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Abstract—Irregular time series analysis is increasingly essential
in data management due to the proliferation of complex data
irregularly sampled by real-world systems. Traditional time series
models, including RNN-based models and transformer variants,
face significant challenges in generalizing to continuous-time
paradigms, which are essential for capturing the ongoing dynamics
of irregular time series. Neural Ordinary Differential Equations
(NODEs) assume a continuous latent dynamic and provide an
elegant framework for irregular time series analysis, yet they
suffer from limitations like fragmented latent processes and the
inability to fully exploit interdependencies among observations.
To address these challenges, we propose a novel Differentiable
hidden state enhanced neural ODE framework, termed DIFFODE,
designed to effectively model irregular time series. Concretely,
we introduce an attention-based differential hidden state that
maps irregular observations into a continuous hidden state space,
enabling the extraction of latent dynamics while preserving
temporal continuity. Leveraging the theory of generalized inverses,
DIFFODE innovatively derives ODEs to describe hidden state
dynamics. Furthermore, we incorporate the Hoyer metric into
our framework to enhance its capacity to capture subtle yet
critical temporal shifts, significantly improving the accuracy of
time series modeling. Extensive experiments on both synthetic and
real-world datasets demonstrate the effectiveness of DIFFODE
across three key tasks, including irregular time series classification,
interpolation, and extrapolation.

Index Terms—Neural ODEs, irregular time series analysis,
differentiable hidden state.

I. INTRODUCTION

Irregular time series analysis has become increasingly signif-
icant in data management due to the proliferation of complex
temporal data generated by modern real-world systems [1]—
[5]. From IoT devices and industrial sensors to financial
transactions and healthcare records [6]—[10], time series data
in many scenarios frequently exhibit irregularities caused by
event-driven processes, sensor malfunctions, or varying data
collection frequencies, leading to difficulty in unifying such
data into consistent time intervals. However, existing data
management methods struggle to store, process, and analyze
such incomplete, sparse, or non-uniform time-series data, which
makes the potential of data under these non-ideal conditions
not fully unlocked [11]-[15]. As irregular time series datasets
become growing prevalent across diverse domains, effectively

* Corresponding authors: Yang Wang, Xu Wang.

understanding and handling irregular time series is essential
to improving data-driven decision-making and enabling more
robust data management.

With the rapid advancement of deep learning, its application
in time series analysis has garnered increasing attention and
achieved remarkable performance across various tasks [16]—
[22]. Recurrent neural network (RNN) and its variants [23]-[25]
are classical sequential models that often require explicit pre-
processing (e.g., interpolation) to handle irregular timestamps,
which can distort temporal dynamics, while their recurrent
structure struggles with long-term dependencies. Regarding
attention-based models [26]-[30], despite their strength in
capturing long-range dependencies, they are limited by their
reliance on fixed-length representations, high data demands, and
computational inefficiency for irregular sequences. Additionally,
State Space Model (SSM)-based approaches [31], [32] have also
been studied and offer a probabilistic framework for temporal
modeling, but they often rely on strong assumptions and
can become computationally intractable for complex datasets.
In short, these approaches share a common limitation: their
inability to natively model continuous temporal evolution and
irregular sampling patterns. This motivates the adoption of
Neural Ordinary Differential Equations (NODEs), which can
model the continuous dynamics in irregular timestamps through
adaptive solvers and has become a mainstream approach for
irregular time series analysis [33], [34].

Although NODE-based methods [35]-[42] are theoretically
effective for modeling continuous dynamics, they exhibit
critical limitations when applied to irregular time series. These
methods typically integrate from an initial value to derive all
subsequent values, without considering observed data points
later than the initial point. They integrate the latent state at each
time point with observations, i.e., having different initial values
at different time intervals. While such a mechanism can achieve
a certain level of accuracy, it considers only one observation at
a time and neglects the interdependencies among observations.
Consequently, this mechanism results in a fragmented latent
process that may fail to accurately represent the true underlying
dynamics, as illustrated in Fig. 1 (a). To tackle the issue
of the fragmented latent state of NODEs, Neural Controlled
Differential Equations (NCDE) approach [43]-[45] offers an
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(a) Neural ODE

(b) Neural CDE

3 5

(c) Ours

Fig. 1: An illustration of Neural ODE, Neural CDE, and our method. For a given time point, NODE integrates from the last
observation, resulting in a fragmented latent process. NCDE employs an interpolation algorithm to calculate a continuous path,
but fails to fully exploit the contextual information in the data. Our method introduces an attention-based differential hidden
state, which adeptly captures temporal dynamics while ensuring the seamless continuity of the latent process.

alternative by interpolating the observed values to estimate a
continuous latent process. For instance, the use of natural cubic
spline interpolation in [43] allows the model to construct a latent
trajectory that guides the integration path, thereby incorporating
subsequent observations into the modeling process. However,
despite their simplicity, these methods fail to fully exploit the
contextual information inherent in the data. As depicted in
Fig. 1 (b), such methods typically rely only on the two nearest
observations at any given time point, which limits their ability
to capture long-range dependencies. Furthermore, interpolation
algorithms, while useful for estimating intermediate states, are
limited in their ability to capture the temporal correlations
intrinsic to the time series, thereby constraining the model’s
capacity to represent the true dynamics comprehensively.

To address the limitations of existing approaches, this paper
introduces a novel Differentiable hidden state enhanced neural
ODE framework, termed DIFFODE, a data-driven solution
designed to effectively capture complex temporal dynamics
while ensuring the seamless continuity of the latent process.
Specifically, to fully leverage the potential of continuous
dynamics in irregularly sampled data, we design an attention-
based differential hidden state as depicted in Fig. 1 (c), which
treats irregular observations as a projection matrix that maps
the time series into a hidden state space. The linearity of
this projection ensures that the hidden states preserve the
continuity inherent in the original time series. Building on this
foundation, our framework utilizes the theory of generalized
inverses to reverse-engineer the attention mechanism, thereby
deriving ODEs that describe the dynamics of the hidden
states. Furthermore, to enhance the precision in modeling
temporal relationships, we incorporate the Hoyer metric [46], an
advanced tool of sparsity metric. By strategically maximizing
the Hoyer metric, our framework sharpens its ability to discern
subtle yet significant temporal shifts, thereby improving the
accuracy and reliability of predictions. Finally, we conduct
extensive experiments on both synthetic and real-world datasets
to evaluate the proposed DIFFODE across irregular time series
classification, interpolation, and extrapolation tasks.

