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Abstract
Multi-task learning (MTL) has emerged as a promis-
ing approach for deploying deep learning models in
real-life applications. Recent studies have proposed
optimization-based learning paradigms to establish
task-shared representations in MTL. However, our
paper empirically argues that these studies, specif-
ically gradient-based ones, primarily emphasize
the conflict issue while neglecting the potentially
more significant impact of imbalance/dominance in
MTL. In line with this perspective, we enhance the
existing baseline method by injecting imbalance-
sensitivity through the imposition of constraints on
the projected norms. To demonstrate the effective-
ness of our proposed IMbalance-sensitive Gradi-
ent (IMGrad) descent method, we evaluate it on
multiple mainstream MTL benchmarks, encompass-
ing supervised learning tasks as well as reinforce-
ment learning. The experimental results consistently
demonstrate competitive performance.

1 Introduction
Real-life scenarios often involve the need to handle multiple
distinct tasks concurrently, typically achieved by designing
task-specific models to ensure satisfactory performance. How-
ever, this approach becomes impractical as the number of
tasks grows, as it would require significant computational re-
sources and memory. To address this challenge and establish
an efficient multi-task learning (MTL) framework, recent re-
search has focused on developing a single model capable of
performing well on all target tasks.

Currently, research on MTL can be broadly categorized
into two frameworks: architecture-based [Liu et al., 2019;
Ye and Xu, 2022; Gao et al., 2019; Chen et al., 2023]
and optimization-based approaches [Sener and Koltun, 2018;
Yu et al., 2020a; Liu et al., 2021a; Zhou et al., ; Liu et al.,
2023]. The former emphasizes the design of efficient parame-
ter sharing architectures for multiple tasks, whereas the latter
typically employs a fixed architecture and focuses on develop-
ing optimization strategies to extract task-shared representa-
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Figure 1: Illustration of imbalance and conflicting issue in multi-task
learning. ‘Bal’ and ‘Imb’ represent balanced and imbalanced, while
‘N-Con’ and ‘Con’ represent non-conflicting and conflicting.

tions. In this paper, we exclusively introduce and compare our
method with optimization-based approaches, as our proposed
method falls within this framework.

In the realm of optimization-based methods, particularly
those involving gradient manipulation, a shared paradigm is
commonly followed, where task gradients are combined to
achieve Pareto optimality for individual tasks. Despite the high
performance demonstrated by these methods, the literature has
predominantly overlooked the significance of the inherent im-
balance nature among individuals (see Definition 2). This
oversight can be attributed to the greater emphasis placed on
addressing the conflict issue. However, it is important to note
that the conflict issue alone may not be the fundamental obsta-
cle hindering optimization in MTL. As illustrated in Figure 1,
a naïve linear scalarization (LS) strategy (gmean) effectively
improves all individuals when they are balanced, regardless
of conflicts. But it proves ineffective when both imbalance
and conflict coexist, underscoring the importance of address-
ing conflicts that arise solely from imbalances. Furthermore,
imbalanced task gradients can introduce optimization prefer-
ences and lead to imbalanced progress even in the absence
of conflicts [Liu et al., 2023]. Although previous solutions,
such as IMTL [Liu et al., 2021b] and Nash-MTL [Navon et
al., 2022] illustrated in Table 1, have somewhat mitigated the
imbalance/dominance issue, they neither explicitly provide
evidence to demonstrate the importance of the imbalance issue
nor consider both conflict and imbalance issues simultane-
ously.



GD GradDrop MGDA PCGrad IMTL CAGrad Nash-MTL MoCo IMGrad

Conflict-averse % % " " % " % " "

Imbalance-sensitive % % % % " % " % "

Table 1: Conflict-averse and imbalance-sensitive comparison for mainstream optimization-based MTL. Note that those which are imbalance-
sensitive mean that their solution can tackle the imbalance issue.

In this paper, we begin by empirically highlighting the sig-
nificance of the imbalance issue in MTL and elucidate the
advantages of incorporating imbalance sensitivity into base-
line methods as our primary motivation. Subsequently, we
enhance the well-established baseline method by injecting im-
balance sensitivity through the imposition of constraints on
the projected norms. Convergence and speedup analysis are
provided in the Appendix 1. In a nutshell, we summarize our
contributions as three-fold:

• We place significant emphasis on and empirically identify
that the primary challenge in optimization-based MTL
lies more in the aspect of imbalance rather than conflict.
To the best of our knowledge, we are the first to explicitly
assert this claim.

