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Abstract— Visual pattern recognition usually plays important
roles in robotics and automation society where the pattern
recognition relies on representation learning. Existing repre-
sentation learning often neglects two important issues, the
diversity of intra-class representation and under-exploited label
utilization, especially the negative feedback during training
process. Fortunately, prototype learning potentially raises label
utilization and encourages intra-class diversity. In this paper,
we investigate the intra-class diversity and effective updates
in prototype learning for enhanced visual pattern recognition.
Specifically, we propose a Label-aware multi-Prototype learn-
ing, LamPro, by incorporating the label awareness into both
prototype formation and update to improve the representation
quality. Firstly, we design a supervised contrastive learning
to achieve class-discriminative representations. Secondly, we
randomly initialize multiple prototypes and update the nearest
prototype upon the arrival of instance, to preserve intra-class
diversity. Thirdly, we propose a novel Label-guided Adaptive
Updating. We separate the prototype updates from the repre-
sentation optimization and exploit the label indexes to directly
implement the prediction feedback. To correct the model
optimization directions, we identify the negative feedback, and
correct the prototype updates via queries of labels. Finally,
we design a memory-based counter to alternately update these
deviated prototypes. Experiments verify the effectiveness of our
label-aware and joint multi-prototype updating strategies.

I. INTRODUCTION

Visual pattern recognition is often of great significance for
operations of robots [1], [2]. Among artificial intelligence
solutions, representation learning based on neural networks
has contributed to enable high-quality recognition and pattern
extraction on both graph and image signals [3], [4]. However,
the model performances do not only depend on the designed
neural architectures, but also heavily rely on the data quality.
Actually, the increases of data volumes has not improved
their quality but introducing computation burdens and noise.
Thus, emerging real-world datasets tend to exhibit three
characteristics, i.e., data volume explosion, outlier noise,
and intra-class pattern diversity, which inherently challenge
the learning models [5]. To reduce the impacts of data
volume explosion and prominent outliers, prototype learning
has been introduced [6]. Generally, prototype learning aims
to select samples with high signal-noise ratios within one
class and summarize the commonality of these samples into
representative representations, therefore it can be exploited
to filter noise and improve both learning and inference
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efficiency. Recently, researchers have found that prototypes
can not only contribute the learning efficiency improvement
and data refinement, but also can be explored to facilitate
model designs, enabling more challenging tasks such as few-
shot learning [7]. Therefore, prototypes can be incorporated
into deep models to improve representation quality.

For general representation learning, there are two issues,
i.e., representation diversity and under-exploited label utiliza-
tion, hindering better representations. First, we raise a new
feature of intra-class diversity, which is an inevitable issue in
real-world datasets. For instance, in Figure 1, all three photos
fall into the same category of dog but with different patterns
in their shapes and colors. Thus, models without considering
the intra-class representation diversity fail to form irregular
but compact boundary shapes for gaining tolerances of
unseen instances within seen classes. Second, the ground-
truth labels are still under exploited. Although various label-
aware [8], [9] and label distribution learning [10], [11] have
been developed by inserting label learning objectives, we
argue that such objective-based optimization is still subopti-
mal as it progressively adjusts the learnable parameters with
minor steps and can be influenced by the randomness of
gradient descent. Actually, a natural learning law reveals
that the negative feedback will impress the learner much
more and teach him a lesson [12]. Therefore, the learning
process calls for a more direct way of label exploitation,
especially emphasizing the negative feedback, to facilitate
the rectification on model updates.