The main contributions of our work are summarized in the
following four areas:

e Novel insight and framework: We identify the critical
challenges of continuous dynamic representation in ir-
regular time series analysis, and innovatively propose a
new data-driven neural ODE framework (DIFFODE) to
unleash the great potential inherent in time series data,
thereby driving the applications of data management to
more diverse and complex data scenarios.

o In-depth dynamics extraction: We devise an attention-
based differential hidden state to effectively capture the
continuous dynamics of the latent process, and leverage
the theory of generalized inverses to derive ODEs that
describe the hidden state dynamics of irregular time series.

e Precise temporal modeling: We delicately incorporate
the Hoyer metric into our framework, which enhances
the ability of DIFFODE to discern subtle yet significant
temporal shifts, significantly improving the accuracy and
reliability of the modeling process.

o Compelling empirical validation: Extensive experiments
conducted on both synthetic and real-world datasets
validate the effectiveness of DIFFODE across the main-
stream irregular time series tasks, including classification,
interpolation, and extrapolation.

II. RELATED WORK

We briefly review the related literature below, including
time series analysis with deep learning and neural ODEs for
irregular time series.

A. Time Series Analysis with Deep Learning

Time series analysis is a foundational problem in the field of
data engineering, with applications spanning finance, healthcare,
climate science, and urban systems [47]-[53]. Deep learning
has shown significant potential in modeling complex temporal
dependencies in time series data. Recurrent Neural Networks
(RNNG5s) [26], [29], [30], [54], [55] were among the first neural
architectures applied to sequential data, followed by Long Short-
Term Memory networks (LSTMs) [56] and Gated Recurrent
Units (GRUs) [57], which address the vanishing gradient
problem and enable the modeling of long-range dependencies.
However, RNN-based models often suffer from high compu-
tational overhead and difficulties in parallelization, leading
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researchers to explore alternative architectures. Convolutional
Neural Networks (CNNs), while traditionally used for image
data, have been adapted for time series analysis. Temporal Con-
volutional Networks (TCNs) [58], for example, extend CNNs
by incorporating causal convolutions and dilations, enabling
the modeling of long-term dependencies while preserving
temporal causality. The Transformer model [59] has brought
transformative changes to time series analysis. Adaptations such
as Informer [26] and iTransformer leverage attention mecha-
nism to capture interactions and dependencies among multiple
variables in multivariate time series. Hybrid models combining
multiple architectures have emerged to address these challenges
[60], [61]. For example, CNN-Transformer hybrids [62] aims
to integrate local feature extraction capabilities of CNNs with
the global dependency modeling of Transformers. Neural
Ordinary Differential Equations (Neural ODEs) [33] are another
recent advancement, offering a continuous-time framework
for modeling irregularly sampled time series, particularly in
domains like healthcare [35].

Thus, studies that utilize Neural ODEs to model continuous-
time processes for irregular time series [33] are much more
closely aligned with our work, and we provide a detailed
description of this paradigm below.

B. Neural ODE:s for Irregular Time Series

Neural Ordinary Differential Equations (NODEs) have
gained considerable attention in the analysis of irregular time
series due to their remarkable capability to capture temporal
dynamics. Existing NODE-based approaches can be broadly
categorized into two types. The first category involves methods
that rely on interpolating or approximating latent dynamics to
model time series. Neural Controlled Differential Equations
(NCDE) [63] employ rough path theory to model long-term
sequence dependencies more effectively. ContiFormer [44]
extends the Transformer framework to continuous time by using
interpolation to construct queries for its attention mechanism.
Neural LAD [45] further advances this line of research by
modeling periodicity, trends, and local information, with
local dynamics derived from the differential of interpolated
sequences. However, methods in this category often generate
the entire time series from a single initial value and fail to
fully exploit the rich contextual information present in the
data. The second category focuses on incorporating discrete
updates into NODEs to account for irregular observations.
ODE-RNN [35] and ODE-LSTM [36] use gating mechanisms
to update latent states with new information. CADN [37] builds
upon the ODE-RNN framework by integrating an attention
mechanism for enhanced modeling. GRU-ODE-Bayes [38] and
Neural Jump ODE [8] adopt Bayesian estimation techniques
in their update steps. GNODE [40] and TGNN4I [41] extend
NODEs to graph structures, employing graph neural networks
(GNNs) combined with GRUs to model latent state changes.
ANDE [42] introduces the HiPPO matrix into the integral
step to enhance the representation of historical information,
updating directly via assignment in the update step.
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Nevertheless, existing methods still have limited ability to
fully capture the underlying continuous dynamics of irregular
time series data, which is exactly a critical challenge to be
addressed in this work.

TABLE I: Key symbols and corresponding descriptions.

Symbol | Description
Xob Observed irregular time series, including time points and
values.
Top Set of observed time points: T, = {t1,t2,...,tn}.
Xt Value of the time series at time ¢.
2t Latent representation of x¢, generated by a neural network.
Yt Output of the time series at time ¢.
Z Latent representations for all observations:
Z = [2ry, 2y, - 7ZT1,,}T‘
St Differentiable hidden state (DHS) at time ¢, representing
continuous dynamics.
Dt Attention scores for z; relative to all observations Z.
at Unngrmalized attention scores between z: and Z: ar =
2t 2
R
Piag Diagonal matrix formed from p:, used in computing the
dynamics of St.
() Neural network modeling the time derivative %.
Fy(-) Differential equation governing the dynamics of St.
(Z T)Jr Moore-Penrose inverse of Z 1, used to compute p; backward.
Hoyer(-) | Sparsity metric used to measure and optimize the sparsity.

III. METHODOLOGY

In this section, we begin by formulating the problem of time
series modeling using ordinary differential equations. Subse-
quently, we introduce the concept of a Differentiable Hidden
State (DHS) as the foundation of our approach, and provide a
detailed explanation of our proposed framework. Finally, we
elaborate on the key derivations and optimization processes
that underpin our method. For clarity, Table I summarizes the
frequently used symbols and their corresponding descriptions
throughout this paper.

A. Modeling Time Series with ODEs
We denote the irregular time series of interest as X, =

{(z¢,t)|ze € X,t € T,}, where observations X =
{Zr,,@ry, -+, ., } are sampled irregularly at time points
Top = {t1,t2, -+ ,tn}, and n is the number of observations.

These observations are assumed to be sampled from an
underlying continuous time series X., = {x¢|xs, ¢t € R}.

To model the continuous dynamics of the hidden states
corresponding to this irregular time series, we utilize an
Ordinary Differential Equation (ODE) framework. Specifically,
the dynamics are expressed as:

s,

a ()]

where S; denotes the hidden state of the time series at time ¢
and F(-) governs the evolution of the hidden state based on
its current value, observed data, and time.

For any arbitrary time ¢, the hidden state .S; can be computed
by integrating 1 from an initial time point 7y with an initial
hidden state S;;:

si=s.t

= Ee(Sta Xob7 t)?

t
Fs(S7, Xop, T)dT.