• To introduce the imbalance sensitivity into the existing
paradigm, we integrate the projected norm constraint into
the objectives. This incorporation allows for a dynamic
equilibrium between Pareto property (see Definition 3)
and convergence (two decoupled objectives), thereby en-
hancing the combined gradients and optimization trajec-
tories.

• The extensive experimental results present compelling ev-
idence that IMGrad consistently enhances its baselines
and surpasses the current advanced gradient manipulation
methods in a diverse range of evaluations, e.g., supervised
learning tasks, and reinforcement learning benchmarks.

2 Related Work
Currently, MTL approaches can be broadly categorized
into two groups: architecture-based and optimization-based
methods. Architecture-based approaches encompass vari-
ous paradigms, including hard parameter sharing [Heuer et
al., 2021; Kokkinos, 2017], soft parameter sharing [Yang
and Hospedales, 2016; Gao et al., 2019], modulation and
adapters [He et al., 2021; Liu et al., 2022], and mixture of
experts (MoE) [Chen et al., 2023; Fan et al., 2022], etc. On
the other hand, optimization-based MTL methods primarily
focus on learning paradigms rather than structural designs or
parameter sharing strategies. These methods aim to optimize
all individual tasks to extract task-shared representations.

One classical optimization-based MTL approach is
MGDA [Sener and Koltun, 2018], which seeks a combined
gradient with minimal norm using the Frank-Wolfe algo-
rithm [Jaggi, 2013]. PCGrad [Yu et al., 2020a] addresses
the conflict issue by projecting individual gradients onto or-
thogonal directions with respect to others. CAGrad [Liu et
al., 2021a] considers preserving both the Pareto property

1Refer to https://arxiv.org/abs/2503.08006 for the Appendix.

and global optimization, ultimately striving for a balance
between the two objectives using a hyper-parameter. Nash-
MTL [Navon et al., 2022] negotiates to reach an agreement on
a joint direction of parameter update, enabling all individual
tasks to achieve more balanced progress. MoCo [Fernando et
al., 2023] tackles the problem of biased gradient directions
in previous solutions by developing tracking parameters for
correction. Our method falls within the realm of optimization-
based MTL, with a specific focus on addressing the issue of
imbalance-sensitivity, which is largely lacking in the afore-
mentioned solutions.
Discussion with Counterparts: To the best of our knowl-
edge, IMTL [Liu et al., 2021b], Nash-MTL [Navon et al.,
2022], and FAMO [Liu et al., 2023] are three recent works
that explicitly consider the imbalance issue. However, all three
works fail to provide evidence demonstrating the importance
of the imbalance issue. Moreover, none of these approaches
possess conflict-averse properties. Thus, there is still room for
improvement. Although Nash-MTL appears to be designed to
avoid conflicts, its practical implementation does not achieve
this goal. Please refer to the Appendix for more discussion.

3 Preliminary
3.1 Setup of Optimization-based MTL
As mentioned, optimization-based MTL approaches operate
under the assumption that the model consists of a task-shared
backbone network alongside task-specific branches. Conse-
quently, the primary objective of these approaches is to devise
gradient combination strategies that optimize the backbone
network to yield benefits across all tasks. Let us consider a sce-
nario where there are K ≥ 2 tasks available, each associated
with a differentiable loss function Li(Θ), where Θ represents
the task-shared parameters. The goal of optimization-based
MTL is to search for the optimal Θ∗ ∈ Rm that minimizes
the losses for all tasks. However, it is widely recognized that
a simplistic linear scalar strategy, L0(Θ) = 1

K

∑K
i=1 Li(Θ),

fails to achieve satisfactory performance due to the conflict
and imbalance issue.

