tion (MI) between true values Y and predicted values Y.
Based on the equivalence between MSE and MI (Theorem
1), we can conclude that weather covariates enhance the up-
per bound of mutual information, enabling the model to make
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more accurate and stable predictions by reducing predictive
uncertainty. We further demonstrate the benefits of weather
covariates through ablation experiments (as shown in Section
4.5). Compared to approaches that encode weather variables
through shallow networks, our model can capture causal as-
sociation more precisely.

4 Experiments

4.1 Nationwide Air Quality Dataset

Data Description. Due to the lack of open-source large-scale
datasets for air quality prediction, we open-source a com-
prehensive, long-term air quality dataset named LargeAQ. It
contains AQI, including PMs 5, PM;g, NOs, and so on, from
1,341 monitoring stations across 333 major Chinese cities.
We concentrate on PMs 5 as the primary pollutant of interest.
The dataset spans 8 years from January 1, 2016, to Decem-
ber 31, 2023, with hour granularity. The data are sourced
from the China National Environmental Monitoring Center
(CNEMC)', an online platform that provides real-time AQI
for prefecture-level administrative regions across China. We
also collect five weather features during this period from the
Chinese Weather Website as covariates: temperature, humid-
ity, precipitation, wind shear, and wind speed. A comparison
between LargeAQ and several popular air quality datasets is
shown in Table 1. In the experiments, we also use two other
open-source datasets.

Data Analysis. In weather science, PMs 5 pollution is cate-
gorized into three levels: No Pollution Level (< 35 ug/m3),
Pollution Level I (35-75 pg/m3), and Pollution Level II (>
75 pg/m3). Figure 3 illustrates the PM5 5 distribution across
these categories in LargeAQ. We observe a significant im-
balance in the distribution of the three pollution levels in the
LargeAQ dataset-severe Pollution Level 11 is rare.

Data Processing. To address missing values in the AQI and
weather data, we use the last observed value method. Us-
ing the sliding window to process data, the length of both
past window and future window are equal to 24. For input
features - including AQI, historical covariates, and future co-
variates - we apply standard normalization to facilitate sta-
ble learning. Only the predicted AQI values are denormal-
ized back to their original distribution. For the future weather
covariate Z/, to avoid information leakage caused by using
the actual values from our collected weather data, we simu-
late future weather forecasts by adding synthetic noise. Fol-
lowing common practices in linear regression [Murphy, 2012;
Jing et al., 2022], which assume that the predicted values de-
viate from ground truth by additive Gaussian noise, we gen-
erate simulated forecasts by injecting Gaussian noise into the
observed weather data. In addition, we also report the per-
formance of models that do not incorporate future weather
features, to provide a fair comparison.

4.2 Experimental Setup

Baselines for Comparison

We compare our CauAir with the 28 baselines that belong to
the following three categories:

"https://www.cneme.cn/
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LargeAQ (Our dataset)

No Pollution Level
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Figure 3: Different PMy 5 pollution level relative percentage
(%) on each day (left) and average relative percentage (%) in
every forecasting window (right) on LargeAQ datasets.

Time-series models: CATS [Lu et al., 20241, CycleNet [Lin
et al., 2024al, DLinear [Zeng et al., 2023], DSformer [Yu et
al., 2023], SOFTS [Han et al., 2024b], SparseTSF [Lin et al.,
2024b], TimeMixer [Wang er al., 2024d], CrossGNN [Huang
et al., 2023], Umixer [Ma et al., 2024], and TimeXer [Wang
et al., 2024e].

Spatiotemporal forecasting models: AGCRN [Bai et al.,
2020], ASTGCN [Guo et al., 2019], BigST [Han et al.,
2024a], D2STGNN [Shao et al., 2022b], GWNet [Wu et
al., 2019], STAEformer [Liu et al., 2023], STGCN [Yu et
al., 20171, STGODE [Fang et al., 20211, STID [Shao et al.,
2022al], STNorm [Deng et al., 2021], STTN [Xu et al., 20201,
and RPMixer [Yeh et al., 2024].

Air quality prediction models: AirFormer [Liang er al.,
2023], AirPhyNet [Hettige et al., 20241, DeepAir [Yi et al.,
2018], GAGNN [Chen et al., 2023], MGSFformer [Yu et al.,
2025], and PM5 s GNN [Wang et al., 2020].

Implementation Detail

The models are implemented in PyTorch 2.2.0 running on
an NVIDIA A100 GPU with 40 GB memory. We adopt
Adam optimizer accompanied MultiStepLR learning rate ad-
justment strategy with a learning rate 0.02 and weight de-
cay 0.004. The cache number P is 32 for LargeAQ, 108
for CCAQ and 10 for KnowAir. The channel dimension of
CachLormer is set to 128. We evaluate all models on numer-
ical regression prediction tasks and pollution level category
prediction tasks, using three commonly employed metrics:
MAE, RMSE, and MAPE for regression prediction and F1
score for pollution level prediction task. All baselines incor-
porate weather covariates (if available).

