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Abstract

Multivariate time series (MTS) prediction has been widely
adopted in various scenarios. Recently, some methods have
employed patching to enhance local semantics and improve
model performance. However, length-fixed patch are prone
to losing temporal boundary information, such as complete
peaks and periods. Moreover, existing methods mainly focus
on modeling long-term dependencies across patches, while
paying little attention to other dimensions (e.g., short-term
dependencies within patches and complex interactions among
cross-variavle patches). To address these challenges, we pro-
pose a pure MLP-based HDMixer, aiming to acquire patches
with richer semantic information and efficiently modeling
hierarchical interactions. Specifically, we design a Length-
Extendable Patcher (LEP) tailored to MTS, which enriches
the boundary information of patches and alleviates semantic
incoherence in series. Subsequently, we devise a Hierarchi-
cal Dependency Explorer (HDE) based on pure MLPs. This
explorer effectively models short-term dependencies within
patches, long-term dependencies across patches, and complex
interactions among variables. Extensive experiments on 9 real-
world datasets demonstrate the superiority of our approach.
The code is available at https://github.com/hqh0728/HDMixer.

Introduction
Multivariate time series prediction has become an integral
component in various real-world applications (Wang et al.
2023f; Xu et al. 2021, 2020; Zhou et al. 2020a; Zhang et al.
2023; Shen et al. 2022; Fang et al. 2023), such as weather
forecasting, power scheduling, and economic assessment
(Cheng et al. 2022; Kim et al. 2021; Shang, Chen, and Bi
2021; Tian et al. 2021; Tang, Lu, and Qiu 2023b,a; Yang et al.
2023a). Deep learning has greatly improved the MTS predic-
tion performance (Yin and Shang 2016; Liu et al. 2022, 2021;
Zhou et al. 2023a; Wang et al. 2021; Zhou et al. 2020b), lead-
ing to a proliferation of deep forecasting models (Wu et al.
2021; Guo et al. 2022; Wu et al. 2019; Shabani et al. 2023;
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Miao et al. 2024, 2023; Huang et al. 2023). From a tech-
nical perspective, extending one-dimensional time series to
high-dimensional sequences through temporal patching can
enhance the local semantics at each time step and provides
significant advantages for subsequent dependency structure
mining (Nie et al. 2023; Zhang and Yan 2023). The out-

Figure 1: Comparison between Fixed Patch and Extendable
Patch.

standing performance attained by advanced deep prediction
methods is attributed to their initial application of sequence
patching, followed by the learning of long-term dependencies
(Lin et al. 2023a,b).

Generally, these approaches (Nie et al. 2023) use length-
fixed patches and make the intuitive assumption that a fixed
partitioning of time series applies universally. However, such
fixed patches lack flexibility in dividing time series into sub-
sequences, leading to two issues: (1) Loss of boundary in-
formation in patch. Subsequences lose crucial boundary in-
formation, failing to form locally semantic representations
with highly informative content. As shown in Fig.1, peak
information is lost due to length-fixed patches. (2) Semantic
incoherence in sequence. This results in inconsistent han-
dling of semantics across the entire sequence. As shown in
Fig.1, peak information inconsistently appears across patches.
Consequently, this fixed-patch approach could potentially un-
dermine the semantic information of sequences, leading to a
performance decline.

Most existing methods (Nie et al. 2023; Zhang and Yan
2023; Zhang et al. 2022a) focus on enriching local semantics
in MTS through patch-based approaches, primarily emphasiz-
ing on capturing long-term interactions. However, they tend
to overlook two other critical forms of information exchange:
(a) short-term interactions and (b) cross-variable interactions.
In one hand, capturing short-term interactions facilitates fre-
quent information exchange among neighboring time steps,



aiding in identifying local patterns and transient events. In the
other hand, extracting cross-variable interactions offers in-
sights into latent causal connections hidden in data variations.
Although a few cross-variable techniques (Zhang and Yan
2023) attempt to capture these interactions explicitly, they
often involve high computational complexity. Furthermore,
internal short-term dependencies within patches have also
been overlooked in current research. Integrating interactions
across all three dimensions holds the potential to enhance the
representation capabilities of models for MTS forecasting.