3.2 Pareto Concept
Formally, let us assume the weighted loss as Lω =∑K

i=1 ωiLi(Θ), where ω ∈ W and W represents the proba-
bility simplex on [K]. A point Θ′ is said to Pareto dominate Θ
if and only if ∀i,Li(Θ

′) ≤ Li(Θ). Consequently, the Pareto
optimal situation arises when no Θ′ can be found that satisfies
∀i,Li(Θ

′) ≤ Li(Θ) for the given point Θ. All points that
meet these conditions are referred to as Pareto sets, and their
solutions are known as Pareto fronts. Another concept, known
as Pareto stationary, requires minω∈W ∥gω∥ = 0, where gω

https://arxiv.org/abs/2503.08006
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Figure 2: Comparison of MTL approaches on the imbalanced synthetic two-task benchmark. • and ⋆ represent the starting point and global
optimum, respectively, and grey line represents the Pareto front. Two objectives are extremely imbalanced weighted, i.e., (0.9∗L1, 0.1∗L2).
Please refer to the Appendix for more optimization trajectories under various pre-defined task weights.

represents the weighted gradient ω⊤G, and G is the gradients
matrix whose each row is an individual gradient. We also
provide some definitions here for ease of description.
Definition 1 (Gradient Similarity). Denote ϕij as the angle
between two task gradients gi and gj , then we define the
gradient similarity as cosφij and the gradients as conflicting
when cosϕij < 0.
Definition 2 (Imbalance of Individuals). Assume the gradi-
ent owns the maximal norm in G is gmax, and the correspond-
ing minimal one is gmin. We define the imbalance ratio of G
as r = ∥gmax∥

∥gmin∥ . If r > 1, we call it’s imbalanced.

Definition 3 (Pareto Property). For each training step, the
combined optimization direction strives to promote all individ-
uals simultaneously (or at the very least, not cause detriment),
i.e. for ∀i, the gradient similarity between gi and the com-
bined gradient gω satisfies cosϕωi ≥ 0. When this condition
is not met, it is referred to as Pareto failure.

4 Motivation and Observation
A substantial body of previous studies [Sener and Koltun,
2018; Liu et al., 2021a; Yu et al., 2020a; Navon et al., 2022]
have primarily focused on addressing the conflict issue rather
than the imbalance issue. In this section, we aim to provide
empirical insights into the significance of imbalance and elu-
cidate how imbalance-sensitivity can bring benefits to current
popular optimization-based MTL paradigms. Based on these
insights, we naturally deduce our design in the next section.

4.1 Why Does Imbalance Matter More?
To begin, we conducted experiments on the CityScapes
dataset [Cordts et al., 2016] to statistically analyze the imbal-
ance ratios of representative optimization-based MTL methods
(e.g., PCGrad [Yu et al., 2020a], CAGrad [Liu et al., 2021a],
Nash-MTL [Navon et al., 2022]). The results of these exper-
iments are presented in the Appendix. From the depicted
results, it is evident that all the methods exhibit significant
imbalance during training, which poses a substantial challenge
when attempting to optimize all individuals simultaneously,
thereby underscoring the importance of addressing the imbal-
ance issue.

Secondly, to demonstrate the higher priority of imbalance
issue, we show the toy example results that present imbalance
and conflict among gradients in the following cases:

• Conflict ("); Imbalance (%): In Figure 3, we manually
create scenarios where conflict exists but imbalance is
absent. By closely examining the center trajectories in
Figure 3 (d)(e), we observe that all methods can easily
reach the optimal point when imbalance is absent, re-
gardless of the presence of conflicts. This observation
suggests that the sole existence of conflicts has limited
impact on optimization, emphasizing the importance of
addressing the imbalance issue.

• Conflict (%); Imbalance ("): Simulating an optimiza-
tion trajectory without conflicts among individuals can
indeed be challenging. Therefore, we adopt the setting
from Nash-MTL [Navon et al., 2022] to handcraft an
imbalance-dominated optimization scenario. The result-
ing trajectories are depicted in Figure 2. It is evident
that all the compared approaches fail to converge at the
desired global optimum from all initial starts under the
extreme imbalance circumstances, though most of them
reach the Pareto front. Additionally, the trajectories at the
sides in Figure 3 (d)(e) also highlight the issue of progress
hindered by imbalance. Specifically, CAGrad fails to
reach the global optimum compared to IMGrad despite
undergoing the same number of optimization steps.