4.3 Future PMs 5 Forecasting Comparison

We report the performance metrics over 24 horizon forecasts
for LargeAQ dataset in Table 2.

Time-series forecasting models typically underperform
compared to spatiotemporal learning models, primarily be-
cause they focus solely on temporal dependencies while ne-
glecting inter-station correlations. Within the spatiotempo-
ral learning family, Transformer-based models demonstrate
superior performance over GCN-based approaches. For in-
stance, D2STGNN effectively captures PM, 5 spatiotemporal
dynamics through its decoupling mechanism. Among spe-
cific air quality prediction models, DeepAir achieves surpris-
ingly good performance despite its relatively simple archi-
tecture. This success can be attributed to its specialized strat-
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Horizon 6 Horizon 12 Horizon 24 Pollution Level Classification

Method MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) No-Pol Levell  Level I

CATS 9.51 14.41 55.16 10.34  15.55 61.08 11.60 17.25 69.83 0.9070  0.6780  0.3978
CrossGNN 8.62 13.25 49.78 9.94 1491 59.35 11.00 1641 67.45 09165 0.7151 0.4165
CycleNet 8.57 13.33 47.13 9.98 15.05 57.79 11.07 16.59 65.38 09161 0.7162  0.4366

-4 DLinear 8.95 13.43 56.44 10.30  14.97 67.95 11.25  16.27 75.73 09108 0.6880  0.4106
%  DSformer 8.53 13.14 47.50 9.83 14.77 56.44 1093  16.28 64.56 09190 0.7172  0.4721
g SOFTS 8.40 13.12 48.24 9.81 14.86 57.56 1096 1642 65.90 09172 0.7158  0.4586
= SparseTSF 9.52 14.23 59.93 10.56  15.75 67.27 12.33  18.11 79.79 0.9042  0.6884  0.4393
TimeMixer 8.53 13.15 51.62 9.88 14.74 63.79 10.84  16.03 73.12 09159 0.7181 0.2765
TimeXer 7.81 12.02 48.23 8.81 13.20 55.91 9.58 14.08 63.83 0.9217 0.7533 0.4702
Umixer 8.65 13.19 53.35 9.93 14.75 63.99 10.88  16.01 73.22 09153 0.7166  0.3565
AGCRN 7.79 11.99 43.16 8.69 13.02 49.58 9.55 14.06 57.94 0.8985 0.5868  0.2820
ASTGCN 8.33 12.48 47.44 9.34 13.67 53.86 10.28  14.80 64.44 09119 0.6829  0.4754
BigST 8.27 12.48 46.27 9.31 13.55 53.92 10.14  14.58 60.73 09123 0.7056  0.4882

= D?STGNN 7.73 11.89 43.05 843 1261 48.18 9.36  14.03 56.13 0.9021 0.6771 0.3432
%  RPMixer 8.45 12.83 46.08 9.70 14.32 52.85 10.86  15.82 60.97 0.9216  0.7252  0.5004
@ STAEformer 7.52 11.59 46.54 8.50 12.79 51.33 9.42 14.07 57.48 0.9219 0.7590  0.5096
£ GWNet 7.75 12.12 44.60 8.68 13.32 49.52 9.39 14.46 60.58 0.9232  0.7576  0.5090
8  STGCN 7.77 11.98 43.85 8.66 13.07 51.22 9.54 14.71 58.21 0.8295 0.5802  0.3321
“  STGODE 7.82 12.12 44.98 8.74 13.18 51.57 9.72 14.46 60.81 0.8478  0.5221 0.3408
STID 7.76 12.06 46.17 8.91 13.38 55.48 10.02  14.70 66.84 0.8272  0.6596  0.4750
STNorm 7.93 12.39 43.47 8.96 13.44 52.43 9.97 14.62 62.91 0.8620 0.6219  0.4275
STTN 8.11 12.38 46.90 9.12 13.50 53.64 9.97 14.54 62.05 09164 0.7150 0.4224
AirFormer 7.95 12.39 46.16 9.04 13.67 53.89 10.10  15.02 64.70 0.8729  0.6833 0.4617
AirPhyNet 8.77 13.41 54.45 10.05  15.00 63.57 1098  16.30 70.87 09152 0.7114  0.3259
DeepAir 7.86 12.31 44.23 8.94 13.58 52.40 9.69 14.57 57.69 0.5265 0.4048  0.2955
2 GAGNN 10.27  15.39 56.19 1125 16.40 66.23 11.54 18.81 69.59 0.8963 0.3489  0.1974
§ MGSFformer 9.75 14.66 56.27 10.65 1591 62.24 11.85 17.57 70.13 0.9047 0.6664  0.3874
? PM, sGNN 8.94 13.32 54.01 10.04 1452 61.54 1049  15.06 65.33 09138 0.6636  0.4659
%  Ours without FW  7.31 11.47 40.66 8.38 12.43 46.50 9.21 13.44 52.57 0.9369 0.7824  0.5649
Ours 7.23 11.29 40.53 8.11 12.26 46.13 8.74 12.96 51.49 0.9392 0.7922  0.5820