Based on the aforementioned motivations, we propose
HDMixer, a pure MLP-based model to obtain patches with
more comprehensive semantic information and model interac-
tions across different dimensions. Specifically, we introduce
the Length-Extendable Patcher (LEP) tailored for temporal
data, enabling adaptive extension of patch lengths based on
temporal characteristics. We innovatively introduce a patch
entropy loss for guidance to ensure that the patch division
by LEP. For capturing interactions within hierarchical dimen-
sions, we devise a Hierarchical Dependency Explorer (HDE)
composed solely of MLPs. It consists of multiple stacked
Mixers, each incorporating three MLPs to capture long-term
dependencies, short-term dependencies, and cross-variable
interactions. Based on pure MLPs, HDE can maintain the
computational efficiency and ease of implementation. The
main contributions of this paper are summarized as follows:

• We propose a Length-Extendable Patcher (LEP) tailored
for temporal data to adaptively enrich the boundary se-
mantics of time series patches. This strategy prevents the
loss of complete peak or period. Additionally, we intro-
duce Patch Entropy Loss as an innovative guidance for
patch partitioning.

• We devise a Hierarchical Dependency Explorer (HDE)
composed solely of MLPs to efficiently model short-term
dependencies within patches, long-term inter-patch de-
pendencies, and intricate cross-variable relationships.

• Extensive experimental results on 9 real-world MTS
datasets show that our model demonstrates competitive
performance. Specifically, it attains top-1 performance
in 59 settings and top-2 in 13 settings while maintaining
remarkable efficiency.

Related Work
MTS forecasting with Patch
Recently, patch-based approaches (Nie et al. 2023) for time
series prediction have gained significant attention. These
models exhibit notable performance improvements compared
to methods without patching, underscoring the importance
of enhancing local semantics through patching. For instance,
Crossformer (Zhang and Yan 2023) segments each time se-
ries into patches and employs self-attention mechanisms to
model dependencies across variables and time dimensions,
leading to considerable performance gains over other meth-
ods. Notably, PatchTST (Nie et al. 2023) achieves state-
of-the-art results by utilizing series patching and instance
normalization within the Transformer architecture. However,
its computational cost can become prohibitive when dealing

with a large number of series variables. In light of promising
results in PatchTST, recent works such as Cross-LKTCN
(Luo and Wang 2023) and DCdetector (Yang et al. 2023b),
have also embraced patch-based partitioning of time series.
They leverage patching to enhance sequence representation
and improve downstream task performance. Nevertheless,
all current methods overlook issues related to fixed patch
lengths, which can lead to the loss of boundary information
and semantic incoherence within time series data. In this pa-
per, we introduce the Length-Extendable Patcher (LEP) for
time series data, which extends patch lengths to enhance the
availability of local semantics within segmented sequences.

Hierarchical Interaction in MTS
Introducing hierarchical interactions in multivariate time se-
ries prediction allows for the transmission of information
across different levels (Hewamalage, Bergmeir, and Bandara
2021; Zhou et al. 2021). This leads to more accurate and com-
prehensive forecasting results that can better capture the asso-
ciations and influences among different variables in the real
world. Previous research, including Autoformer (Wu et al.
2021), FEDformer (Zhou et al. 2022), ETSformer (Woo et al.
2022), and PatchTST (Nie et al. 2023), focuse solely on long-
term dependencies while overlooking variable relationships.
Some GNN-based time series prediction methods (Wang
et al. 2023e; Wu et al. 2020; Yu, Yin, and Zhu 2018; Zhou
et al. 2023b; Yang et al. 2023a; Wang et al. 2023a,c; Zhang
et al. 2022b; Wang et al. 2023b) capture variable relationships
through fixed graph structures to enhance prediction accuracy.
Crossformer (Zhang and Yan 2023) introduced a module
for variable relationships and leveraged routing vectors to
partially reduce the computational complexity of modeling
these relationships. Subsequently, methods like DSformer
(Yu et al. 2023) begin to consider variable relationships in
MTS prediction. However, these methods tend to be com-
plex, incurring substantial computational costs. Moreover,
aside from variable dimensions, current approaches overlook
the new dimensions introduced by patching sequences, i.e.,
short-term interactions within patches, which aid in identi-
fying local patterns and instantaneous events. Motivated by
multi-level interactions and computational efficiency (Tol-
stikhin et al. 2021), we employ a simple yet computationally
efficient Mixer to individually address short-term dependen-
cies within patches, long-term dependencies among patches,
and variable associations, which promotes an efficient hierar-
chical interaction scheme.

Methodology
The objective of multivariate time series forecasting is to
predict the future values of each variable over T time steps
based on their respective historical values over the past L time
steps. Given the input matrix Xinput = [X1, X2, . . . , XM ] ∈
RM×L, where Xm = [xm

1 , xm
2 , ..., xm

L ] ∈ RL repre-
sents the historical time series of the m-th variable with
length L. We aim to learn a function F : Xinput → X̂ ,
where X̂ = [X̂1, X̂2, . . . , X̂M ] ∈ RM×T , and X̂m =
[x̂m

L+1, x̂
m
L+2, . . . , x̂

m
L+T ] ∈ RT represents the future pre-

dicted values of the m-th variable with length T . We propose



a pure MLP model called HDMixer, which enables learn-
ing of length-extendable patches and interactions among
variables in multiple dimensions for time series forecast-
ing. In the following, we will introduce the overall structure
of the proposed HDMixer in detail. Then, we present the
Length-Extendable Patcher (LEP), which enhances local se-
mantic information through adaptive patch lengths. Finally,
the MLP-based Hierarchical Dependency Explorer (HDE) is
introduced to facilitate efficient multi-dimensional interac-
tions.