4.2 The Impacts of the Imbalance Issue
In Table 1, we list and compare mainstream optimization-
based MTL approaches. The table focuses on two key prop-
erties: conflict-averse and imbalance-sensitive properties. It
is observed that most MTL approaches possess the conflict-
averse property due to their design nature. However, only a
few approaches are imbalance-sensitive 2, and currently, there
are no methods that possess both properties simultaneously.
Furthermore, we analyze two imbalance-deduced issues that
occur and impede past solutions during optimization: Pareto
failure and imbalanced individual progress.
Pareto Failure: As shown in Figure 4 (a)(b), CAGrad exhibits
a certain probability of failing to preserve the conflict issue
due to its inherent compromise between conflict-averse and
convergence. This compromise is inevitably influenced by
the issue of imbalance. As illustrated in Figure 6, CAGrad
tends to prioritize the combined gradient that deviates from the

2We provide imbalance-sensitive analysis for IMTL, Nash-MTL,
and FAMO in the Appendix.
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Figure 3: Comparison of MTL approaches on the toy examples. We use the tool provided CAGrad to generate the synthetic toy examples with
two objective shown in (b) and (c). In this case, both objective are equally weighted.
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Figure 4: Individual gradient similarity and progress analysis of MTL algorithms on CityScapes. (a)-(c) show the gradient similarities between
individuals and the combined gradient; (d)-(e) present the progress of individuals during optimization.

individual with the least norm when encountering imbalanced
scenarios, leading to potential conflicts. Surprisingly, although
Nash-MTL imposes a strong constraint for the Pareto property,
i.e., ∀i,−φi(ω) ≤ 0, φi(ω) = log(ωi) + log(g⊤

i Gω),G =
[g1, g2, ..., gK ], it often fails to achieve such a guarantee. This
failure can be attributed to the presence of negative terms in
g⊤
i G, indicating conflicts between gi and gj . Consequently,

this leads to infeasible errors in the cvxpy [Diamond and Boyd,
2016] implementation, and the Nash-MTL algorithm chooses
to skip the current step when such errors occur. As a result,
Nash-MTL frequently encounters Pareto failures due to the
co-existence of imbalance and conflict, as depicted in Figure 4
(b). IMGrad demonstrates a tendency to acquire a combined
gradient that effectively preserves the Pareto property as the
imbalance ratio increases.
Imbalanced Individual Progress: We employ an individual
progress metric proposed by [Chen et al., 2018], which is
defined as follows:

ri(t) = Li(t)/Li(0) (1)

where Li(t) represents the individual loss value at t time.
As depicted in Figure 4 (c)(d), Nash-MTL demonstrates a
narrower gap in terms of individual progress compared to CA-
Grad. This can be attributed to the more balanced combination
employed by Nash-MTL, as indicated by the cosine similarity
in (a)(b). Consequently, Nash-MTL exhibits superior overall
performance, characterized by a smaller ∆m%. Specifically,
∆m% is widely adopted to evaluate the overall degradation
compared to independently trained models, which are con-
sidered as the reference oracles. Its formal definition can be
found in the Performance Evaluation section.

Unfortunately, none of the above methods get rid of both
Pareto failure and imbalanced individual progress, primarily
due to their limited focus on the imbalance issue.

4.3 Benefits of Integrating Imbalance-Sensitivity

The toy results depicted in Figure 2 and Figure 3 demon-
strate that among the methods evaluated, only our proposed
IMGrad, which incorporates imbalance-sensitivity, consis-
tently arrives at the optimal point from all initial starts.

To further elucidate the advantages of imbalance-sensitivity
in optimization-based MTL, we have implemented a naïve
method called Adaptive Threshold. This baseline selectively
applies optimization-based MTL approaches only when the
imbalance ratio surpasses a specific threshold. The results of
this implementation on CityScapes are presented in Figure 5
(a). It is evident that all baselines exhibit varying performance
as the imbalance ratio fluctuates, emphasizing the significance
of imbalance-sensitivity. Notably, all baselines outperform
their respective vanilla versions under specific threshold con-
ditions, providing additional evidence of the effectiveness of
injecting imbalance-sensitivity.

