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Abstract—Urban housing price is widely accepted as an
economic indicator of both business and research interest in
urban computing. In this work, we propose an effective and
fine-grained model for urban subregion housing price predic-
tions. Compared to existing works, our proposal improves the
forecasting granularity from city-level to mile-level in spite of
data sparsity and complex factors. The fine-grained housing
price forecasting has the potential to support a broad scope of
applications, ranging from urban planning to housing market
recommendations. To achieve that, in this paper, we propose a
novel integrated framework, FTD_DenseNet, which incorporates
more social and economic features and makes full use of all-
level spatiotemporal features. Specifically, the Kalman Filter-
based future expection is firstly involved as an influence factor
in our model. Extensive empirical studies on real data show the
effectiveness of our proposals.

Index Terms—urban computing, subregion housing price fore-
casting

I. INTRODUCTION

Housing price forecasting plays a vital role in macroe-
conomic and financial decision supporting [1]. In the past
decade, a global financial crisis has been witnessed, due
to inaccurate housing price forecasting and unconscionable
financial policymaking in a large extent. Existing studies on
housing price forecasting models are mostly in city-level, for
supporting macroeconomic analysis and policymaking. The
city-level forecasting, however, does not capture the fact of
imbalanced development between the mile-level subregions in
a city. For instance, in Chinese city Xi’an, the average real
estate prices of three districts in Sept. 2018 increased more
than 10% while the average prices of the other six districts
experienced a decrease about 5% during the same period [2].

In this work, we study another type of housing price fore-
casting, i.e., mile-level fine-grained housing price forecasting,
where the mile-level subregions are much smaller than the
urban regions. Such a type of forecasting depicts the potential
fluctuations and distributions of housing prices among differ-
ent urban subregions. With the help of that, we can find broad
applications in urban planning, such as community service
supporting and transportation facilities optimization [3].

Related works. There exist many studies, however, in
city-level housing price forecasting, which can be detailedly
categorized as machine learning-based methods [4]–[8] and
deep learning-based methods [9], [10]. The most of ma-
chine learning-based methods including the VAR (Vector
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AutoRegression), STAR (Smooth transition AutoRegression),
ARIMA (Auto regression Integrated Moving Average) and
SVR (Support Vector Regression) can only capture the tem-
poral dependencies while SPVAR (Space Vector AutoRe-
gressive) can capture spatial dependencies by learning low-
level spatial features. For deep learning-based methods, the
LSTM (Long Short Term Memory) is designed to model
time series issue and ANN (Artificial Neural Network) can
be feed spatiotenporal features for predicting housing price.
Besides, some other deep neural networks including the DNN-
based Deep-ST, ResNet and InceptionV4, which enable the
outstanding performances in the field of computer vision,
are applied as our baselines for comparison in subregion
housing price prediction. Nevertheless, all existing solutions
cannot be extended to the subregion scenarios appropriately,
because most of them do not have the availability of involving
the all-level spatiotemporal characteristics effectively. Besides,
some models including Deep-ST, ResNet and InceptionV4 are
mainly dependent on high-level instead of all-level features
due to the network connectivity, which leads the weakness in
generalization and unavoidable overfitting in small and sparse
subregion datasets.

Challenges. However, challenges arise for accomplishing
fine-grained urban subregion housing price forecasting and
analysis. The influence factors of housing price forecasting are
known to be complex. As mentioned in [1], the economic and
social ingredients also affect the tendency of housing prices.
Furthermore, the trend of macroeconomic or future price-
growth expectation also has great influence on the current
housing price [11].

Another challenge is that the sparse data limits the sample
size and incurs selectivity sample bias for building efficient
and accurate forecasting models, letting alone the limited
availability of publicly released data with heterogenous trans-
action properties. Such data might be dense enough for city-
level forecasting, but it is shown to be sparse when the urban
region is decomposed into mile-level subregions. In particular,
the sparse data can result in the insufficient house price
features.

Contributions. In summary, previous works on housing
price forecasting never set foot on the issues of mile-level
subregion housing price predictions. Also, the future price-
growth expectations have not been taken as the feature of
forecasting models.