Figure 2: Overall structure of the proposed HDMixer.

Overall Structure
Forward process The overall architecture of HDMixer
is illustrated in Fig.2. We represent the time series of M
variables with a historical length of L as Xinput ∈ RM×L.
It is then divided into N extendable-length patches, where
each patch contains D evenly sampled values. The process
of generating extendable patches for multivariate time series
data is described as follows:

Xpatch = LEP(Xinput) (1)

where LEP (·) is the Length-Extendable Patcher func-
tion designed specifically for time series data, and its details
will be introduced in Section LFP. After applying the ex-
tendable patch operation to the multivariate time series, we
obtain Xpatch ∈ RM×N×D, where N represents the number
of patches and D denotes the number of sampled time series
values within each patch.

The patched Xpatch is then fed into the Hierarchical De-
pendency Explorer to capture long-term dependencies, short-
term dependencies, and inter-variable relationships. Thus,
based on HDE, we obtain a multivariate time series represen-
tation capturing multidimensional dependencies, denoted as
ZK ∈ RM×N×D:

ZK = HDE(Xpatch) (2)

where HDE(·) is the stack of K HDMixer blocks, K indi-
cates the number of blocks, and its detailed description will
be presented in Section Hierarchical Dependency Explorer.
Finally, we unroll the last two dimensions of the obtained

representation ZK and apply a mapping function to obtain
the final prediction:

X̂ = Pred(Flatten(ZK)) (3)
where Flatten(·) is used to unroll the last two dimen-

sions of Z, transforming the shape of the final time series
representation to ZK ∈ RM×(D×N). Pred(·) maps the fi-
nal representation to the desired prediction sequence length,
and X̂ ∈ RM×T represents the final prediction results with
length T . M denoting the number of variables. Here, we
adopt the design from (Zeng et al. 2022), which employs Di-
rectly Multi-Step (DMS) forecasting. This approach directly
predicts all time steps in one step, avoiding additional bias
caused by error accumulation.

Figure 3: Sturcture of Length-Extendable Patcher(LEP). The
gray box is first shifted to become a green box, then under-
goes dilation to transform into a red box. Finally, D points
are sampled within the red box.

Length-Extendable Patcher
To obtain patches with more comprehensive semantic infor-
mation, we adaptively expand the patch lengths and employ
bi-linear interpolation to uniformly sample a fixed number of
D time steps within each patch, resulting in more complete
semantic patch partitioning strategy.

Let’s consider patching a single-variable time series Xm =
[xm

1 , xm
2 , ..., xm

T ] (for simplicity, we omit the subscript m in
the following). In the commonly used Length-fixed patch
method, pi can be represented as a tuple (ci, D), where ci
is the central point coordinate of the i-th patch box, and D
represents the number of sampling points. Since the length of
the patch in Length-fixed patch equals D − 1, we can define
l = D−1

2 as half of the fixed patch length. Consequently,
the start and end points of the i-th patch sequence can be
calculated as lefti = ci− l and righti = ci+ l, respectively.
Thus, the i-th patch samples the sequence [xci−l, ..., xci+l]
with a sampling interval of 1, obtaining D original observa-
tion values from X .

In Length-Extendable Patcher, pi is expanded into a quintu-
ple (ci, D, δci, δlefti, δrighti), where ci denotes the central
point coordinate of the i-th patch, D is the number of sam-
pling points, δci represents the central point offset, δlefti
represents the left part expansion of the central point, and
δrighti represents the right part expansion of the central
point. All these δci, δlefti, and δrighti are learnable values.
Given l = D−1

2 , the sampling start and end points of the i-th
extendable patch are determined as follows:



lefti = (ci + δci)− (l + δlefti) (4)

righti = (ci + δci) + (l + δrighti) (5)

The corresponding sampling sequence is
[xlefti , ..., xrighti ], with a sampling interval of
2l+δlefti+δrighti

D−1 and a total of D values. To learn the
central point offset δC, left and right boundary expansion
lengths δL, δR for all patches of each variable sequence, we
design a branch as follows:

δC =
D

a
· Tanh(Woffset · f(Xinput)) (6)