Additionally, we have conducted a series of control group
experiments to further support our findings. Similarly, we only
apply optimization-based MTL when the gradient similarity
falls below a certain threshold. As depicted in Figure 5 (b), all
baselines demonstrate relatively stable performance compared
to those in (a) and fail to outperform the vanilla version, ex-
cept for MGDA (which itself performs worse than LS). This
outcome further reinforces the claim that imbalance matters
more.
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Figure 5: Imbalance and conflict sensitivity examination.

5 Principal Design
In this section, taking CAGrad as the baseline, we present the
principal design of IMGrad, encompassing its formulation
in the objective function and the practical implementation.
And we provide convergence and speedup analysis in the
Appendix.

5.1 Injecting Imbalance-Sensitivity
As a widely adopted baseline, CAGrad strikes a balance
between Pareto property and globe convergence, and its
dual objective is formulated as follows:

max
d∈Rm

min
ω∈W

g⊤
ω d s.t. ∥d− g0∥ ≤ c ∥g0∥ (2)

where d represents the combined gradient, while g0 denotes
the averaged gradient, and c is the hyper-parameter.

To alleviate the imbalance-deduced Pareto failures or in-
dividual progress issue as illustrated in Figure 4, a logical
approach is to maximize the projected norm of the combined
gradient across all individuals. To achieve this, we incorporate
a stronger constraint (g⊤

i d − ∥gi∥2) into Eqn. 2, which en-
courages projected norms that surpass individual norms. This
formulation is reflected in our objective presented in Eqn. 3,
and subsequently, we derive the corresponding Lagrangian
equations in Eqn. 4.

max
d∈Rm

min
ω∈W

g⊤
ω d− µ(g⊤

ω d− ∥gω∥2) s.t. ∥d− g0∥ ≤ c ∥g0∥

(3)

max
d∈Rm

min
λ≥0,ω∈W

g⊤
ω d− λ(∥d− g0∥2 − ϕ)/2

(4)

−µ(g⊤
ω d− ∥gω∥2), λ > 0, µ > 0

The strong duality property holds for the aforementioned
objective, as supported by convex programming principles and
the fulfillment of Slater’s condition. Consequently, we inter-
change the positions of the minimum and maximum operators:

min
λ≥0,ω∈W

max
d∈Rm

(1− µ)g⊤
ω d (5)

−λ

2
(∥d− g0∥2 − ϕ) + µ ∥gω∥2

With λ, ω fixing, the optimal d is achieved when d = g0 +
(1−µ)gω

λ . Substitude the optimal d into Eqn. 5, yielding the
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Figure 6: Multi-objective optimization Comparison between CAGrad
and IMGrad. Here we suppose the angles between gi and gj in (a)
and (b) are same. gm can be obtained via MGDA.

following problem:

min
λ≥0,ω∈W

(1− µ)g⊤
ω g0 + µ ∥gω∥2 (6)

+
(1− µ)2

2λ
∥gω∥2 +

λ

2
ϕ

After optimizing out the λ we have

min
ω∈W

(1− µ)g⊤
ω g0 + µ ∥gω∥2 + (1− µ)

√
ϕ ∥gω∥ (7)

where λ = (1 − µ) ∥gω∥ /ϕ1/2, and finally we have the op-
timization objective in Eqn. 8. By solving this objective, we
can obtain gω and have d = g0 + ϕ1/2

∥gω∥gω .

min
ω∈W

(1− µ)(g⊤
ω g0 +

√
ϕ ∥gω∥︸ ︷︷ ︸

CAGrad

) + µ ∥gω∥2︸ ︷︷ ︸
∼MGDA

(8)

Upon careful examination of Eqn. 8, it becomes evident that
the final objective can be decomposed into two distinct com-
ponents: CAGrad and MGDA. As depicted in Figure 6 (a),
the gradient obtained by solving the practical objective in
Eqn. 10, denoted as gc (represented by the green dotted line),
predominantly resides within the region bounded by gm and
gj . However, in the case of an extreme imbalance scenario,
as illustrated in Figure 6 (b), the corresponding gc tends to
lean towards the dominant gradient gi, thereby increasing
the risk of conflicting with gj and resulting in Pareto fail-
ures. When confronted with such a situation characterized by
varying imbalances, it is desirable for µ to adaptively adjust
gc to consistently avoid Pareto failures while still promoting
individual progress when the imbalance is less pronounced.
Consequently, we establish a connection between µ and the
gradient imbalances, effectively controlling the constraint
(g⊤

i d − ∥gi∥2) adaptively based on the imbalance circum-
stances.