Table 2: Performance comparisons on LargeAQ. The best and second best results are bolded by corresponding colors. The
third best result is underlined. ‘Ours without FW’ means we do not use future weather covariates. All experimental results are

the average of five independent runs.

egy for encoding weather variable influences, highlighting the
crucial role of weather factors in prediction accuracy.

Our CauAir explicitly models the causal associations be-
tween covariates and AQI to enhance prediction performance.
As a result, our model achieves state-of-the-art performance
across all metrics, showing up to 8.27% improvement in
PM, 5 value prediction compared to existing methods.

4.4 Efficiency Study

Figure 4 illustrates the efficiency comparison between strong
baselines and CauAir on the LargeAQ dataset. Each solid

12.51NGSFormer (64)
110.08s, 11.85 F*fi*fiﬁ
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Figure 4: Efficiency study of CauAir on LargeAQ dataset.

circle represents a model, with the model name, training time
per epoch, and MAE reported below. The default batch size is
64; for some complex models (marked with * and their batch
size), we have to reduce their batch sizes to enable operation
on the large-scale dataset.

We observe that advanced Transformer-based models, such
as STAEformer and D2STGNN, suffer from a time complex-
ity that scales quadratically with the number of nodes, due to
their reliance on standard self-attention mechanisms. More-
over, their complex architectural designs further increase
memory consumption. AirFormer simplifies the Transformer
structure, thereby achieving improved efficiency. Our model
not only achieves superior predictive performance but also at-
tains the highest computational efficiency, outperforming the
SOTA D2STGNN in time and space complexity.

4.5 Ablation study

We conduct ablation experiments on the LargeAQ dataset to
verify the effectiveness of each component.

Weather Covariates. We develop the following variants: (1).
w/o ZP: Remove the past weather covariate ZP term in input;
(2). w/o Zf: We do not take the future weather covariate
Z' as input; (3). w/o ZP & Z': We do not use any weather
covariates. The experimental results are shown in Table 3,
which shows that both past and future weather covariates are
beneficial to improving prediction performance.
Transformer Variant. To evaluate the effectiveness of the
proposed CachLormer, we develop the following variants:
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Efficiency Horizon 6 I Horizon 12 I Horizon 24

Method \Tlme (5) Memory (MB)MAE RMSE MAPE|MAE RMSE MAPE|MAE RMSE MAPE
wio Z7 745 1154 4325|831 1245 4852|883 13.02 52.80
wioZ! - - 731 1147 40.66|8.38 1243 4650|921 1344 52.57
wlo ZP&ZS| - - 7.62 11.83 43.75|8.84 1324 52.79|9.87 14.54 62.22
“Sattn 316 32,538 |7.31 11.39 40.64|8.04 1248 46.30|8.83 12.95 52.82
~VanArc 206 7756 |7.36 1143 40.79|8.19 12.41 4577 [8.81 13.08 51.70
+VanTran | 321 31,740 [7.08 11.04 41.23|7.97 1236 45.06 |8.77 12.98 51.83
Ours 133 7586 | 7.23 11.29 40.53|8.11 12.26 46.13 |8.74 12.96 5149

Table 3: Ablation study on LargeAQ dataset.

(1). -Sattn: We use standard self-attention mechanism instead
of our cache-attention mechanism, using our lightweight ar-
chitecture; (2). -VanArc: We use standard Transformer archi-
tecture in Equation 1 with our cache-attention mechanism;
(3). +VanTran: We use standard Transformer architecture
to replace CachLormer. We find that CachLormer achieves
comparable performance to Transformer while significantly
reducing memory consumption and training time (s/epoch).

4.6 Hyperparameter Sensitive Annalysis

We evaluate the sensitivity of the hyperparameter the number
of caches P on LargeAQ dataset.As shown in Figure 5, we
observe that optimal values of P is equal to 32. A smaller P
is insufficient to capture adequate contextual features shared
among nodes. When P exceeds these optimal values, perfor-
mance does not improve significantly, as the model struggles
to focus on extracting shared contextual features.