δL, δR =
D

b
· ReLU (Tanh(Wextend · f(Xinput))) (7)

Here, f(·) serves as a feature extractor, designed as
a single-layer linear function. Woffset ∈ RT×N and
Wextend ∈ RT×2N are used to learn the offset and length
scales of the patch. δC ∈ RM×N represents the central
point offset for all patches of the multivariate variables, en-
suring that the central point offset falls within [−D

a ,
D
a ] us-

ing D
a . The hyperbolic tangent function tanh(·). δL and

δR ∈ RM×N represent the left and right boundary expan-
sion lengths of all patches for each variable, respectively. The
use of ReLU function and D

b ensures that the boundary ex-
pansion lengths are within the range [0, D

b ]. By limiting the
patch offset and expandable length through two coefficients,
the overlap between patches is reduced, avoiding excessive
similarity between adjacent patches.

Based on the learnable offset δC and length expansion
δL, δR, we determine the start and end points of each
patch and sample the time series accordingly. For Length-
Extendable Patch, the main challenge is that the index of
the uniformly sampled sequence is generally fractional. To
address this, we use bi-linear interpolation to obtain the cor-
responding sampling points, while ensuring differentiability.
For a fractional index i = left+ k · 2l+δleft+δright

D−1 , where
k ∈ [0, D − 1], we use bi-linear interpolation to obtain its
value:

Xi =
∑
j

G(i; j) ·Xj (8)

G(i; j) = max(0, 1− |i− j|) (9)

Here, Xi represents the sampled value at the fractional
time step, and j iterates over all time steps of the time se-
ries. Xj denotes the value of the j-th time step. The function
G(i; j) takes a positive value for neighboring integer indices
i and j, while zero for other non-adjacent points. We sample
the value at a fractional index i based on the surrounding
integer indices j through bi-linear interpolation. This ensures
the differentiability of the obtained sampling point value with
respect to the fractional index i and maintains the overall dif-
ferentiability of the algorithm. It can be observed that when
i = j, the sampled value corresponds to the initial sequence
value Xj . Using the above equation, we can efficiently com-
pute the sampling points for all length-extendable patches

of each variable, requiring only a small number of multiply-
add operations. The final output of the Length-Extendable
Patcher is the three-dimensional vector Xpatch ∈ RM×N×D

obtained from the two-dimensional input data Xinput af-
ter length-extendable patching, where N is the number of
patches, and D is the number of sampling points within each
patch.

Patch Entropy Loss
To ensure that the extension of patches contributes to in-
formation gain, we introduce a strategy based on approxi-
mate entropy (Pincus 1991) for measuring the differences
between patch partition methods. This strategy reflects the
likelihood of discovering new information when changing
the patching approach, and a corresponding loss function
is designed. We evaluate the complexity between length-
extendable and length-fixed patches for the same sequence.
Generally, the greater the complexity of subsequence par-
titioning, the more information is obtained, which benefits
prediction tasks (Tolstikhin et al. 2021). For any time se-
ries X ∈ RL, we consider length-fixed patching, where
N length-fixed patches of length D are extracted to form
XLF = [[xLF

1 , ..., xLF
D ], ..., [xLF

L−D+1, ..., x
LF
L ]] ∈ RN×D.

Similarly, N length-extendable patches are obtained to form
XLE ∈ RN×D. We evaluate the complexity of the partition-
ing for XLF .

We measure the similarity of different subpatterns after
applying length-fixed patching using the following steps.
We compute the distance between each pair of subpatterns
XLF (n) and XLF (m) as the maximum absolute difference
of their corresponding elements:

d(XLF (n), XLF (m)) = max|XLF (n)−XLF (m)| (10)
Given a threshold r, we count the number of subpatterns

XLF (m) whose distance to other subpatterns is less than
r, and calculate the ratio relative to N . This provides an
approximate measure of the similarity of the m-th subpattern
within the entire sequence XLF :

CLF
m (XLF |r) = 1

N
num{d(XLF (n), XLF (m)) < r}

(11)
To assess the complexity of a full sequence after length-

fixed patching, we take the logarithm of CLF
n (XLF |r) for

all n ∈ [1, N ], and calculate the average:

ΦLF (XLF |r) = 1

N

N∑
n=1

lnCLF
n (XLF |r) (12)

ΦLF
m (XLF |r) reflects the similarity of different sub-

patterns after length-fixed patching. We aim for lower
ΦLF

m (XLF |r) values after patching to enhance the distinct-
ness of semantic information among patches, facilitating
interactions and prediction tasks.