The common issues in existing learning methods elicit
us to encourage irregular but compact class representation
boundaries and develop efficient model updating strategy
with informative negative feedback. Fortunately, prototype
learning, which enjoys the representation summarization ca-
pacity and flexible updating, is introduced to pattern recogni-
tion and potentially to tackle above two issues [13], [14]. Pro-
totype learning can be generally classified into two aspects,
single prototype and multi-prototype. For single-prototype
ones, they are first proposed to summarize the commonality
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of intra-class instances and enable dynamic prototype up-
dating, which open an avenue to efficiently capture more
robust patterns and reduce the memory in inference [15],
[16], [17]. But given intra-class diversity, the single proto-
type strategy inherently falls short in forming rational but
irregular feature spaces for accommodating the intra-class
diversity. To this end, an emerging literature [18] proposes
a multi-prototype solution to encourage intra-class diversity
by assigning multiple prototypes for each class. However, the
reported results in [18] reveal that such solution cannot fully
uncover the potential edge of multi-prototype mechanism. In
this way, we speculate the reason lies in that the prototypes
are updated via gradient backpropagation and trapped into
small updating step size, which deteriorate the diversity
preserving capacity in multi-prototype learning. Therefore,
a more direct updating strategy, along with effective label
utilization on prototype updates is required.

To this end, exploiting the multi-prototype scheme to en-
able representation diversity and high-quality label utilization
is both promising and challenging. We can summarize the
challenges below, 1) How to exploit prototypes to construct
the irregular but compact class boundary that possesses inter-
class separation and intra-class diversity? 2) How to fully
exploit the labels to establish active feedback for timely
prototype update and effective model adjustment?

To tackle above two challenges, we shed light on a Label-
aware multi-Prototype learning scheme, LamPro, seamlessly
incorporating the label awareness into both prototype for-
mation and updates. In order to achieve the separation
among classes, we borrow the idea of contrastive learning
and construct a contrastive loss regularization term into the
loss function. To preserve the intra-class diversity, we first
randomly initialize multiple prototypes for each class and
propose a simple yet effective updating strategy to improve
the prototype granularity from class-level to pattern-level.
Particularly, for each arrived instance, we generally update
the geometrically nearest prototype to maximally preserve
the original shape of overall class boundary, thus suppressing
the interference between two far-away intra-class instances.
To this end, the well-learned prototypes in each class can
jointly establish the irregular but compact class boundary.
Secondly, to enable effective updates and negative feedback
emphasis, we take advantage of informative labels and pro-
pose a Label-guided Adaptive Updating strategy. First, we
separate the representation learning and prototype update to
avoid intractable gradient propagation with discrete prototype
labels and ensure a more flexible and direct prediction feed-
back for models. To inform whether the model optimizes to-
wards correct directions, we improve the updating strategies
upon different prediction feedback. When positive feedback
is identified by labels, we update the nearest prototype
to the arrived new instance, which can be viewed as the
beneficial prototype dominating the results. However, such
nearest updating strategy can potentially bring in a deviation
issue, i.e., the prototypes will potentially deviate away from
their intrinsic representation space due to the unsatisfactory
initialization and imbalanced feature distributions of arriving
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Model architecture of LamPro

samples. We designate such deviated prototype as obsolete
prototype, and design a memory-based updating counter
to alternately update these obsolete prototypes until they
get rid of such role. When negative feedback arrives, we
exploit the labels to identify the correct prototypes and
select the geometrically nearest prototype for corresponding
instance-level updating, thus enabling the high efficient and
negative feedback-aware updating. Extensive experiments on
six datasets have demonstrated the competitive performances
of LamPro against baselines, showing the superiority for
visual recognition on both graphs and images and supporting
the robot automation.

II. RELATED WORK

Visual pattern recognition is of great significance for
automatic cruise in robotic fields [19], [20]. The open-
world visual signals can be generally divided into graphs
and images where representation learning has made con-
tributions. Existing representation learning mostly focuses
on modifying learning objectives [21], [22]. For instance,
[23] proposes to integrate cross-entropy and contrastive
loss where cross-entropy encourages the intra-class diver-
sity while contrastive loss simultaneously amplifies inter-
class diversity and minimizes intra-class diversity. Further,
[24] devises a triplet loss to learn representation in the
compact Euclidean space via instance-level similarity, and
such well-learned representation has been exploited in tasks
from recognition, verification to clustering. To promote the
summarized common representation, prototype learning is
proposed from the neural network-based Learning Vector
Quantization (LVQ) [16]. Prototypes, derived by samples
with high signal-noise ratios, summarize the commonality
of good samples into representative representations thus
filtering noise and facilitating the inference. There are two
popular ways for prototype updating, one develops condition
and rule-based methods to regularize the updating [25] while
another devises various optimization objectives to guide the
updates [16]. Even so, we argue that these objective or
condition-based updating strategies are not straightforward
to receive the prediction feedback and the single prototype
for each class directly neglects the intra-class diversity in
real-world datasets.