1

2
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Finally, a readout function f,,; is applied to S; to generate
the corresponding output of the time series at time ¢:

Yt = fout (St) (3)
B. Differentiable Hidden State Based on Discrete Observations

In this paper, we propose a Differentiable Hidden State
(DHS) S; as the continuous dynamics of time series in Eq. 1.
The proposed DHS is generated from the latent representations
of time series, which encodes values of time series and their
corresponding time points. Specifically, given any time point
t and corresponding data x;, the latent representation z; is
obtained by a neural network,

1/} : (mhtaE(xt)) — Zt, (4)

where E(x;) refers to the external features corresponding to
x;. In practice, we find introducing historical observations
of x; when obtaining 2; leads to better performance, i.e.,
we have E(z;) as {z;]¢ < t}. Therefore, latent represen-
tations on all observation time points can be denoted as
Z = [Zryy 2ryy 5 20,) ] € RVXA

An attention mechanism is applied to generate the differen-
tiable hidden state. Let z; be Query, and Z be Key and Value.
Then we define DHS as
ZtZ T

7

where a;, p, € R™, S, € R? and we always have n > d. Here,
ay is the attention score and indicates the correlations between
data at time ¢ and other time, and p; is the normalization of it.
DHS is defined on all observations according to correlations
with them.

The above definition of DHS suggests that one can obtain
a continuous state space of a time series, as illustrated in
Figure 2, where the hidden state S; at any time ¢ is correlated
to the latent representation z; of time series at ¢ and the latent
representations Z of all irregularly sampled observations X ;.
Based on the definition of DHS, the derivative of DHS can be
calculated, and the differential equation describing the dynamics
of DHS can be obtained.

a; = , bt = Softmax(a;), Sy = piZ, 5)

C. Execution Process of DHS

In this section, we aim at achieving the differential equation
of DHS as defined in Eq. 1, while giving the detailed form of
F. According to Eq. 5, the derivative of DHS S; with respect
to time ¢ can be calculated using chain rule as,

dSy _ dz Z7 (Paiag — pi P)Z ©
dt dt Vd ’
where Pyiog = Diag(p:), and py = [pe.1,Pe2,- - ,Pe,n] COITE-

sponds to normalized attention score of z; to all observations
Z as in Eq. 5. The detailed calculation flow of the above
process is as follows: for simplicity, let z,, = z;, so that
Z = (2,29 ,---,2])7. Noting that Vi, z; is independent of
t. The derivative of softmax is

Op; _ {pj(l = Dj);

da; —piDy,

1=

. 7
oy @
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A
|
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Fig. 2: Solution overview. Irregularly sampled observations are
fed into a neural network to generate Z, which serves as the
key and value of the attention layer to generate a differentiable

hidden state. A HiPPO-based output network is employed to
generate the output of the whole framework.

Next,
n .
= o (3

where

@:iapjd“i: i

da; da;

Y e ©)
1

dzy ZJT L dz 2,
=DPj Eﬁ ;Png

Then,

s,y  dz - ziTzZ- G zisz
at  dt (sz Vd — 22 v v

i=1 j=1 (10
dZt 1
=G 757 Puiag —plp)2),
P
where Pgiqg =
Pn
dzy

Since the first term <2t in Eq. 6 is intractable, we follow
the NODE framework [33] and approximate it with a neural
network ¢:

dz
o = ). (11
Substituting this into the derlvatlve of S;, we obtain:
dS Piiag — ! p0)Z
Gy _ d)(ztv ) ( diag Dy pt) ) (12)

Vd

To achieve a differential equation of S; as in Eq. 1, given
observations X, the derivative of S; should be only dependent
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on S; and t. However, in Eq. 12, while Z is transformation
of Xop, % are dependent on p; and z;. In the following, we
further transform p, and z; into S; by innovatively computing
the attention mechanism backward.

Note that in Eq. 5, the dimension of p; is higher than that
of Sy, thus the information is compressed in this step. If we
consider equation Eq. 5 as a linear system and solve it directly,
we will get infinite solutions. To attain a proper Sy, we introduce
the theory of generalized inverse. Generalized inverse allows
for a unified approach to obtaining solutions for linear systems,
no matter how many solutions they may have. We give the
detailed definition of generalized inverse as follows:

Definition 1. (Generalized Inverse) [64], [65]. The purpose of
constructing a generalized inverse matrix is to obtain a matrix
that can serve as an inverse in some sense for a wider class of
matrices than invertible matrices. Suppose A € C™*"™ is any
complex matrix, if there exists a complex matrix G € C™*™
such that at least one of the following conditions holds: i)
AGA = A, ii) GAG = G, iii) (AG)T = AG, iv) (GA)H =
GA. Then G is called a generalized inverse matrix, and the four
equations above are called Moore-Penrose (M-P) equations.
Furthermore, G is called the Moore-Penrose inverse of A if
G satisfies all of the four M-P equations, denoted as G €
A{1,2,3,4}. In general, if G satisfies the i1-th, io-th, ---,
ix-th (1 < k < 4) one of the four M-P equations, then G is a
weak inverse of A, denoted as G € A{iy,ia, -+ ik}

Usually there exists different notations for the commonly
used generalized inverse: A{1} is called the minus sign inverse,
denoted as A~; A{1,2} is called the reflecsive minus sign
inverse, denoted as A;; A{1,3} is called the least square
generalized inverse, denoted as A ; A{1,4} is called the
least norm generalized inverse, denoted as A, ; A{1,2,3,4}
is called the Moore-Penrose inverse, denoted as At.

In our case, the solution for p; could be expressed as

p, =Z)S] + (L, — (2" Z")h, (13)

where A is a random vector of dimension n, and (Z )% is the
Moore-Penrose inverse [64] of ZT. In most cases, we have
n >> d holds, so we can assume that Z T has full row rank
and thus have (Z7)" = Z(Z7Z)~L.

According to the theory of generalized inverse, we could
readily obtain the minimum-norm solution p;] = (Z )75, .
However, a more appropriate solution could be attained by
considering the properties of p;.

In the attention mechanism, p; is always sparse so as to
concentrate on certain important time points. We introduce
Hoyer [46] to measure the sparsity of p;.

Definition 2. (Hoyer Sparsity Metric) [46]. Given a vector
x € RY, Hoyer could be defined as

1 Zf\;xb
\/ﬁ—l(m_ > 2)' (1

i=1T;

Hoyer(z) =

As a measure of sparsity, Hoyer has several excellent proper-
ties [46]:
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(@) Va,z;,x; such that z; > z;,0 < a < Z572, we have

2
Hoyer([z1,--- ,2; —, -+ ,z; + «,---]) < Hoyer(z).
(b) Va € R« > 0, we have Hoyer(ax) = Hoyer(x).
(c) Vi,35 > 0, such that Vo > 0, we have Hoyer([z1, -, 2;+
B+CM,]) > Hoyer([xlv“' y Lg +ﬁ7D
(d) Hoyer(z||0) > Hoyer(x), where || denotes concatenation.