Similarly, we compute the similarity of subpatterns after
applying length-extendable patching:

CLE
m (XLE |r) = 1

N
num{d(XLE(n), XLE(m)) < r}

(13)



ΦLE(XLE |r) = 1

N

N∑
n=1

lnCLE
n (XLF |r) (14)

The patch entropy of a sequence is defined as:

PaEn(XLE |r,N) = lim
L→∞

[
ΦLF (XLF |r)− ΦLE(XLE |r)

]
= lim

L→∞

[
1

N

N∑
i=1

lnCLF
i (XLF |r)− 1

N

N∑
i=1

lnCLE
i (XLE |r)

]

= lim
L→∞

[
1

N

N∑
i=1

ln
CLF

i (XLF |r)
CLE

i (XLE |r)

]
(15)

PaEn indicates the differences in similarity between sub-
patterns obtained through length-extendable and length-fixed
patching. A higher PaEn implies lower similarity among sub-
patterns after length-extendable patching (indicating higher
partitioning complexity and more information), while a lower
PaEn implies higher similarity (indicating lower partition-
ing complexity and less information). Thus, PaEn theoreti-
cally characterizes the irregularity and complexity of signal
partitioning. It roughly corresponds to the average logarith-
mic conditional probability of new patterns appearing when
patches change. Based on this, we design the information
gain loss for length-extendable patches:

Lp = −(ΦLE(XLE |r)− ΦLF (XLF |r)) (16)

This loss minimizes the patch entropy of length-extendable
patches, increasing the complexity of obtained patch series
to acquire more information suitable for MTS.

Hierarchical Dependency Explorer

Figure 4: Structure of Hierarchical Dependency Ex-
plorer(HDE). The sequence undergoes short-term inter-
actions(green) followed by long-term relationship captur-
ing(red), and finally variable dependency mining(blue).

For the patched multivariate time series Xpatch, there ex-
ists three types of dependencies: (1) inter-variable corre-
lations, (2) long-term dependencies between patches, and
(3) short-term dependencies within patches. Capturing these
three types of dependencies is crucial for improving multi-
variate time series prediction performance. We design the hi-
erarchical dependency explorer (HDE) composed of multiple
HDMixer blocks to model these three types of dependencies.
Fig.4 summarizes the structure of HDE.

The input to HDE is a three-dimensional vector, Xpatch ∈
RM×N×D, representing the variable dimension, time dimen-
sion, and patch internal dimension, respectively. HDE is
formed by stacking several HDMixer blocks, and we de-
note Zk+1 as the output of the k-th HDMixer block in HDE,
with Zk ∈ RM×N×D, k ∈ {1, ...,K} representing the
input of the k-th HDMixer block, and Z1 is initialized as
Xpatch. Specifically, an HDMixer block contains three layers
of MLPs to capture dependencies in different dimensions.
The detailed forward process of the k-th HDMixer block is
as follows:

Uk
∗,∗,d = Zk

∗,∗,d +Wst2·
GELU(Wst1 · LayerNorm(Zk)∗,∗,d), d ∈ [1, D] (17)

V k
∗,n,∗ = Uk

∗,n,∗ +Wlt2·
GELU(Wlt1 · LayerNorm(Uk)∗,n,∗), n ∈ [1, N ] (18)

Y k
m,∗,∗ = V k

m,∗,∗ +Wv2·
GELU(Wv1 · LayerNorm(V k)m,∗,∗),m ∈ [1,M ] (19)

Zk+1 = Y k + Zk (20)
Here, GELU(·) is the element-wise activation function,

and LayerNorm(·) is the layer normalization specific to cer-
tain dimensions. Uk ∈ RM×N×D captures short-term de-
pendencies within patches through the channel-mixing MLP,
with Wst1 ∈ RM×2M and Wst2 ∈ R2M×M being the learn-
able matrices corresponding to the two layers of the MLP.
Similarly, V k ∈ RM×N×D captures long-term dependen-
cies between patches through the time-mixing MLP, with
Wlt1 ∈ RN×2N and Wlt2 ∈ R2N×N being the learnable
matrices for the two layers of the MLP. Y k ∈ RM×N×D

captures cross-variable dependencies through the variable-
mixing MLP, with Wv1 ∈ R×2M and Wv2 ∈ R2M×M being
the learnable matrices for the two layers of the MLP. The final
output Zk+1 ∈ RM×N×D is obtained based on the residual
connection (He et al. 2015).

It is worth noting that each layer of HDMixer has the
same input dimension, unlike the pyramid architecture in
CNN, where deeper layers have lower resolutions. This de-
sign ensures that effective information from long time series
is preserved. Additionally, in our HDMixer, when perform-
ing interaction operations in one dimension, the parameters
are shared across other dimensions. This approach has two
advantages: 1) Significant memory saving: The network’s
size does not grow rapidly with an increase in the number
of variables or sequence length. 2) Enhanced generalization
and robustness: Since the time series patterns of different
variables are similar, learning their common characteristics
can improve the model’s generalization performance.