10081

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 12,2025 at 12:46:04 UTC from |IEEE Xplore. Restrictions apply.



III. METHOD

A. Problem definition

We realize our label-aware multi-prototype learning archi-
tecture upon image classification tasks. Given the training set
S = {azi,yi}gl where x; is the image and y; is the class
label. Let U = {x¥, y;‘}‘fill be the unseen set left for testing.
We aim to design a multi-prototype construction function
f(#x,y:;05) to derive a prototype set P = {ij}(j =
1,..,Ck = 1,..,K) where C is the total number of
classes in training set while K is number of prototypes
assigned for each class, and a label-aware updating strategy
g(PP; 8,) to dynamically achieve the latest prototype. We can
finally obtain the predicted y}* by the prototype assigment

Assign. The process is formulated as, S ELN PF ¢ =
Assign(f o g;0¢,6,).

B. Framework overview

To simultaneously model the intra-class diversity and
enable label awareness in representation learning, we propose
our LamPro, a label-aware multi-prototype learning strategy.
The overview of proposed LamPro is illustrated in Figure 2.
As illustrated, our LamPro consists of two main components,
a prototype-ensembled classifier f4 () to explicitly incorpo-
rate the prototype-based solution for final prediction, and
a multi-prototype optimization module for fine-grained and
timely prototype updates.

C. Prototype-ensembled classifier

To model the intra-class diversity, we propose to exploit
a multi-prototype scheme to accommodate different patterns
within the same class. However, in prototype learning, the
initialized prototypes only take the role of placeholders
for pattern learning and will be progressively updated via
subsequent prototype optimization. Thus, we leverage an en-
sembled classifier, which is composed of a prototype-driven
classifier and an CNN feature extractor driven classifier, to
jointly achieve final prediction, where both powers of pro-
totypes and CNN-based representation can be maximumly
exploited. Then we can elaborate these two branches.

Assume there are totally C classes in a given task and
K patterns within each class, we first initialize C x K
prototypes, where these prototypes will be gradually updated
with strategies introduced in Sec. III-D. Actually, the CNN-
based classifier and prototype initialization are mutually
dependent. Given an input image x, we first abstract its
feature representation via a CNN-based extractor fp(x), and
then we can exploit the CNN-based extractor to determine
the appropriate prototypes. Specifically, we choose the Eu-
clidean distance as the affinity measurement and calculate
the distances between extracted features and all prototypes
via computing the inverse of Euclidean similarities, then
we select the closest prototype to the extracted feature map
fo(x) as the most probable prototype where the correspond-
ing class is the predicted class. To obtain the prediction
probability, we further impose the Softmax function to the

derived distances d;(x) to normalize the probability to (0, 1).
The implementation can be summarized as Eq. (1)-(2),

1
dj(z) = )

K ph2
min || fo(a:) — PF|,

Y7 = Softmax{d;(x)} )

?f represents the probability that sample « is classified into
class j through the prototype-driven classifier. Detoning P;’
as the prototype of ground-truth, we can derive that our learn-

K
ing objective will force to minimize Igllrll || fo(xs) — P;H;