To our best knowledge, this is the first work on effective



Fig. 1. An Example of Beijing.

mile-level subregion housing price forecasting, which has
profound effects on trading recommendations for housing
markets and on urban planning for public facility analysis and
optimization. Our main contributions are as follows.

• We propose to use the densely connected network struc-
ture to overcome the sparsity problem of transaction
records firstly, which learns all-level spatiotemporal fea-
tures sufficiently and decreases overfitting during the
learning process.

• We propose a novel framework by fully considering
the four time periods (i.e., long-term, recent, current,
and future tendency) for depicting spatiotemporal de-
pendencies. To achieve that, we improve the original
DenseNet [12], combine the Kalman Filter, and adjust
the diverse structures to further improve the accuracy.

• We evaluate our proposed FTD_DenseNet with real-
world house price datasets from New York City
(NYC) and Beijing. Extensive cross-validation experi-
ments demonstrate that our FTD_DenseNet outperforms
the start-of-the-art solutions significantly.

II. PRELIMINARIES

A. Problem Definition

In this part, we formally define basic concepts and the
problem studied in the work.

Definition 1 (City Region): The urban region can be divided
into small square-shaped subregions with the side-length of
d0

1 kilometers as shown in Fig. 1(a). In this way, the city can
be represented by a set of equal-sized grids, with mr rows
and mc columns. A grid at i-th row and j-th column can be
denoted as ri,j , where i ∈ {1, · · · ,mr} and j ∈ {1, · · · ,mc}.

Definition 2 (Housing Price Set): Given a month T and a
city, we define the housing transaction price set of the entire
city during this month as ST . We have ST = STr1,1 ∪ · · · ∪
STrmr,mc

, where STri,j denotes the housing price set of an
urban subregion ri,j during month T . Within each month T ,
the tk denotes the original transaction timestamp on specific
dates, so that the transaction can be represented by STri,j =
{st1ri,j , s

t2
ri,j · · · } (t1, t2, · · · ∈ T ), where stkri,j indicates the

price of the transaction in region ri,j at time tk.

1The setting of d0 should balance the trade-off between the fineness of
urban region house price predictions and the densities of historical data. In
our implementation, we divide cities into small square-shaped areas with the
length of 2 kilometers.

Fig. 2. Subregion Housing Prices of Beijing during 2017

Definition 3 (Housing Price of a Subregion): Given a
subregion ri,j , the housing price of ri,j can be calculated by:

pTri,j =
1∣∣∣STri,j ∣∣∣

∣∣∣STri,j ∣∣∣∑
k=1

stkri,j (1)

The prices of mr × mc subregions of month T can be
denoted as a tensor pTri,j ∈ Rmr×mc×1 as shown in Fig. 1(b).

Definition 4 (Subregion Housing Price Forecasting): We
design the model to predict the housing price pn+1

ri,j with
the evaluation metric of RMSE (Root Mean Square Error)
as shown in Equation 2, where p̂n+1

ri,j denotes the predicted
housing price of the subregion ri,j .

RMSE =

√√√√ 1

mr ×mc

mr∑
i=1

mc∑
j=1

(
p̂n+1
ri,j − pn+1

ri,j

)2

(2)

III. SUBREGION HOUSING PRICE FORECASTING MODEL

In this section, we first analyze the parameters which can
influence the subregion housing price, and then introduce the
forecasting model for the subregion housing price problem.

A. Influence Factors of Subregion Housing Price
In most previous works, the housing price prediction is

modeled in the form of temporal dependencies analysis. To this
end, we systematically analyze the ingredients that influence
the future housing price, systematically.

• Spatial correlations. When formulating the problem in
Section III, we have divided an entire city into small sub-
regions. Intuitively, the housing prices of two neighboring
subregions have strong correlations. For instance, a more
developed subregion tends to be more commercially
bustling and more convenient in transportation. Such
ingredients have an radiative effect to its neighboring
subregions as shown in Fig. 2.