In conclusion, the output of the k-th HDMixer block can
be simplified as:

Zk+1 = HDMixerk(Zk) + Zk (21)

Here, HDMixerk(·) represents the k-th HDMixer block,
corresponding to equations (17), (18), and (19), which respec-
tively capture variable relationships, long-term dependencies,



Table 1: MTS forecasting results in terms of MSE and MAE, the lower the better. For ILI, the prediction length T ∈
{24, 36, 48, 60} and input length is set as 60. As to the other datasets, the prediction length T ∈ {96, 192, 336, 720} and
look back window size is set as 336. The best results are highlighted in bold and the second best are underlined.

Models HDMixer PatchTST DLinear Crossformer MICN Autoformer MTGNN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ILI

24 1.305 0.767 1.522 0.814 2.215 1.081 3.040 1.186 2.684 1.112 2.906 1.182 4.268 1.385
36 1.428 0.763 1.430 0.834 1.963 0.963 3.356 1.230 2.507 1.013 2.585 1.038 4.768 1.494
48 1.233 0.798 1.673 0.854 2.130 1.024 3.441 1.223 2.423 1.012 3.024 1.145 5.333 1.592
60 1.496 0.853 1.529 0.862 2.368 1.096 3.608 1.302 2.653 1.085 2.761 1.114 5.083 1.556

Weather

96 0.145 0.199 0.152 0.199 0.176 0.237 0.153 0.217 0.161 0.226 0.249 0.329 0.161 0.223
192 0.194 0.241 0.197 0.243 0.220 0.282 0.197 0.269 0.220 0.283 0.325 0.370 0.206 0.278
336 0.237 0.281 0.249 0.283 0.265 0.319 0.252 0.311 0.275 0.328 0.351 0.391 0.261 0.322
720 0.317 0.333 0.320 0.335 0.323 0.362 0.318 0.363 0.323 0.356 0.415 0.426 0.324 0.366

Traffic

96 0.366 0.249 0.367 0.251 0.410 0.282 0.512 0.290 0.508 0.301 0.597 0.371 0.527 0.316
192 0.385 0.258 0.385 0.259 0.423 0.287 0.523 0.297 0.536 0.315 0.607 0.382 0.534 0.320
336 0.403 0.276 0.398 0.265 0.436 0.296 0.530 0.300 0.525 0.310 0.623 0.387 0.540 0.335
720 0.441 0.295 0.434 0.287 0.466 0.315 0.573 0.313 0.571 0.323 0.639 0.395 0.557 0.343

Electricity

96 0.129 0.219 0.130 0.222 0.140 0.237 0.187 0.283 0.159 0.267 0.196 0.313 0.198 0.294
192 0.145 0.235 0.148 0.240 0.153 0.249 0.258 0.330 0.168 0.279 0.211 0.324 0.266 0.339
336 0.170 0.259 0.167 0.261 0.169 0.267 0.323 0.369 0.196 0.308 0.214 0.327 0.328 0.373
720 0.193 0.289 0.202 0.291 0.203 0.301 0.404 0.423 0.203 0.312 0.236 0.342 0.422 0.410

ETTh1

96 0.373 0.398 0.375 0.399 0.375 0.399 0.386 0.429 0.396 0.427 0.435 0.446 0.439 0.461
192 0.412 0.420 0.414 0.421 0.405 0.416 0.419 0.444 0.430 0.453 0.456 0.457 0.476 0.477
336 0.392 0.417 0.431 0.436 0.439 0.443 0.440 0.461 0.433 0.458 0.486 0.487 0.736 0.643
720 0.448 0.463 0.449 0.466 0.472 0.490 0.519 0.524 0.474 0.508 0.515 0.517 0.916 0.750

ETTh2

96 0.262 0.329 0.274 0.336 0.289 0.353 0.628 0.563 0.289 0.357 0.332 0.368 0.690 0.614
192 0.317 0.367 0.339 0.379 0.383 0.418 0.703 0.624 0.409 0.438 0.426 0.434 0.745 0.662
336 0.308 0.367 0.331 0.380 0.448 0.465 0.827 0.675 0.417 0.452 0.477 0.479 0.886 0.721
720 0.390 0.421 0.379 0.422 0.605 0.551 1.181 0.840 0.426 0.473 0.453 0.490 1.299 0.936