K
and increase rkrlirl1Hf9(:ci) - ijHz' It is worth noting
JFy T

that this process is exactly ingenious and can realize an
iteratively mutual enhancement. Specifically, the prototypes
will be determined and optimized by CNN extractor while
the representations will also tend to approach to the proto-
types during the learning process. After then, benefiting from
the prototypes, we can summarize the representations from
diverse samples into compact prototypes where the noise
can be explicitly filtered out and the representation can be
significantly improved. Therefore, we can sufficiently exploit
the prototypes to enhance CNN-based representations.
Even though, if the model is totally guided by the proto-
type at initialized steps, the results may not be satisfactory
as the prototypes are not well updated. To get rid of this sit-
uation, we ensemble a fully connected layer-based classifier,
which is directly cascaded by the CNN-based extractor and
map the representation to a probability value. To this end,
our learning process becomes an ensembled classifier where
the importance between two classifiers are fused with «,

Y=aV%'+(1-a)Y*¢ 3)

where Y4 refers to the predicted probability given by proto-
types, while Y ¢ is the prediction of CNN-MLP classifier. For
the adjustable parameter o, we will first impose a small «
close to 0 and let it progressively increase during the training
process. When « is close to 0, the CNN-based classifier
can dominate the final results as the initialized prototypes
are still embryonic and unreliable. With the training process
of our model, the prototypes gets reliable, and we further
increase « to let the model gradually enjoy the advantages
of prototype learning. At the end stage of training, we shrink
the proportion of MLP classifier to zero and fully utilize
prototypes prediction with @ = 1 where it can sufficiently
achieve inter-class separation and intra-class diversity.

Benefits. The benefits of this gradually learning process
are as follows. First, we can take advantage of MLP to
expedite the model convergence and obtain better repre-
sentation extraction, while secondly, our model can win
a buffering time to progressively update prototypes into a
reliable template during the steps with small a.

D. Multi-prototype optimization

Actually, data in nature mostly satisfy Gaussian distri-
bution, with the majority concentrated on the expectation
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Fig. 3. TIllustration of updating process. The left figure represents the

situation of obsolete prototypes, and the right figure represents the process
of prototype adjustment. In the figures, the circle represents the sample
representation, the star represents the prototype, the triangle is a new
representation instance and the prototype with an exclamation mark in the
upper right corner indicates the obsolescence.

while only minority of them scattered across edges. To this
end, in classification tasks, the virtual class boundary is
often critically determined by the minority of edge data
which is far away from concentration points. Thus, how
to construct an irregular class space from complex data
distribution has always been a challenge. In this work, we
exploit the both summarization and anti-nosie capacity of
prototypes, and construct multiple prototypes for each class
to formalize the irregular class space. We then elaborate
the solution to dynamically updating prototypes through
receiving real-time incoming representations, where the core
objective for prototype representation is to achieve the inter-
class separation and intra-class diversity. In fact, our proto-
type optimization process can be generally categorized into
three-fold, the contrastive-based optimization, determining
the updated prototype and calculating how much to move
for each updated prototype.

1) Contrastive-based inter-class separation: First, in or-
der to achieve inter-class separation, we borrow the idea of
unsupervised contrastive learning and propose a regulariza-
tion term to preserve such separation,

N N )
S5O Iy :y].)esm(f(zi),f(zj))/f

i=1j=i+1
Ie = - N N @
Z Z eSim(f(l‘i,)vf(zj))/T
i=1j=it+1
1 C
Ecov = _5 Zlog IC (5)
c=1

N is the size of a mini-batch, and I is an indicator function,
e.g., the indicator I(-) becomes 1 if and only if sample x; and
x; belong to same label, otherwise I is 0. Specifically, sim(-)
indicates the similarity between representations, and 7 is the
hyperparameter of temperature. This contrastive-based reg-
ularization guarantees the representations between different
classes separated as much as possible while representations
between same classes compact enough.

2) Multi-prototype updater: We propose a label-aware
prototype updater that adaptively refines multiple prototypes
for each class, addressing intra-class diversity. The updater
assigns new instances to prototypes and operates in two
stages: targeted prototype identification and prototype move-
ment quantification.