Criterion (a) implies that if the sum of the vector remains
constant, then the more uniformly distributed, the less sparse
the vector will become. Criterion (b) suggests that sparsity is a
relative property. Multiplying all elements by the same factor
does not alter the sparsity. Criterion (c) finds a main element.
When the main element is large enough, it is able to determine
the sparsity of the vector. Criterion (d) naturally follows from
the definition of sparsity. According to these properties, we
can conclude that the larger the value of Hoyer(-), the sparser
the vector.

From Eq. 12, a proper vector h is required to get a sparse
p:. We construct an optimization problem based on Hoyer.
Note that p; is the result of softmax normalization, so the
elements are all positive and the sum of them is 1. Let J; ,,
and J, 1 denote all-one matrices of dimension 1 x n and n x 1
respectively. The sparsity optimization problem is expressed
as,

Hoyer(p:),
s.t. p>0, pJ,1=1.

max
h

5)

Theorem 1. Optimization problem in Eq. 15 could be pre-
cisely solved using the Karush-Kuhn-Tucker (KKT) conditions
[66]. And the time complexity is O(2™).

The detailed optimization process in Theorem 1 is as follows:
Since the sum of p is 1, the optimization problem could be
simplified as

max pp ',
h (16)
s.t. p>0, Jiap=1,
where p" = (Z")1S] + (I, — (Z")1ZT)h.
For simplicity, let b= (Z")1S}, A=1,—(Z")Z". The
standard form of the problem could be written as
min - b'b—h' Ah,

(17)
st —b—Ah <0, Ji(b+ Ah) =1.

The Lagrange function is defined as

L(hyA\ 1) = =b"b—hTAh+ X1 — Jy (b + Ah))

18
+ pu(=b— Ah). (1%)

Then the KKT conditions are

ViL = —2Ah — AAJ, 1 — Ap =0,
1—Jin(b+ Ah) =0,

—b— AR <0, (19)
w20,

fdiag(—b — Ah) =0,

Restrictions apply.



H1
where tgiqg = .Let b= (by, -+ ,bp), A=
[in
Ay
- |- We have
An
wi(bi + Aih) =0, i=1,---,
AiQh+p+ A1) =0, i=1,-- 20

iAih—i-ibi —1=0.
i=1 i=1

Suppose there are k non-zero elements in p, indexes as
N ={n1,ng, - ,ng}. Let a; = sum(A4;), @ = sum(A). We

have

2bni - ATL“LL - )‘ani = 07

n 1 k
Ao = 2(2 b —1— 3 Zuniani).
i=1 i=1

Further, simplify them into a form that only involves the
non-zero terms

2D

1
= (Anmpm + Aam),

by =
% ) 22)
A= ~(Ninb—1- ia;um).
Substitute A\ into by
1 1 Jinb—1
5(1491‘11 - aa‘na;)um = by — I’Tam‘ (23)

Then we can obtain i, A, h sequentially. Substitute the results
into the inequality constraints of the KTT conditions and verify.
If the constraints are satisfied, we fortunately find the solution.
Note that we have to decide some elements of p to zero each
time. In the worst case, we need to try 2" times.

Note in Eq. 1, we have to compute p; at each integration step
t, leading to unacceptably high time consumption. In addition,
Eq. 15 could be approximately solved using iterative methods
such as gradient descent. However, the time complexity is still
intolerable. Therefore, we relax the conditions to allow for
negative values.

Theorem 2. By introducing negative probability, the opti-
mization problem turns into Eq. 24, and could be precisely
solved by Lagrange multipliers. The time complexity could be
reduced from O(2") to O(n).

By relaxing the conditions to allow for negative values, the
sparsity optimization problem turns into,

max Hoyer(p;),
h (24

s.t. pJp1=1

The new problem can be solved precisely using Lagrange
multipliers. The detailed optimization process in Theorem 2
is as follows. The optimization problem is given by:

—b'b—hT Ah,
Jin(b+ Ah) = 1.

min
h (25)
s. t.
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The Lagrange function is defined as

L(h,A\)==b"b—hTAh + AN(J1n(b+ Ah) —1).  (26)
Let derivatives equal O,
Vil = —2Ah + A\(J1,A)T =0, @
VoL =Jip(b+Ah)—1=0.
Noting that A = AT, we have
2Ah = AAJ, 1. (28)
Substituting it into the second equation, we have
2—2J1,0
A= 29
Jl,'n,AJn,l ( )
Then (1 — Ji,b)AJ,
1- 1,n n,1
Ah=——7—21-— 30
Jl,nAJn,l ( )
Finally, we obtain p as
T (Jinb—1)AJdy 1
=p—- T 31
P Jl,nAJn,l ( )

The most time-consuming part is the matrix summation of
A, which can be computed in O(n) time on modern GPUs
optimized for matrix operations. Therefore, the final result of
the above optimization problem is,

(Jinbp — 1)Apdna
Jl,nApJ'n,,l
where b, = (ZT)1S] and A, =1, — (ZT)1ZT.
Next, we describe how to express z; as a function of .S;.

As softmax is too complex to be directly given an algebraic
expression, we perform a first-order Taylor expansion for it,

a+Jin

Pl =by— (32)

)

=" 33
be (a“f’Jl,n)Jn,l ( )
Combining Eq. 5, Eq. 32 and Eq. 33, we have
=Vd-an(z")t
Zt an(Z)", (34)

ap = h;(ln_(Jn,lp - In)(Jn,lp - In)T) - Jl,’ru

where ho is a random vector and could be trained together
with the neural network.

Finally, we apply Eq. 32 and Eq. 34 to Eq. 12, then obtain
the differential equation of DHS S,.

D. Downstream Output

DHS provides a continuous hidden embedding, which could
be conveniently used for downstream tasks. Following the
conventions of NODE-based methods, one straightforward
approach is to directly map DHS to the desired output using a
simple neural network, that is

Y = fout(S).

In the classification tasks, y refers to the label of the time
series, and S refers to DHS at all integration time points. In
the interpolation and extrapolation tasks, y; at any given time
is obtained from the corresponding S; at the same time point.

(35)
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DHS can also be easily combined with other methods.
HiPPO [31] is an effective representation for time series and is
able to update through integration. However, HiPPO requires
a continuous sequence as input, which is exactly what DHS
offers. We construct the following system of equations:

dr .

cTtt = fr(Selletllre),

d

% = Ac, + B(W,r,), (36)
ds,

71: = Fs(St»Xobvt)v

where ¢; is the HiPPO representation. The information is
concentrated on r; and then output through a simple neural
network similar to Eq. 35.