• Long-term periodicity and short-term tendency. It is
widely accepted that the future housing price is greatly
affected by long-term periodicity and short-term ten-
dency. In [11], the influences of long-term periodicity 2

is discussed. The impacts of short-term tendency 3 on

2The regression period of long-term periodic influences on housing price
prediction llong can be set to 5 years. [11].

3In previous studies [13], the regression period of short-term tendency
lshort is set to 12 months (1 year).



Fig. 3. Architecture of FTD_DenseNet

future housing price is evaluated in [13].
• Current economic and social ingredients. It has been

concluded that the future housing price is greatly affected
by many current economic and social elements, such as
down-payment ratios, mortgage rates, house property tax
policy, GDP growth, and demographic factors.

• The future price-growth expectations. Theoretically,
from an economic perspective, the future price-growth
expectations would give feedbacks on the tendency of
housing price, once the public show cognitions on the
housing market [14]. Such a type of influence has been
observed in Tokyo before 1991 and in China during the
past decade.

B. Major Components of the Forecasting Model

In this part, we present the solution framework for the
subregion housing price forecasting problem. The architecture
overview is shown in Fig. 3, which consists of four major
components to solve the aforementioned influence factors: i)
Long-term spatiotemporal DenseNet; ii) Short-term spatiotem-
poral DenseNet; iii) Current Ingredients Module; iv) Kalman
Filter for future price-growth expectations. We organize them
as four types of inputs in accordance to their time dimensional
attributes, i.e., distant periodicity, recent tendency, current, and
future factors, as shown in the upper half of Fig. 3.

Given historical transaction records of a city, we transform
them into the tensors P long ∈ Rmr×mc×5 and P short ∈
Rmr×mc×12 , where each tensor refers to the monthly ag-
gregated housing price values of all subregions.

The long-term and short-term DenseNet components share
the same network structure with a modified DenseNet. For the
current ingredient component, we manually extract features
from economic and social ingredients, then feed them into
the embedding layer and the fully connected (FC) layer. The

Fig. 4. Architecture of long-term and short-term DenseNet

last component simulates the effects of future price-growth
expectations. In our implementation, we use the Kalman Filter
to model the subjective expectations from the public.

The outputs of these four components are represented by
PLong , P short, P current, and P future, respectively. The
integrated result is further mapped by a Tanh function to the
interval [−1, 1].

1) Long-term and short-term spatial-temporal DenseNet:
The long-term and short-term components share the same
network structure consisting of three sub-components: con-
volution, dense block, and a transition layer. Based on the
particular characteristics of the housing price predictions, we
modify DenseNet as illustrated in Fig. 4.
Convolution. As described in Section III, the housing prices of
neighboring subregions have obvious spatial correlations. Such
a type of correlations can be effectively inducted by adopting
CNN (Convolution Neural Network), which has shown its
efficiency on extracting spatial structural information [15].
Also, as shown in Fig. 2, this kind of correlations has radiative
effects, not only affecting direct neighboring subregions, but
also rather distant neighboring subregions. The correlations
between distant neighboring subregions cannot be captured by
one convolution. Therefore, we adopts a CNN with multiple
convolutional layers. For example, there are L convolutions
(i.e., Conv1 4), as shown in Fig. 4(a), in one dense block. The
total number of all Conv1 s in the component is N×L+1, so
that the stack of convolutions is capable of capturing subregion
housing price correlations in the whole city.
Dense Block. With the increased number of layers, the issues
of gradient vanishing and overfitting become more and more
serious. To handle this challenge, [12] proposes a densely
connectivity mode Dense Connectivity, as illustrated in Fig.
4(b). For dense block i, the input of layer L is:

IL = HL(P
0
i , P

1
i · · · , PL−1

i ), L = 1, 2, 3, · · · (3)
The function HL is a nonlinear function consisting of one

convolution Conv1 , one Relu function, and one BN (Batch
Normalization) [16]. Compared to P 0

i , the PL−1
i transforms

4The kernel size of convolution Conv1 is fixed to 3× 3.