Targeted prototype identification. When a new instance
arrives, the updater selects the closest prototype for updating

to maintain intra-class diversity. However, inactive prototypes
can become obsolete, drifting from the representation space.
To prevent this, we use a memory-based counter to track the
number of instances assigned to each prototype. Prototypes
with fewer than a threshold number § of instances are
deemed obsolescent and are re-integrated into the representa-
tion space until they regain sufficient sample representation.
Prototype movement quantification. In this stage, we
quantify how much a prototype should move during each
update. We emphasize the importance of negative feed-
back (misclassifications) in forming class boundaries, giving
greater significance to incorrectly classified instances. This
label-aware approach ensures prototypes adjust according to
both correct and incorrect predictions, refining class bound-
aries without impacting the classifier. When the prototype-
based classifier makes the right decision, we will impose
a moving-average based update process to corresponding
prototype. Given the k-th prototype within ¢-th class PJZ“ and
an instance representation fg(x;) for x;, we can obtain a
linear combination of both prototype ij and fo(x;),

Pl =(1-)\)PF+ Afo(x;) (6)

where A controls the update volume. When the prototype-
based classifier provides an erroneous decision, it not only
manifests the low quality of existing prototype representa-
tion, but also indicates the inferior and irrational representa-
tion space for this class. Fortunately, the first issue can be
fixed by gradient descent with our learning objective. For
the second issue, we take advantage of the sample represen-
tation of misclassified one to adjust the class representation
space, which emphasizes the incorrect feedback and closes
the gap between the irrational prototype and corresponding
class representation space. Specifically, we push away the
prototypes away from the sample representation while bring
the prototype closer to correct class representation space. We
can modify Eq.(6) to formalize this updating process as,

Pf = (1—n)) Pf —n\fo(z;) (7)

where Pf is the prototype with erroneous classification, and
x; is the new instance. We especially impose a positive in-
teger 1 to accommodate the movement scale, and drastically
push away the prototype from the incorrect representation
space with —nA where parameters 7, A satisfy 0 < nA < 1.
With this solution, we can put more emphasis on the update
volume of misclassified samples to correct classification and
simultaneously push away the incorrect prototypes.

E. Learning objective

Our proposal is operated on classification tasks and our
goal is to achieve higher classification accuracy and lower
classification loss. Here, we have chosen the commonly used
Mean Squared Error (MSE) as our loss function, and we have
added a contrastive loss regularization term to achieve inter-
class separation and intra-class compactness. Given totally
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TABLE I
THE STATISTICS OF DATASETS

Image dataset | Number Size Channel | Class
CIFAR-10 60000 32x32 3 10
CIFAR-100 60000 32x32 3 100
Caltech101 9146 300x200 3 101
Graph dataset Node Edge Feature | Class
Cora 2708 5249 1433 7
Citeseer 3327 3703 3703 6
Pubmed 19717 44338 500 3
TABLE II
PERFORMANCE ON IMAGE DATESETS (BEST RESULTS ARE IN BOLD)
CIFAR-10 CIFAR-100 | Caltech 101
ResNet-18 90.00£0.63 | 70.27+£0.45 | 62.89+0.85
ResNet-18 (k=1) 91.25+0.88 | 71.274+0.36 | 63.124+0.79
ResNet-18 (k=20) | 93.56+0.37 | 72.63+0.35 | 64.511+0.69
ResNet-50 92.21£0.67 | 74.83£0.61 | 68.65£1.25
ResNet-50 (k=1) 93.10£0.65 | 75.284+0.51 | 69.2940.94
ResNet-50 (k=20) | 94.124+0.39 | 76.931+0.32 | 70.58+0.94
CvT-7 78.814+0.42 | 62.344+0.56 | 52.35+0.89
CvT-7(k=1) 80.12+0.25 | 63.25+£0.52 | 53.89+0.67
CvT-7(k=20) 81.26+0.36 | 63.98+0.29 | 54.59+0.85

N samples, our final loss function can be derived by,

N

1 —~
Las =+ ; (vi = ) (8)
‘ctotalz‘ccls + Ecov (9)

IV. EXPERIMENTS

We adopt six datasets including graphs and images which
are common signals in robotic visual tasks, and foundation
models for image and graph learning are as our baselines.