IV. EXPERIMENTS

In this section, we present extensive experiments conducted
on both synthetic and real-world datasets to evaluate the
proposed DIFFODE across mainstream irregular time series
analysis tasks, including classification, interpolation, and ex-
trapolation. The comprehensive experiments aim to assess
DIFFODE from multiple perspectives and answer the following
Research Questions (RQ):

RQI: Can DIFFODE achieve superior accuracy in irregular
time series classification compared to advanced approaches,
particularly ODE-based methods? Refer to Section IV-B.
RQ2: How well does DIFFODE perform in interpolation,
and extrapolation tasks compared to competing approaches,
particularly ODE-based methods? Refer to Section IV-C.
RQ3: How efficient is DIFFODE relative to the baseline
methods? Refer to Section I'V-D.

RQ4: How about the scalability of DIFFODE when the given
datasets with different scales? Refer to Section IV-E.

RQ5: What role does the Hoyer Metric play in DIFFODE?
Refer to Section IV-F.

RQ6: Does each proposed component of DIFFODE contribute
to the model’s performance? Refer to Section IV-G.

A. Experimental Settings

1) Datasets: We implement our approach on four datasets,
namely synthetic periodic dataset, dynamical systems,
USHCN, and PhysioNet, whose details are as follows:

o Synthetic periodic dataset [42] is generated using the
algebraic equation x(t) = sin(t+ ¢)*cos(3*(t+¢)) with
time ¢ € (0,10) and phase ¢ ~ N(0,27). We simulate
1000 time series and create a binary label y = I(x(5) >
0.5). To make the time series irregular, we sample from
them according to a Poisson process with a rate of 70%.
The dataset is divided into training, testing, and validation
sets with the ratio of 50% : 25% : 25%.

Dynamical systems [42] are a widely studied type of time
series that require models to learn the underlying dynamics
of the processes. We consider one of the representations
of the most complex dynamical systems, chaotic attractors.
Chaotic attractors are sensitive to initial conditions and
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small noises might result in exponentially diverging trajec-
tories. We construct Lorenz63 and Lorenz96 systems and
remove the last dimension to make it never fully observed.
To make it more irregular, we further sample them using a
Poisson process with a rate of 30%. Similarly, the dataset
is divided into training, testing, and validation sets with
the ratio of 50% : 25% : 25%.

The United States Historical Climatology Network
(USHCN) [67] contains over 150 years of daily climate
data from the United States, including five different
variables (precipitation, snowfall, snow depth, minimum
and maximum temperature) from 1218 weather stations.
Following the preprocessing procedure of GRU-ODE-
Bayes, we select the data of 1168 stations over 4 years.
Due to equipment failure or the occasional collection
of certain metrics (e.g. snow depth), the dataset is very
sparse. We further increase the irregularity by removing
half of the time points and randomly removing 20% of
the observations. Divide the dataset into 60% for training,
20% for testing, and 20% for validation.

PhysioNet Challenge 2012 (PhysioNet) [68] includes
the physical conditions of 8000 patients in the ICU during
the first 48 hours, including 37 different indicators, such
as serum glucose, heart rate, platelets, etc. Following the
preprocessing procedure in ODE-RNN [35], we round the
observations to 6 minutes. Divide the dataset into 60%
for training, 20% for testing, and 20% for validation.
LargeST [69] is a large dataset which originally con-
taining 5-year traffic flow data collected by 8600 sensors
with interval of 5 minutes. We aggregated the raw data at
hourly intervals, resulting in a sequence with a length of
43,824. To introduce irregularity, we randomly masked
half of the data points. Divide the dataset into 60% for
training, 20% for testing, and 20% for validation.

The statistics for all datasets used in the experiments
are provided in Table II. These datasets were selected to
address various challenges in irregular time series analysis. The
synthetic periodic dataset is used for classification, offering
controlled data with irregular sampling. The Lorenz63 and
Lorenz96 chaotic systems test the model on dynamic, irregular
data, helping evaluate how well the DHS mechanism handles
nonlinear dynamics and long-term dependencies. The USHCN
dataset, with 150 years of daily climate data, is used for
interpolation tasks, predicting missing climate data. It is also
chosen for efficiency and scalability analysis due to its large
size and real-world relevance, containing high-dimensional,
irregularly sampled data with missing values, making it ideal for
testing DIFFODE’s performance on large, real-world datasets.
The PhysioNet dataset is used for extrapolation tasks to assess
long-term forecasting with missing or inconsistent data. Finally,
the synthetic dataset was included in the ablation study to
control factors like sampling rate and noise, allowing for a
controlled evaluation of the DHS mechanism. Each dataset
focuses on different aspects of handling irregular time series
data, from idealized settings to real-world challenges.
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TABLE II: Statistics of the datasets invovled in experiments.

Dataset | Type | # of time series | Sequence length | Features/variables | Irregularity

Synthetic Synthetic 1,000 10 1 (binary label) 70% Poisson-sampled
Lorenz63 | Dynamical system 1 1,000 63 30% Poisson-sampled
Lorenz96 | Dynamical system 1 1,000 96 30% Poisson-sampled
USHCN Climate 1,168 1,461 (4 years) 5 (precipitation, snowfall, etc.) 20% random missing
PhysioNet Hospital 8,000 48 37 (various health metrics) Regularly sampled (6 min intervals)
LargeST Traffic 8,600 43,824 (5 years) 1 (traffic flow) Regularly sampled (60 min intervals)

TABLE III: Classification performance on the synthetic dataset and dynamical systems (Top-1 accuracy is reported). The Bold

and Underline values denote the best and second-best performance, respectively, hereinafter the same.