the low-level features into high-level after several nonlinear
functions. Notice that the connection mode between feature
maps PL

i and P 0
i , P

1
i · · · , PL−1

i is an channel-wise addition.
We have:

CN (PL
i ) = sum{CN (P0

i ),CN (P1
i ) · · · ,CN (PL−1

i )} (4)

Here, the CN denotes the channel number. And we can
observe the last layer’s input coming from all the front layers
output, which indicates that our model can learn the low-
level and high-level features. For sparse datasets, the features
of housing price are insufficient, which makes it hard to
capture the spatiotemporal characteristics. Thus this kind of
densely connectivity enables our model to learn all-level
spatiotemporal features, and achieve a superior performance
on small and sparse datasets.
Transition layer. In the original DenseNet, a average pooling
function is used to diminish the features, which is not suitable
for sparse datasets. Besides, the original FC layer after dense
block N is used for classification, which cannot be applied
to predict housing price. Therefore, to improve the DenseNet,
we replace the average pooling function by a BN function
which can remit overfitting.

To fuse the multi-channel values, we try a Conv2 to replace
the original FC layer. As shown in Fig. 4(a), P inner have
multiple channels after N dense blocks. The final output is
then calculated by the follow equation.

Poutput = f (W ∗ P inner + b) (5)

Here, function f is the activation function Tanh . ∗ denotes
the convolution Conv2 5, and W and b are the learnable
parameters.

2) Current ingredients module: Subregion housing price
can be influenced by many complex factors, such as GDP,
mortgage rates, and so on. Therefore, we take these main
factors as the major ingredients.

First, we feed the current ingredient matrix of five factors
into an embedding layer, and then link it to a FC layer. The
embedding layer is for mapping the fields into a structured
and dense input space. For the convenience of reshaping the
1× 5 matrix to a mr ×mc × 5 tensor, we use the FC layer to
map low-dimensional values to the high dimensions.

3) Future price-growth expectations: In this subelement,
we simulate the subjective expectations of the public. [11]
proposes a Kalman Filter (KF in short) based method to
predict the influences of future price-growth expectations. We
hereby add the KF-based filter into our integrated network, to
construct a novel stronger learner and take the future influence
into account.

Given a historical housing price dataset {ST |T=1,...,n}, for
time n+1 and subregion ri,j , we define the housing demands
of all residents of the subregion as Dn+1

ri,j . The growth rate of
the housing demands in this region is defined as G n+1

ri,j . The
average trading price of the subregion is defined as Pn+1

ri,j .

5The kernel size of Conv2 should be 1× 1.

By using the proposed KF-based method in [11], we first
predict the housing demands Dn+1

ri,j and the growth rate of
the housing demands G n+1

ri,j , based on the historical housing
price set {Sn−1, Sn}. After predicting the housing demand
and growth rate of the housing demand of future time n+ 1,
we can calculate the expected housing price of subregions by:

E
(
Pn+1

ri,j

∣∣∣{Dn+1
ri,j ,G n+1

ri,j }
)
=

Dn+1
ri,j

r
+

G n+1
ri,j

r(r + λ)
(6)

Here, r and λ indicate the discount rate and the demand
growth revision [11], respectively. With this method, we can
calculate the price-growth expectation for each subregion in
the city, and generate the future price-growth expectation
tensor sized mr ×mc × 1.

4) Fusion of Components: Regarding to the final result, we
need to differentiate degrees of the impacts of each component.
To this end, we use the method of parametric-multiplication
to fuse all components as follows.

P̂n+1 = Tanh

(
P long ⊗Wlong + P short ⊗Wshort+
P current ⊗Wcurrent + P future ⊗Wfuture

)
(7)

Here, ⊗ represents the element-wise multiplication. Wlong ,
Wshort, Wcurrent, and Wfuture are learnable parameters.

The overview of the learning process of FTD_DesNet is
summarized in Algorithm 1.