A. Datasets

As open-world visual signals can be generally divided
into graphs and images, we evaluate our methods on
both image and graph datasets. Three prevailing image
datasets for recognition tasks include CIFAR-10, CIFAR-
100 [26], Caltech-101 [27], while three widely adopted real-
world graph datasets include Cora [28], Citeseer [29] and
Pubmed [30]. The detailed statistics are presented in Table I.

B. Baselines and backbones

We select six backbones to evaluate our solution. We
employ two classical deep learning architectures for image
classification and three graph-based learning frameworks for
graph-level classification. We incorporate our solution with
these backbones to analyze the performance variations as
well as conduct the ablation studies.

ResNet: A class of deep CNN models, with residual
connections. In our work, we employ ResNet-18 and ResNet-
50 as our backbone for evaluation [31]. CvT: A transformer-
based architecture that organizes the transformer blocks with
convolution blocks, to realize the image classification [32],
where CvT-7 is exploited. GCN: A classic graph-structured
data modeling baseline, where it uses GCN layer to aggregate

TABLE III
PERFORMANCE ON GRAPH DATESETS
Cora Citeseer Pubmed
GCN 79.8240.53 | 69.32+0.43 | 78.13£0.43
GCN (K=1) 80.21£0.12 | 69.654+0.34 | 78.22+0.22
GCN (K=20) 83.261+0.19 | 72.71+£0.13 | 81.13+0.08
DeepWalk 67.031+0.23 | 43.32+0.34 | 64.45+0.77
DeepWalk (K=1) 67.13+0.15 | 43.01£0.12 | 64.79£0.54
DeepWalk (K=20) | 69.87+0.43 | 47.414+0.54 67.761+0.34
GAT 81.33+0.27 | 71.23£0.55 | 78.02+0.32
GAT (K=1) 82.67+0.34 | 72.31+0.21 | 78.11+0.65
GAT (K=20) 85.234+0.52 | 73.22+0.23 | 82.43+0.31
] o /w

Accuracy %
Accuracy %

13 5 7 8 1 1B 15 o1 1 13 s

Fig. 4. The impact of the number of prototypes on classification results,
where the left figure is image classification models, and the right figure is
graph node classification models.

information from node’s local neighborhood and update node
embedding [33]. DeepWalk: A node embedding strategy by
using random walks in a neural network, which samples
nodes and treats the walks as sentences to learn distributed
node representations via a skip-gram model [34]. GAT: It
incorporates self-attention mechanisms into GCNs to learn
node embeddings. It leverages node-wise relationship to
assign attention scores to each neighbor, for information
aggregation [35].

To verify the effectiveness of our LamPro, we incorporate
our adaptive prototype updating with above backbones. More
specifically, since the improvement of prediction perfor-
mance become less prominent as K gets larger than 10, we
then let the number of prototypes K vary ranging from 1 to
20 for multi-prototype testing.

C. Results

The performance of different methods on image datasets
are summarized in Table II while performance on graphs are
in Table III. Due to the space limitation, we only report the
scenario of K = {0,1,20}. The reported results explicitly
illustrate three backbones those are with and without the
prototype updating, where it shrinks to a single prototype
when K = 1. We have following three observations.

Performance comparison. Compared among baselines
those are with prototypes and without prototypes, prototype-
based representation learning can generally compete non-
prototype baselines by 1.64% to 4.41%. Specifically, we
find that the performances of multiple prototypes can reveal
prominent advantages against the single prototype, e.g.,
performances at K = 20 are better than performances at K
= 1, which verifies the motivation of intra-class diversity
and multi-prototype solution. Among them, ResNet-18 has
an improvement of nearly 3.5% on CIFAR-10, and other
benchmarks also have a general improvement of approxi-
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Fig. 5. Prototypes visualization of ResNet-50 on the CIFAR-10.

mately 2%. This not only confirms the existence of multiple
pattrens in the same class but also demonstrates the reliability
of our proposed multi-prototype update strategy.