ETTm1

96 0.291 0.341 0.290 0.342 0.299 0.343 0.316 0.373 0.314 0.360 0.510 0.492 0.428 0.446
192 0.332 0.364 0.332 0.369 0.335 0.365 0.377 0.411 0.359 0.387 0.514 0.495 0.509 0.491
336 0.363 0.385 0.366 0.392 0.369 0.386 0.431 0.442 0.398 0.413 0.510 0.492 0.577 0.556
720 0.424 0.417 0.420 0.424 0.425 0.421 0.600 0.547 0.459 0.464 0.527 0.493 0.713 0.729

ETTm2

96 0.162 0.254 0.165 0.255 0.167 0.260 0.421 0.461 0.178 0.273 0.205 0.293 0.463 0.503
192 0.213 0.289 0.220 0.292 0.224 0.303 0.503 0.519 0.245 0.316 0.278 0.336 0.530 0.547
336 0.275 0.331 0.278 0.329 0.281 0.342 0.611 0.580 0.295 0.350 0.343 0.379 0.449 0.473
720 0.355 0.380 0.367 0.385 0.397 0.421 0.996 0.750 0.389 0.406 0.414 0.419 1.093 0.836

Exchange

96 0.078 0.198 0.093 0.214 0.081 0.203 0.186 0.346 0.102 0.235 0.197 0.323 0.203 0.381
192 0.168 0.289 0.192 0.312 0.157 0.293 0.467 0.522 0.172 0.316 0.300 0.369 0.459 0.512
336 0.311 0.396 0.350 0.432 0.305 0.414 0.783 0.721 0.272 0.407 0.509 0.524 0.707 0.697
720 0.641 0.599 0.911 0.716 0.643 0.601 1.367 0.943 0.714 0.658 1.447 0.941 1.323 0.912

and short-term dependencies. The final output of HDE is
ZK ∈ RM×N×D, where K denotes the number of HDMixer
blocks in HDE.

Experiment
Datasets and Experiment Setup
Datasets We conduct extensive experiments on nine real-
world datasets, as outlined in (Wu et al. 2021). These
datasets include Weather, Traffic, Exchange Rate, Elec-
tricity, ILI, and four ETT datasets (ETTh1, ETTh2, ETTm1,
and ETTm2). Adhering to the established protocol in (Wu
et al. 2021), we partition the datasets into training, valida-
tion, and test sets with a ratio of 6:2:2 for the last four ETT
datasets and 7:1:2 for the remaining datasets.

Baselines and Setup We compare our method with 6
state-of-the-art methods, including 3 Transfomer-based mod-
els: PatchTST (Nie et al. 2023), Crossformer (Zhang
and Yan 2023), Autoformer (Wu et al. 2021); Linear-
based model: DLinear (Zeng et al. 2022); CNN-based

model: MICN (Wang et al. 2023d); GNN-based method:
MTGNN (Wu et al. 2020). All the models are following
the same experimental setup with prediction length T ∈
{24, 36, 48, 60} for ILI and T ∈ {96, 192, 336, 720} for oth-
ers. We collect part of baseline results from (Nie et al. 2023).
We perform grid search on batch size and learning rate to
achieve optimal performance of HDMixer.

Main Results
The quantitative results for MTS forecasting with various
baselines are presented in Table 1. HDMixer demonstrates ex-
ceptional performance across multiple datasets and prediction
length settings, securing 59 first-place and 13 second-place
rankings out of a total of 72 settings. In terms of quanti-
tative measures, HDMixer outperforms Transformer-based
methods by achieving an overall 7.27% reduction in Mean
Squared Error (MSE) and a 4.21% reduction in Mean Ab-
solute Error (MAE). Notably, when compared to the GNN-
based method MTGNN, HDMixer exhibits a more substantial
improvement, achieving a 59.66% reduction in MSE and a



Table 2: Quantitative results of different extendable length.

Dataset ETTm2 Weather ILI
Prediction Length 96 192 336 720 96 192 336 720 24 36 48 60

0.25 MSE 0.169 0.215 0.278 0.360 0.150 0.194 0.244 0.325 1.312 1.432 1.235 1.528
MAE 0.258 0.294 0.341 0.384 0.206 0.248 0.287 0.334 0.771 0.764 0.799 0.857

0.5 MSE 0.162 0.213 0.274 0.355 0.145 0.194 0.237 0.317 1.305 1.428 1.233 1.526
MAE 0.254 0.289 0.333 0.380 0.199 0.241 0.281 0.333 0.767 0.763 0.798 0.853

1 MSE 0.164 0.212 0.274 0.357 0.144 0.196 0.239 0.318 1.306 1.427 1.234 1.512
MAE 0.256 0.289 0.334 0.380 0.198 0.243 0.282 0.334 0.769 0.764 0.798 0.842

Table 3: Ablation of different components in our method.