Algorithm 1: FTD_DenseNet Training Algorithm
1 Input: Historical observations:{ST |T = 0, · · · , n};
2 Historical current ingredients:C = {CT |T = 0, · · · , n};
3 Output: Learned FTD_DenseNet model
4 D ← ∅// initializing
5 for all time interval t(1 ≤ t≤n) do
6 P long=[St−llong

, St−(llong−1), ..., St−1]

7 P short=[St−lshort
, St−(lshort−1), ..., St−1]

8 P current=Embed(C,Ct)// embedding
9 P future=KF-based expecting([St−1, St])

10 P̂ t=Fusion([P long , P long , P current, P future]) Append an
training instance (P̂ t, P t) into D

11 end
// training the model

12 initializing all learnable parameters θ in FTD_DenseNet
13 repeat
14 randomly select a batch of instances Db from D
15 using Adam to optimize Eq.(2) with Db;
16 until the maximum epoches;

IV. EXPERIMENTS

A. Setup

In this subsection, we introduce the datasets of NYC and
Beijing, and some settings of experiments.

NYC and Beijing data. For NYC, the housing transaction
price dataset is provided on the public platform of NYC Open
Data 6. The current ingredients can be taken from the Federal
Reserve Economic Data7.

6https://opendata.cityofnewyork.us
7https://fred.stlouisfed.org



TABLE I
DATASETS DESCRIPTION

DataSets NYC house Beijing house
Time Span 1/2003-12/2015 1/2011-12/2017
Time Interval Size one month one month
Number of Subregions (12*12) (30*30)
AVT of a subregion 15+ 10+
Number of Time Intervals 156 84
Number of Ingredients 156*5 84*5

The Beijing dataset is taken from the Lianjia and the
Zhugezhaofang8. The current ingredients are provided on the
State Statistics Bureau9. More details are covered by Table 1.

Data Sparsity. For the datasets of NYC and Beijing, the
average number of transaction records (AVT) per subregion is
no more than 30, as shown in Table I.

The work of VAR model applies for datasets with AVT
greater than 100. For works of SVR and ANN models, the
AVT value is above 50. Hence, our housing data is sparse.

Others. In our model, we use Min-Max normalization to
scale the input data into the range [-1,1] before feeding them
into the network. The filter number of Conv1 appeared in
each dense block is named growth rate [12]. The filter number
of the last Conv2 after dense block N is 1, and the filter
number of other Conv2 is set to different values according
to the experimental results. We use 90% of the original data
for training and 10% for validation. For each model, we adopt
the same learning rate and epochs. Besides, the parameter of
KF-based submodule follows the setting of [14].

B. Baselines

The baseline solutions are as follows:
SVR. We feed the same features as our model into SVR.

To involve the spatial correlation of each subregion, the prices
of 8 neighboring regions are fed into the model.

VAR. Vector AutoRegressive is widely applied in forecast-
ing housing price in city-level. For each subregion, we feed it
with the same features as our models.

ST-ANN. The ST-ANN is fed with the spatial (8 neigh-
boring regions’ prices) and temporal (12 previous months’
prices) features of each subregion. Besides, the same current
ingredients and future expection are also considered.

Deep-ST. The DNN-based model has been widely used for
spatial-temporal issues. We adopt it by the method suggested
in [17]. And other factors are also considered in training.

ST-InceptionV4. InceptionV4 [18] has the same excellent
performance as other deep networks on abundant datasets in
image classification. We adjust the layers of network structure
and feed it with the same features, to select optimal results to
make comparisons.

ST-ResNet. ST-ResNet is firstly proposed for spatiotempo-
ral crowd flows predictions [19]. Similar to InceptionV4, the
popular model is compared with ours in the same condition.