Multiple alternatives exist for quantifying the imbalance
ratio among individuals 3. We here choose to compute cos θ to
represent the imbalance ratio (see negative correlation between
imbalance ratio and cos θ in the Appendix), where θ denotes
the angle between g0 and gm. As a result, Eqn. 8 can be
re-written as:

min
ω∈W

(1− cos θ)(g⊤
ω g0 +

√
ϕ ∥gω∥) + cos θ ∥gω∥2 (9)

3Please refer to the Appendix for additional alternatives.



Simplification: As a matter of fact, CAGrad itself contains
decoupled components in its practical objective:

min
ω∈W

g⊤
ω g0︸ ︷︷ ︸

Push Away from g0

+
√
ϕ ∥gω∥︸ ︷︷ ︸

∼MGDA

(10)

where g⊤
ω g0 tends to push away from g0 and

√
ϕ ∥gω∥ plays

the role of MGDA does. Thus we can simplify the Eqn. 9 as:

min
ω∈W

(1− cos θ)g⊤
ω g0 + cos θ

√
ϕ ∥gω∥2 (11)

5.2 Augment Nash-MTL with Imbalance Sensitivity
As stated in the previous Pareto Failure analysis, while Nash-
MTL effectively addresses the imbalance issue and appears
to be naturally conflict-averse, its implementation often leads
to frequent Pareto failures. To address this problem, let’s first
examine its decoupled objective:

min
ω

∑
i

g⊤
i Gω︸ ︷︷ ︸

Push Away from g0

+ φ(ω)︸ ︷︷ ︸
Strike balance among individuals

(12)

s.t. ∀i,−φi(ω) ≤ 0, ωi > 0

where φi(ω) = log(ωi)+log(g⊤
i Gω),G = [g1, g2, ..., gK ].∑

i g
⊤
i Gω tends to push away from g0 and φ(ω) strives

balance among individuals. Intuitively, we expect to preserve
the Pareto property when encountering extremely imbalanced
scenarios; therefore,

∑
i g

⊤
i Gω should be given more weight:

min
ω

(1− cos θ)
∑
i

g⊤
i Gω + cos θφ(ω) (13)

With the proper assumption of H-Lipschitz on gradients, we
can still avoid Pareto failure with the derived weights among in-
dividuals from the last step. In a word, we augment Nash-MTL
by injecting imbalance sensitivity to reduce Pareto failures.
Please refer to the Appendix for more details.

5.3 Implementation
We implement our approach with Python 3.8, PyTorch 1.4.0
and cvxpy 1.3.1, while all experiments are carried out
on Tesla V100 GPUs 4. We follow the setting and gen-
eral implementation of [Liu et al., 2021a], and the toy ex-
ample generation is borrowed from [Navon et al., 2022;
Senushkin et al., 2023]. See more implementation details
in the Appendix.

6 Performance Evaluation
Following the evaluation protocol in [Navon et al., 2022]
and taking it as the baseline, we conduct experiments under
the supervised learning and reinforcement learning scenarios.
Specifically, two scene understanding and one image classifi-
cation benchmarks are involved in supervised learning, and
the classical MT10 benchmark is adopted for reinforcement
learning. The examination of Pareto failures, individual task
progress, a sensitivity analysis of µ, the verification of negative
correlation between imbalance ratio and cos θ, speed analysis,

4Code is avaliable at https://github.com/zzpustc/IMGrad.

and more visualizations are also provided in the Appendix,
please refer them for more details.
Evaluation metric. In addition to reporting individual
performance, we also incorporate a widely used metric,
∆m% [Maninis et al., 2019], which evaluates the overall
degradation compared to independently trained models that
are considered as the reference oracles. The formal defini-
tion of ∆m% is given as: ∆m% = 1

K

∑K
k=1(−1)δk(Mm,k−

Mb,k)/Mb,k. Mm,k and Mb,k represent the metric Mk for the
compared method and the independent model, respectively.
The value of δk is assigned as 1 if a higher value is better for
Mk, and 0 otherwise.