Model | Category | Synthetic | Lorenz63 | Lorenz96
mTAN _ 0.757 + 0.030 0.718 4 0.066 0.713 +0.072
ContiFormer Attention-based | 0.992 + 0.006 0.989 + 0.004 0.987 & 0.004
HiPPO-obs 0.758 + 0.023 0.837 +0.034 0.949 4+ 0.007
HiPPO-RNN SSM-based 0.742 + 0.008 0.804 + 0.023 0.944 4+ 0.008
S4 0.994 + 0.003 0.911 + 0.005 0.948 +0.016
GRU 0.848 + 0.044 0.805 + 0.017 0.834 4+ 0.058
GRU-D RNN-based 0.897 4+ 0.028 0.859 £+ 0.015 0.864 £ 0.048
ODE-RNN 0.870 + 0.032 0.813+0.013 0.954 4+ 0.012
Latent ODE 0.782 + 0.014 0.713 £ 0.021 0.762 & 0.024
GRU-ODE-Bayes ODE-based 0.968 + 0.004 0.825 + 0.031 0.925 4+ 0.004
NRDE 0.773+£0.111 0.604 + 0.046 0.606 + 0.112
PolyODE 0.994 + 0.003 0.992 + 0.000 0.984 + 0.002
DIFFODE (ours) | ODE-based | 0.997 +0.001 | 0.993 +0.001 | 0.991 = 0.003

2) Baselines: We compare the performance of DIFFODE
with a variety of baselines across four categories, including
attention-based model (mTAN [70], ContiFormer [44]), SSM-
based models (HiPPO-RNN [31], HiPPO-obs, S4 [32]), RNN-
based models (GRU [25], GRU-D [13]), and ODE-based mod-
els (Latent ODE [33], ODE-RNN [35], GRU-ODE-Bayes [38],
NRDE [63], PolyODE [42]). The detailed descriptions of the
baselines are as follows, °

i) Attention-based methods:

and convolutional views to efficiently model long-range
dependencies in a principled manner.

iii) RNN-based methods:

« GRU [25] is a type of recurrent neural network architec-
ture designed to efficiently model sequential data while
mitigating issues like the vanishing gradient problem.
GRU-D [13] is based on GRU, which takes two rep-
resentations of missing patterns, i.e., masking and time
interval, and effectively incorporates them into a deep
model architecture so that it not only captures the long-
term temporal dependencies in time series, but also utilizes
the missing patterns to achieve better prediction results.

iv) ODE-based methods:

« Latent ODE [33] extends Neural ODEs to sequential data
by embedding observations into a latent space using an
encoder. The dynamics in this latent space are modeled
with an ODE, and the states are decoded back to the
observation space.

« ODE-RNN [35] generalizes RNNs to have continuous-
time hidden dynamics defined by ordinary differential

« mTAN [70] is a generative method based on a variational
auto-encoder and uses attention mechanism to produce
a fixed-length representation for time series of arbitrary
length.

o ContiFormer [44] extends the relation modeling of
vanilla Transformer to the continuous-time domain, which
explicitly incorporates the modeling abilities of continuous
dynamics of Neural ODEs with the attention mechanism
of Transformers.

ii) SSM-based methods:
« HiPPO-RNN [31] is a recurrent neural network ar-

chitecture that uses orthogonal polynomial projections
of the hidden process. We also use a variant of this
approach where we use the HiPPO operator directly on
the observed time series, rather than on the hidden process.
Following [42], we call this variant HiPPO-obs.

S4 [32] is a sequence model that uses a new parameteriza-
tion for the state space model’s continuous-time, recurrent,

2114

equations, which provides relatively interpretable latent
states, as well as explicit uncertainty estimates about latent
states.

GRU-ODE-Bayes [38] combines GRU with ODEs to
address irregularly sampled multivariate time series, which
encodes a continuity prior for the latent process and
can exactly represent the Fokker-Planck dynamics of
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complex processes driven by a multidimensional stochastic
differential equation.

NRDE [63] combines ideas from rough path theory
and neural controlled differential equations to improve
performance, which uses the log-signature transform of
time series data and allows the model to encode long-term
dependencies more efficiently.

PolyODE [42] models the latent continuous-time process
as a projection onto a basis of orthogonal polynomials.
This formulation enforces long-range memory and pre-
serves a global representation of the underlying dynamical
system.

We adopt the configurations that yield the best performance
for each baseline to run their official codes on the same
machine used for running our model. Traditional attention-
based models often struggle with irregular time series due
to their reliance on fixed-length representations and local
dependencies, which can fail to capture the continuity of
temporal dynamics. In contrast, our Differentiable Hidden State
(DHS) mechanism addresses this limitation by using irregularly
sampled observations as Key and Value matrices, allowing for
dynamic updates of the latent state and better capturing long-
range dependencies. By incorporating generalized inverses, the
DHS mechanism ensures context-aware attention computation,
preserving continuity and enabling more accurate modeling of
temporal relationships. This approach circumvents the issues of
fragmented representation seen in traditional models, making it
particularly effective for tasks like interpolation, extrapolation,
and long-term forecasting with irregular data.

3) Evaluation Metrics: To rigorously evaluate the perfor-
mance of the proposed model across classification, interpolation,
and extrapolation, we adopt task-specific evaluation metrics
that comprehensively reflect the effectiveness of DIFFODE in
capturing the underlying dynamics of irregular time series. The
detailed descriptions of the evaluation metrics involved are as
follows:

Top-1 Accuracy for Classification. The classification task
is assessed using the Top-1 accuracy metric, which quantifies
the proportion of test samples for which the predicted class
matches the ground truth label and is formally defined as:

N
1
Top-1 Accuracy = > Wi =), (37
i=1

where IV denotes the total number of test samples, ¢; represents
the predicted class of the i-th sample, y; is the corresponding
ground truth, and #(-) is the indicator function. A higher Top-1
accuracy signifies superior classification performance.

Mean Squared Error for Interpolation and Extrapolation.
For interpolation and extrapolation tasks, we use Mean Squared
Error (MSE) to evaluate performance. It measures the average
squared differences between predicted and actual values and
is defined as:

N
1 N _
MSE = ;<yt,., —p)? x 107, (38)
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where [V is the number of evaluation points, yt; is the predicted
value at time ¢;, and y¢; is the ground truth value. Lower MSE
values indicate better accuracy in predicting and reconstructing
irregular time series.

4) Implementation Details: The proposed DIFFODE frame-
work involves three small neural networks: (1) the input
mapping from observations to latent states, (2) the dynamics
modeling of the DHS, and (3) the output mapping. A one-
layer GRU is used to map observations into latent states, while
an MLP with one hidden layer models the dynamics of the
DHS. The output mapping is also implemented using an MLP
with one hidden layer. For all datasets, the hidden size of the
MLPs is set to 32. The ODE integration is performed using
the implicit Adams method, an adaptive numerical integration
method known for its tiny numerical errors. Early stopping
is applied if the validation loss does not improve for 20
consecutive epochs. The learning rate and weight decay are
both set to 0.001.

For classification tasks, the batch size is set to 128, and the
dimension of DHS and information state r; is set to 16. The
integration step of the ODE solution is set to 0.05. When we
train the model, we have 250 max epochs. For interpolation
and extrapolation tasks, the batch size is set to 32. The
dimension of DHS and information state r; is set to 32. The
integration step of the ODE solution is set to 5. The maximum
number of training epochs is set to 100.