8https://www.kaggle.com/ruiqurm/lianjia, https://su.zhuge.com
9http://www.stats.gov.cn/

TABLE II
COMPARISON WITH DIFFERENT BASELINES IN NYC

Model RMSE
VAR 33.41
SVR 31.61

ST-ANN 30.59
Deep-ST+C+F 28.37

ST-InceptionV4+C+F 27.67
ST-ResNet+C+F 26.48

Ours FTD_DenseNet
D6-L9 Long-term+short-term DenseNet 25.45

D6-L9-F Long-term+short-term DenseNet+F 23.47
D6-L9-C Long-term+short-term DenseNet+C 24.26

D6-L9-C-F-no Fusion Long-term+short-term DenseNet+C+F
+without Fusion 24.50

D6-L9-C-F(short-term) Short-term DenseNet+C+F 26.31
D6-L9-C-F (long-term) Long-term DenseNet+C+F 25.67

D6-L9-C-F Long-term+short-term DenseNet+C+F 22.81

TABLE III
COMPARISON WITH DIFFERENT BASELINES IN BEIJING

Model RMSE
VAR 87.14
SVR 80.87

ST-ANN 79.53
Deep-ST+C+F 77.75

ST-InceptionV4+C+F 75.23
ST-ResNet+C+F 74.04

Ours FTD_DenseNet
D6-L9 Long-term+short-term DenseNet 69.01

D6-L9-F Long-term+short-term DenseNet+F 65.72
D6-L9-C Long-term+short-term DenseNet+C 67.69

D6-L9-C-F-no Fusion Long-term+short-term DenseNet+C+F
+ without Fusion 68.34

D6-L9-C-F(short-term) Short-term DenseNet+C+F 70.93
D6-L9-C-F (long-term) Long-term DenseNet+C+F 72.45

D6-L9-C-F Long-term+short-term DenseNet+C+F 64.83

C. Evaluation

1) Comparison with baselines based on datasets from both
NYC and Beijing: We show the comparison results on NYC
and Beijing datasets in Tables II and III, respectively. Also,
we consider another 3 variants of FTD_DenseNet, by varying
the number of layers and dense blocks and the inclusion
of different features (i.e., current ingredients, or future ex-
pectations). We use C and F to represent the inclusion of
current ingredients and future expectations. We use D and L
to represent the number of dense blocks and the number of
layers of a dense block, respectively. For example, D6-L9-F
refers to a variant of FTD_DenseNet, which has the 6 dense
blocks of 9 layers and is associated with future expectations
as features. It can be observed that our method achieves the
lowest RMSE, comparing with baselines. Particularly, in Table
II, we find that D6-L9-C-F gets the best forecasting accuracy,
which has a 19.83% lower RMSE value than the SVR method.

2) Impacts of components and features: From Table II and
III, we then analyze the impacts of the proposed components.
Firstly, as discovered, the long-term and short-term DenseNets
decrease the RMSE by 8.6% and 11.3% respectively and
independently. Also, the results show the importance of in-
corporation of different features. For example, in Table II,



Fig. 5. Results of our FTD_DesNet.(a) RMSE of different structures.(b)RMSE
and information granularity of different subregions

D6-L9-C-F has a lower RMSE value than D6-L9-C, which
demonstrates the necessity of considering future expectations.
Similar results can be observed for the effect of current ingre-
dients. The current ingredients and KF components decrease
the mean RMSE by 2.1% and 5.1% respectively. For D6-L9,
the RMSE values of NYC and Beijing are 25.45 and 69.01
respectively, and it still outperforms other baselines. Similarly,
we conduct the ablation studies to evaluate the effects of the
proposed fusion method. The results on both datasets show
that the fusion step can significantly improve the accuracy.
For example, in Table III, D6-L9-C-F has 3.51% lower RMSE
value than the one without fusion step.

3) Impacts of parameters: Furthermore, we test the effect
of other parameters, such as the number of dense blocks and
its layers. The result is shown in Fig. 5(a). X-axis refers to the
total number of layers in the network. We can see with a larger
number of dense blocks and layers, our model can learn more
all-level features and thus better capture the spatiotemporal
dependencies. The performance converges when the number
of layers is greater than 61. But the computation overheads
increase sharply with large number of layers. In our work,
we find the D6-L9 setting best captures the tradeoff between
the accuracy and efficiency and hence is used as our default
setting.

The effect of subregion size is studied in Fig. 5(b). We find
the balance point between the information granularity10 and
the normalized RMSE, and then select the best subregion.