Effects of different K. We let the parameter of different
number of prototypes K vary on the same model and visual-
ize the prediction results in Figure 4. We gradually increase
the value of K and find that the performance will improve
accordingly. Typically, we choose ResNet-18 and ResNet-
50 on the CIFAR-10 dataset while GCN and GAT on Cora
dataset for visualization. We find that on the image dataset,
when the number of prototypes reaches 7, the improvement
of model performance reaches its limit, while in graph node
classification, the improvement slows down when the number
of K larger than 13.

Difference on two types of tasks. The reasons behind
such differences are attributed to more complex patterns
within graphs. For example, the Cora dataset is a citation
network consisting of scientific publications from different
subjects, where it contains 2,708 scientific papers, and each
of them is represented as a binary bag-of-words feature
vector, indicating the presence or absence of words in the
corresponding document. Such complexity can be reflected
by the local neighboring aggregation of GNN, consisting
of both neighbors and node itself. To this end, graphs are
deservedly with more diverse patterns.

D. Representation visualization

We utilize dimensionality reduction and visualization tech-
niques to map prototypes into a two-dimensional space for
illustration. We select a typical task, i.e., representation
learning with ResNet-50 on CIFAR-10, in Figure 5. We
can clearly see that not only there exists enough distance
spaces between different classes, but each class also has
a clear boundary. Compared with single-prototype based
representation, our method has more space to accommo-
date the diversity for different intra-class samples. At this
time, the diversity representation space provided by multiple
prototypes can possess stronger representation capacity. The
visualized results demonstrate the quality of our multi-
prototype learning and further confirm the interpretability
when LamPro is adapted to vital visual recognition tasks
in automatic robots.

TABLE IV
THE IMPACTS OF A ON PERFORMANCE.

Impacts on images CIFAR-10 | CIFAR-100
ResNet-50 (A=0.001) 93.1 76.01
ResNet-50 (A=0.005) 94.2 76.43
ResNet-50 (A=0.01) 94.12 77.12
ResNet-50 (A=0.05) 93.56 77.03
ResNet-50 (A=0.1) 93.43 76.43
Impacts on graphs Cora Citeseer
GCN (A=0.001) 81.78 70.76
GCN (A=0.005) 82.98 71.65
GCN (A=0.01) 83.43 72.65
GCN (A=0.05) 83.23 72.34
GCN (A\=0.1) 82.14 71.32

E. Hyperparameter setting

For updating quantity A\, we conduct a series of analysis
experiments, where results are presented in Table IV. In our
experiment settings, we set the prototypes number uniformly
to 20 and select five different values of ), i.e., {0.001,
0.005, 0.01, 0.05, 0.1} for studies. Based on the experimental
results, we find the values of A cannot achieve optimal
performances when it is either too large or too small. Specif-
ically, when A becomes too large, the prototype gets overly
dependent on the representations of subsequent instances,
which causes insufficient preservation of previous represen-
tation information and leads to suboptimal inductive ability.
Conversely, when A is too small, the updating quantity of
the prototype is inadequate, resulting in slow updating rates
and unsatisfactory performance. Finally, we choose a median
value and set A = 0.01. In the settings, the hyperparameter
7 is searched from {10, 11, ...,25} and we observe that the
best performance is achieved when 1 = 17. We also set
multiple test values for the sample quantity threshold ¢ of
the obsolete prototype, and through experiments, we found
that § = 20 yields the best performance.

V. CONCLUSION

In this paper, we address the intra-class diversity and effec-
tive prototype updates in prototype learning, to consolidate
the deep representation capacity. To this end, we design a
multi-prototype learning scheme, LamPro via improving the
label exploitation. Specifically, LamPro accommodates the
irregular intra-class boundary and representation diversity
by assigning multiple prototypes for each class. To enable
effective prototype updates, a label-guided adaptive updating
strategy is proposed, which separates the updates of repre-
sentation and prototypes, and actively identifies the negative
prediction feedback for immediate correction of model op-
timization. The empirical results and interpretable visualiza-
tions have verified the effectiveness and interpretability of
LamPro for visual recognition.
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