Dataset ETTm2 Weather ILI
Prediction Length 96 192 336 720 96 192 336 720 24 36 48 60

HDMixer MSE 0.162 0.213 0.274 0.355 0.145 0.194 0.237 0.317 1.305 1.428 1.233 1.526
MAE 0.254 0.289 0.333 0.380 0.199 0.241 0.281 0.333 0.767 0.763 0.798 0.853

W/O-LTD MSE 0.165 0.222 0.284 0.359 0.153 0.204 0.241 0.322 1.418 1.604 1.304 1.565
MAE 0.256 0.296 0.340 0.357 0.208 0.255 0.286 0.341 0.793 0.823 0.823 0.871

W/O-VI MSE 0.169 0.224 0.285 0.365 0.151 0.197 0.237 0.322 1.315 1.582 1.376 1.502
MAE 0.259 0.295 0.334 0.385 0.200 0.243 0.282 0.339 0.776 0.819 0.825 0.868

W/O-STD MSE 0.164 0.222 0.276 0.365 0.146 0.195 0.237 0.317 1.561 1.613 1.423 1.596
MAE 0.254 0.296 0.328 0.385 0.200 0.245 0.285 0.334 0.811 0.841 0.872 0.883

W/O-LEP MSE 0.169 0.227 0.289 0.369 0.154 0.206 0.249 0.329 1.615 1.625 1.474 1.631
MAE 0.258 0.299 0.337 0.389 0.209 0.254 0.296 0.346 0.802 0.987 0.888 0.894

42.39% reduction in MAE. Furthermore, even when com-
pared to other robust baselines such as MICN and DLinear,
HDMixer consistently outperforms them.

Ablation Study
Study on designed components. We perform ablation stud-
ies on three datasets by removing corresponding modules
from HDMixer. W/O-LTD: Long-term dependency captur-
ing MLP removed. W/O-STD: Short-term dependency cap-
turing MLP removed. W/O-VI: Variable interaction captur-
ing MLP removed. W/O-LEP: Length-Extendable Patcher
removed, using fixed patch size of 16. From the results in
Tab.3, we observe the following findings: 1) The predictive
performance of W/O-LEP significantly declines, with an av-
erage decrease of 5.6% in MSE across the three datasets,
indicating substantial gains from the extensible patch. 2)
Across different datasets, we notice varying benefits from
interactions in different dimensions. For instance, the ETTm2
dataset relies more on capturing variable interactions, while
the Weather dataset emphasizes long-term relationship cap-
ture.

Study on hyper parameter sensitivity. We investigate the
impact of different extension lengths. For ETTm2, Weather,
and ILI datasets, we vary the maximum extended patch
lengths to be 0.25 times, 0.5 times, and 1 times the origi-
nal length, respectively, and record their prediction perfor-
mances. We observe that smaller extension lengths lead to
modest improvements in prediction performance, while ex-
tensions beyond 0.5 times notably enhance the performance.
Optimal improvements are achieved when patch maximum
extension lengths are set at 0.5 times and 1 times. Consid-
ering overall prediction performance and the need to avoid
excessive semantic overlap, we ultimately select a patch max-
imum extension length of 0.5 as our experimental setting,
corresponding to D

b = D
4 .

Efficient Analysis
We conduct a comparison between HDMixer and well-
established deep forecasting models in terms of forecasting

performance, training speed, and memory usage. Results are
obtained using the official model configuration and the same
batch size. The model efficiency is visualized in Fig.5 on
the Etth2 dataset with an output step size of 192. Compared
to the highly regarded PatchTST, our model occupies only
65.93% of memory, takes 54.71% of the runtime, yet achieves
a 6.19% performance improvement. Compared to the most
efficient linear model DLinear, we achieve comparable mem-
ory and time consumption. Therefore, the proposed HDMixer
built on MLP networks is highly efficient.

Figure 5: Model efficiency comparison of different methods
on ETTh2 with 192 output length.

Conclusion and Future Work
This paper introduces a pure MLP-based HDMixer for MTS
forecasting. A Length-Extendable Patcher is proposed to
achieve adaptive patch expansion, addressing the loss of local
semantics and semantic incoherence caused by fixed patch.
Furthermore, we design the Hierarchical Dependency Ex-
plorer to efficiently capture interactions among long-term
time dimension, short-term time dimension, and variable re-
lationships using pure MLPs. Extensive experimental results
on 9 real-world datasets show that our model demonstrates
competitive performance while maintaining remarkable ef-
ficiency. In the future, we will explore methods that align
more closely with actual semantics for patching and make a
thorough inquiry of the interaction patterns between different
dimensions of multivariate time series.
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