V. CONCLUSION

In this paper, we propose an integrated forecasting model,
FTD_DenseNet, for the urban subregion housing price pre-
diction. FTD_DenseNet takes spatiotemporal dependencies,
current ingredients, future expectations into consideration.
Besides, we modify the structure of DenseNet and adopt
the method of bagging by fusing the KF-based method to
improve the accuracy. Experiments on two different real-world
datasets have demonstrated that our proposed FTD_DenseNet
outperforms existed baselines. Further, our model has the
potential to be reapplied to other similar domains, such as
air quality prediction and power demand prediction.

10We define it with the normalized number of average transaction records
per square kilometer for measuring the data sparsity.

VI. ACKNOWLEDGMENTS

We gratefully acknowledge anonymous reviewers for read-
ing this paper and giving valuable comments. This paper
is partially supported by the Anhui Science Foundation
for Distinguished Young Schloars (No.1908085J24), NSFC
(No.61672487), (No.61772492), and Jiangsu Natural Science
Foundation (No.BK20171240).

REFERENCES

[1] Hengshu Zhu, Hui Xiong, Fangshuang Tang, Qi Liu, Yong Ge, Enhong
Chen, and Yanjie Fu. Days on market: Measuring liquidity in real
estate markets. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 393–402.
ACM, 2016.

[2] CRIC. The Real Estate Price Map of Xi’an. http://www.yidianzixun.
com/article/0KIs62Eb, 2018.

[3] Timothy F Welch, Steven R Gehrke, and Fangru Wang. Long-term
impact of network access to bike facilities and public transit stations
on housing sales prices in portland, oregon. Journal of Transport
Geography, 54:264–272, 2016.

[4] Gordon W Crawford and Michael C Fratantoni. Assessing the forecast-
ing performance of regime-switching, arima and garch models of house
prices. Real Estate Economics, 31(2):223–243, 2003.

[5] Richard Meese and Nancy Wallace. House price dynamics and market
fundamentals: the parisian housing market. Urban Studies, 40(5-
6):1027–1045, 2003.

[6] Okmyung Bin. A prediction comparison of housing sales prices by
parametric versus semi-parametric regressions. Journal of Housing
Economics, 13(1):68–84, 2004.

[7] Michael Beenstock and Daniel Felsenstein. Spatial vector autoregres-
sions. Spatial Economic Analysis, 2(2):167–196, 2007.

[8] Ying Sun, Hengshu Zhu, Fuzhen Zhuang, Jingjing Gu, and Qing He.
Exploring the urban region-of-interest through the analysis of online map
search queries. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2269–2278.
ACM, 2018.

[9] Xiaochen Chen, Lai Wei, and Jiaxin Xu. House price prediction using
lstm. arXiv preprint arXiv:1709.08432, 2017.

[10] JJ Wang, SG Hu, XT Zhan, Q Luo, Qi Yu, Zhen Liu, Tu Pei Chen, Y Yin,
Sumio Hosaka, and Yang Liu. Predicting house price with a memristor-
based artificial neural network. IEEE Access, 6:16523–16528, 2018.

[11] Edward L Glaeser, Joseph Gyourko, Eduardo Morales, and Charles G
Nathanson. Housing dynamics: An urban approach. Journal of Urban
Economics, 81:45–56, 2014.

[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In CVPR,
volume 1, page 3, 2017.

[13] Andrew Caplin and John Leahy. Trading frictions and house price
dynamics. Journal of Money, Credit and Banking, 43:283–303, 2011.

[14] Edward L Glaeser and Charles G Nathanson. An extrapolative model of
house price dynamics. Journal of Financial Economics, 126(1):147–170,
2017.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[17] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. Dnn-
based prediction model for spatio-temporal data. In Proceedings of
the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, page 92. ACM, 2016.

[18] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A
Alemi. Inception-v4, inception-resnet and the impact of residual con-
nections on learning. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[19] Junbo Zhang, Yu Zheng, and Dekang Qi. Deep spatio-temporal residual
networks for citywide crowd flows prediction. In AAAI, pages 1655–
1661, 2017.