B. Performance Comparison of Classification (RQ1)

Classification is an important application of irregular time
series analysis. In our evaluation, we subjected a variety
of models to rigorous testing using both synthetic periodic
datasets and dynamical systems, employing cross-entropy loss
for training purposes. The results, presented in Table III, reveal
that our proposed model, DIFFODE, surpasses a diverse array of
existing methods, achieving state-of-the-art performance across
all tested datasets. Notably, the attention-based method mTAN,
along with the RNN-based methods GRU and GRU-D, were
unable to surpass other approaches. This underperformance
is attributed to their discrete frameworks, underscoring the
significant advantage offered by our model’s continuous
hidden state representation. While the recent PolyODE model
demonstrates a general capacity to extract temporal information
from time series, it falls short in accurately capturing the
subtleties of the underlying dynamics when compared to the
robust capabilities of our proposed DIFFODE.

C. Performance Comparison of Interpolation and Extrapola-
tion (RQ2)

We employ the USHCN, PhysioNet, and LargeST
datasets [69] to evaluate the performance of models on
interpolation and extrapolation tasks. For interpolation, our
goal is to reconstruct the complete time series from a subset
of available observations. Conversely, in the extrapolation
task, we divide the time series into two equal parts: the first
half is utilized for model training, while the full sequence is
employed for making predictions. The results, as detailed in
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TABLE IV: Interpolation and extrapolation performance on USHCN, PhysioNet, and LargeST (MSE is reported).

Model USHCN | PhysioNet | LargeST
Interpolation Extrapolation \ Interpolation Extrapolation \ Interpolation Extrapolation

mTAN 1.766 + 0.009 2.360 £ 0.038 0.208 £+ 0.025 0.340 + 0.020 411.81 +63.23 466.58 + 67.34
ContiFormer 0.837 £+ 0.057 1.634 4+ 0.082 0.212 £ 0.023 0.376 £ 0.034 413.62 +42.19 457.52 + 53.82
HiPPO-obs 1.268 + 0.051 2.417 £ 0.068 0.323 £ 0.061 0.855 £+ 0.024 475.82 + 63.58 522.62 £ 51.85
HiPPO-RNN 1.172 4+ 0.061 2.324 £+ 0.031 0.293 + 0.068 0.769 + 0.053 457.25 + 72.25 497.25 + 72.10
S4 0.823 £ 0.016 1.504 £ 0.063 0.229 + 0.023 0.535 + 0.067 437.73 £ 73.34 453.73 +64.99
GRU 1.068 + 0.073 2.071 £0.015 0.364 £ 0.088 0.880 £ 0.140 522.36 £ 74.43 522.36 £ 67.71
GRU-D 0.994 + 0.011 1.718 £ 0.015 0.338 £ 0.027 0.873 £ 0.071 524.13 +6.84 527.46 £ 54.87
ODE-RNN 0.831 £ 0.008 1.955 4+ 0.467 0.236 £ 0.009 0.467 + 0.006 417.45 +24.54 451.15 4 54.62
Latent ODE 1.798 £+ 0.009 2.034 + 0.005 0.212 + 0.027 0.725 + 0.072 467.26 + 73.12 527.18 £+ 64.83
GRU-ODE-Bayes 0.841 £+ 0.142 5.437 £1.020 0.521 £ 0.038 0.798 £ 0.071 486.82 4 68.28 513.42 £+ 54.81
NRDE 0.961 + 0.051 1.923 4+ 0.607 0.434 £ 0.077 0.819 + 0.037 517.35 £+ 64.24 557.95 + 64.93
PolyODE 0.806 £+ 0.017 1.842 4+ 0.440 0.205 £ 0.041 0.598 £+ 0.034 425.63 £+ 53.62 485.57 4+ 52.45

DIFFODE (ours) ‘ 0.765 £+ 0.023

0.869 +0.043 | 0.175+0.074

0.308 £ 0.054 | 365.14+37.45 396.23 +34.10

maxHoyer

0.001 0.002 0.003

minNorm

adaH

0.004 0.005 0.006

Fig. 3: Visualization of attention scores obtained using different methods for determining p;. A lower number of lighter-colored
points indicates greater sparsity, highlighting the differences in sparsity levels across the methods.

Table IV and expressed in terms of mean squared error (MSE)
scaled by a factor of 10~2, demonstrate our proposed model,
DIFFODE, outperforming alternative methods, particularly in
the extrapolation task. Specifically, DIFFODE surpasses the
best results of all baselines by {5.1%,14.6%, 11.7%} on the
interpolation tasks for the USHCN and PhysioNet datasets,
respectively. Moreover, DIFFODE achieves even more re-
markable performance improvements over the best-performing
baselines on extrapolation, with ratios of 42.2%, 9.4%, and
12.2% on USHCN, PhysioNet, and LargeST, respectively. This
superior performance indicates that DIFFODE is proficient at
capturing the intrinsic dynamics of time series data, a capability
that substantially enhances its ability to accurately forecast
future trends. Therefore, in the three tasks of classification,
interpolation, and extrapolation on irregular time series, failing
to fully leverage the contextual information in the data
can result in several issues, including inaccurate forecasting,
fragmented representations, loss of temporal continuity, and
poor generalization. When models do not capture the full
context, they may overlook important long-range dependencies,
leading to less reliable predictions and overfitting to local
patterns. Our DHS mechanism addresses these challenges by
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TABLE V: Comparison analysis of model efficiency.

Model | Complexity | Time (s/epoch)
ContiFormer O(d?*n?L) 154
HiPPO-obs O(d2L) 86

GRU-D O(d?n) 232
ODE-RNN O(d?L) 91
Latent ODE O(d?L) 110
PolyODE O(d2d?L) 131

DIFFODE (ours) | O(d2nL) | 126

enabling context-aware attention and preserving the continuity
of latent dynamics, thereby improving the handling of irregular
data and enhancing overall model performance.

D. Efficiency Analysis (RQ3)

In this part, we theoretically calculate the time complexity
of the proposed DIFFODE, and then compare the training
time consumption of DIFFODE with that of baselines. We
compare the time complexity of our method with representative
baselines as presented in Table V. According to the table, we
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Fig. 4: Scalability analysis of DIFFODE across two key
dimensions of time series data: number of features and time
steps.

have n denoting the number of time points with observations,
d denoting the dimension of the feature of observations, d.
denoting the dimension of the HiPPO matrix, and L denoting
the integration steps. The scale of d. is typically similar to
that of d, and L is always less than n. SSM-based models,
e.g., HiPPO-obs, are efficient linear models and usually need
at least O(d2L) time. RNN-based models are simple but less
efficient, which usually need only O(d?n) time. ODE-based
models need at least O(d?L) time, and extra time consumption
related to the specific design of the model. Methods combining
attention mechanism with NODE usually need O(d?>n2L) time
consumption. Our model designs reduce it to O(d?nL), with
a similar time complexity as normal attention-based models.
We can find that, our model achieves impressive performance
gain by introducing a continuous attention mechanism while
requiring acceptable additional time consumption. The time
consumption of our model and baselines in one training epoch
on the USHCN dataset is also listed in Table V. From the table,
we can find that theoretically faster models do not necessarily
have shorter training time, e.g., stacking building blocks does
not increase time complexity but leads to longer training
time. Therefore, to further evaluate the time consumption of
DIFFODE, we next train our model on datasets with different
scales and observe the time consumption differences of our
model on the datasets.