4.7 Performance Analysis on Small-scale Datasets

We evaluate our model against several state-of-the-art
approaches using two open-source small-scale datasets:
KnowAir and CCAQ. The 24-step average results are pre-
sented in Table 4. Our model demonstrates significant perfor-
mance advantages, with an average improvement of 5.15%
and a maximum improvement of 20.55%. These enhance-
ments can be primarily attributed to our explicit modeling of
the causal relationships between AQI and weather conditions.

4.8 Related Work

Time series analysis is a fundamental task [Liu et al., 2025a;
Liu ef al., 2025a; Miao et al., 2024; Huang et al., 2023],
which is a specific area of air quality forecasting. Early
time series analysis approaches modeled air pollutant emis-
sions and dispersion as dynamic systems using numerical
simulations, with notable examples such as the Community
Multiscale Air Quality [Byun and Schere, 2006]. However,
these methods require extensive theoretical knowledge, care-
fully selected features and region-specific parameters, mak-
ing them impractical for real-time air quality monitoring

LargeAQ
120 455
m [CIMAE CIRMSE —e—MAPE(%)
2 11.9 450 _
S
& 1L8 |_| |_| M mm M- 445z

g &

o 79 <

g “0Z
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2 4 8 12 16 24 32 48 04 96 128 256

Figure 5: Sensitivity experiments of P on LargeAQ datasets.
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Method CCAQ KnowAir
MAE RMSE MAPE(%) MAE RMSE MAPE(%)
CycleNet 21.30 34.80 3296 17.28 26.83  56.85
DLinear 21.28 34.62 3429 17.06 2620  64.53
SOFTS 21.29 34.69 33.06 17.38 26.84 56.30
TimeMixer 20.84 3433  32.63 16.78 25.85 65.38
TimeXer 19.64 3249  31.61 15.70 24.01 58.10
Umixer 21.23 3458 33.88 17.61 26.87 63.13
AGCRN 19.57 32.65 3141 16.34 24.81 63.26
BigST 18.67 31.02  29.37 15.68 24.15  56.52
D?STGNN  18.82 3229  26.30 15.39 24.31 55.41
GWNet 18.74 31.72  29.11 1549 2385 56.73
RPMixer 19.05 32.46 2891 16.73 2596  54.07
STAEformer 19.01 31.57 30.34 15.82 24.56  53.28
STGCN 19.56 33.34  28.48 1577 2425 5744
STGODE 1996 3346 31.10 1598 25.02  58.00
STID 20.54 34.13 3286 16.16 24.88  61.41
STTN 19.09 31.83 29.80 15.50 24.08 54.54
AirFormer  20.23 33.16  33.30 16.05 24.70  59.60
AirPhyNet  21.80 35.73 33,57 17.54 26.74  64.58
DeepAir 18.68 31.20 29.43 14.88 23.75 55.35
GAGNN 3291 4638 4133 1940 3563  71.33
MGSFformer 25.29 40.08 39.44 19.01 29.28  61.75
PM5 sGNN 19.75 32.55 2849 15.10 2242 5424
Ours 16.89 29.41 24.84 13.03 20.44 42.33

Table 4: Average performance on KnowAir and CCAQ.

systems. Data-driven models emerged with the expansion
of urban-scale air quality sensor networks and advances in
machine learning algorithms. Recent advances in machine
learning, particularly deep learning, have significantly im-
proved prediction accuracy [Liang er al., 2023; Wang et al.,
2020]. Researchers have designed cutting-edge models to
capture the internal spatiotemporal dynamics of AQI and ex-
tract high-dimensional representations. The dominant archi-
tecture employs spatiotemporal graph convolutional networks
[Miao et al., 2025; Wang et al., 2023; Wang et al., 2024a;
Wang et al., 2024b; Ma et al., 20251, utilizing spatiotemporal
graphs to represent spatiotemporal data, RNNs or Transform-
ers for temporal dependency modeling, and GNNs or Trans-
formers for spatial dependency extraction [Liu et al., 2024;
Shao et al., 2022a; Liu et al., 2025b; Zhang et al., 2025].
These works, however, present some difficulties (e.g., inef-
ficiency) on a nationwide air quality dataset. Moreover, our
model differs by explicitly modeling the influence of covari-
ates on air quality, leveraging these additional variables to
enhance prediction performance.

5 Conclusion

In this paper, we introduce a nationwide and long-term air
quality data from 1,341 monitoring stations. We then propose
a lightweight yet effective spatiotemporal causal learning
model for air quality prediction. The model employs a novel
CachLormer, an efficient Transformer architecture, to explic-
itly model the causal association between AQI and weather
covariates. Compared across three datasets against 28 base-
lines, our model achieves dominant performance while main-
taining high time and memory efficiency.
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