E. Scalability Analysis (RQ4)

We further evaluate the scalability of our method when fed
with datasets with different scales, i.e., datasets with different
temporal lengths and with different numbers of features. To
this end, we extract a series of subdatasets of USHCN. As
mentioned above, the used USHCN dataset contains 4-year data
of 1168 stations, we extract {20%, 40%, 60%, 80%, 100%} of
the stations to construct feature-wise sub-datasets of USHCN,
resulting in five datasets with {234, 467,701,934, 1168} sta-
tions respectively. Similarly, 5 temporal-wise subdatasets are
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extracted, where the temporal lengths of the subdatasets
are {20%,40%, 60%,80%,100%} of origin USHCN. The
proposed DIFFODE is compared with six well-performed
baselines on the interpolation task. We compare the training
time consumption and the interpolation performance of the
models.

Fig. 4 presents the result. It can be observed that as the
dataset scale escalates, whether in terms of feature count or
temporal length, the training time consumption of DIFFODE
increases at a slower rate compared to all other baselines.
This observation aligns with our analysis of model complexity,
confirming that DIFFODE outperforms other baselines in
efficiency when dealing with larger datasets. Additionally, we
observe that all models exhibit robustness to changes in feature
scale. This outcome is attributed to the fact that in the analysis
of irregular time series, feature correlations are often limited
or difficult to extract, and the difficulty of analyzing a larger
number of features is comparable to that of analyzing a smaller
number of features. When the available data length diminishes,
the performance of all models declines accordingly. However,
it is noteworthy that the proposed DIFFODE experiences the
least interpolation performance degradation. The robustness
of DIFFODE is demonstrated to surpass that of the baselines.
In summary, this section illustrates that DIFFODE surpasses
baselines in managing large-scale data and demonstrates greater
robustness in the face of varying data availability.

E Effect of Hoyer Metric (RQS5)

To assess the impact of maximizing the Hoyer metric
(maxHoyer) on model performance, we conducted a compara-
tive analysis with two alternative approaches for determining
p¢: one that employs p; with the minimum norm (minNorm),
and another that treats h in Eq. 13 as an adaptable parameter
co-trained with the neural network (adaH). Fig. 3 illustrates the
gray-scale maps of p; as derived from these various methods,
while Table VI presents the mean squared error (MSE), scaled
by 102

The results indicate that p; obtained through the maximiza-
tion of the Hoyer metric not only exhibits greater sparsity
but also delivers superior performance on the dataset. This
finding emphasizes the Hoyer metric’s efficacy in promoting
sparsity, which in turn is beneficial for capturing the complex
interdependencies among highly correlated points within a time
series.

Interestingly, the performance of p, derived from both
the minimum norm approach (minNorm) and the adaptive
parameter training (adaH) is quite comparable. This similarity
in performance might stem from the necessity for h to be
closely aligned with the data characteristics for each batch. If
h is not well-correlated with the data, its capacity to absorb
meaningful information is constrained. The p; resulting from
the Hoyer metric maximization is inherently connected to S,
aligning with the requirement for data-sensitive h values and
thus explaining its enhanced performance.
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TABLE VI: Performance of DIFFODE with different methods for calculating p; on the USHCN and PhysioNet datasets. maxH
refers to p; calculated by maximizing the Hoyer metric, minN refers to p; obtained by minimizing the norm, and trainP refers

to p; where the parameter is learned during training.

Model | maxHoyer | minNorm | adaH
USHCN Interpolation | 0.765 + 0.023 | 0.804 £ 0.020 | 0.798 + 0.038
Extrapolation | 0.869 + 0.043 | 0.922 + 0.034 | 0.913 + 0.081
PhysioNet Interpolation | 0.175 + 0.074 | 0.201 = 0.076 | 0.197 + 0.094
Y Extrapolation | 0.308 = 0.054 | 0.346 + 0.049 | 0.351 + 0.063
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Fig. 5: Ablation study of input neural network and output
mechanism. Synthetic, Lorenz96, and USHCN datasets are
employed here.

G. Ablation Study (RQ6)

We come up with three more ablation studies on the input
neural network, the output mechanism, and multi-head attention
in this section. For the input neural network, we compare the
performance of GRU and MLP on dynamical systems. When
using MLP, we actually have E(z;) in Eq. 4 as &. For the
output mechanism, we compare the performance of using and

not using the HiPPO mechanism. The result is shown in Fig. 5.

Synthetic, Lorenz96, and USHCN are employed here. It is
shown that using GRU as an input layer could better capture
the information over time, and HiPPO is even more important
in generating predictions. For multi-head attention, we first
remove the attention and evaluate the impact of removing the
attention mechanism. When removing attention, the model
architecture is similar to HIPPO-RNN. As shown in Fig. 5, the
variant w/o Attn performs far worse than original model. We
then compare the performance of the model with different heads
on the PhysioNet dataset. The result is shown in Fig. 6, which
illustrates that the improvement from multi-head attention is
limited, but it incurs additional time consumption overhead.

V. CONCLUSION

This paper tackles a significant challenge faced by current
neural ODE methods: their inability to seamlessly integrate

contextual information while preserving the continuity of
the latent dynamics in irregular time series. To overcome
this challenge, we propose a novel data-driven neural ODE
framework (DIFFODE), with an innovative attention-based
differential hidden state space, leveraging irregularly sampled
observations as Key and Value matrices to enrich the model’s
context awareness. Building upon this novel hidden state space,
we employ the theory of generalized inverses to formulate
an ODE that encapsulates the dynamics of the hidden states
over time. Furthermore, to enhance the precision of temporal
relationships, we incorporate the Hoyer metric, aiming to
maximize the sparsity of attention scores during the generation
of hidden states. Our approach has been rigorously compared
with existing state-of-the-art methods on both synthetic and
real-world datasets, with experimental results consistently
showcasing the superior effectiveness of our model in diverse
irregular time series tasks, especially on interpolation and
extrapolation. Additionally, we evaluate the scalability of
our method when fed with datasets with different scales,
and illustrate that DIFFODE outperforms existing works in
managing datasets with different scales. Overall, our work
not only provides a brand-new and effective solution for
irregular time series analysis, but also paves the way for broader
applications in data management.
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