Method
Segmentation Depth

∆ m% ↓(Higher Better) (Lower Better)

mIoU Pix. Acc. Abs. Err. Rel. Err.

Independent 74.01 93.16 0.0125 27.77 -

LS 75.18 93.49 0.0155 46.77 22.60
RLW 74.57 93.41 0.0158 47.79 24.37
DWA 75.24 93.52 0.0160 44.37 21.43
MGDA 68.84 91.54 0.0309 33.50 44.14
GradDrop 75.27 93.53 0.0157 47.54 23.67
PCGrad 75.13 93.48 0.0154 42.07 18.21
CAGrad 75.16 93.48 0.0141 37.60 11.58
IMTL 75.33 93.49 0.0135 38.41 11.04
Nash-MTL 75.41 93.66 0.0129 35.02 6.82
MoCo 75.42 93.55 0.0149 34.19 9.90
FAMO 74.54 93.29 0.0145 32.59 8.13

IMGrad 75.13 93.45 0.0128 34.95 6.61

Table 2: Scene understanding (CityScapes, 2 tasks). We report
MTAN model performance averaged over 3 random seeds.

6.1 Supervised Learning
Customary evaluation in supervised learning for MTL involves
assessing the ability of MTL approaches to handle multiple
scene understanding and classification tasks. For scene under-
standing tasks, we follow previous studies [Liu et al., 2021a;
Liu et al., 2021b; Navon et al., 2022] and employ a Multi-
Task Attention Network (MTAN)[Liu et al., 2019] as the
fundamental architecture for all MTL approaches. Our ex-
periments are conducted on two well-established datasets:
NYUv2[Silberman et al., 2012] and CityScapes [Cordts et
al., 2016]. To ensure fair comparisons, we adopt the same
training strategy as described in prior works [Liu et al., 2021a;
Navon et al., 2022]. Specifically, models are trained for 200
epochs using the Adam optimizer, with an initial learning rate
of 1e-4, which decays to 5e-5 after 100 epochs. For the image
classification task, we utilize a 9-layer convolutional neural
network (CNN) as the backbone, with linear layers serving as
task-specific heads, and conduct experiments on CelebA [Liu
et al., 2015]. The model is trained using the Adam optimizer
for 15 epochs, with an initial learning rate of 3.0e-4 and a
batch size of 256.
NYUv2. NYUv2 is a widely used indoor scene understanding
dataset for MTL benchmarking, encompassing three tasks:

https://github.com/zzpustc/IMGrad


Method

Segmentation Depth Surface Normal

∆ m% ↓(Higher Better) (Lower Better) Angle Distance Within t◦

(Lower Better) (Higher Better)

mIoU Pix. Acc. Abs Err Rel Err Mean Median 11.25 22.5 30

Independent 38.30 63.76 0.68 0.28 25.01 19.21 30.14 57.20 69.15 -

LS 39.29 65.33 0.55 0.23 28.15 23.96 22.09 47.50 61.08 5.46
RLW 37.17 63.77 0.58 0.24 28.27 24.18 22.26 47.05 60.62 7.67
DWA 39.11 65.31 0.55 0.23 27.61 23.18 24.17 50.18 62.39 3.49
MGDA 30.47 59.90 0.61 0.26 24.88 19.45 29.18 56.88 69.36 1.47
GradDrop 39.39 65.12 0.55 0.23 27.48 22.96 23.38 49.44 62.87 3.61
PCGrad 38.06 64.64 0.56 0.23 27.41 22.80 23.86 49.83 63.14 3.83
CAGrad 39.79 65.49 0.55 0.23 26.31 21.58 25.61 52.36 65.58 0.29
IMTL 39.35 65.60 0.54 0.23 26.02 21.19 26.20 53.13 66.24 -0.59
Nash-MTL 40.13 65.93 0.53 0.22 25.26 20.08 28.40 55.47 68.15 -4.04
MoCo 40.30 66.07 0.56 0.21 26.67 21.83 25.61 51.78 64.85 0.16
FAMO 38.88 64.90 0.55 0.22 25.06 19.57 29.21 56.61 68.98 -4.10

IMGrad 40.20 66.19 0.52 0.22 25.15 19.94 28.69 55.80 68.44 -4.57

Table 3: Scene understanding (NYUv2, 3 tasks). We report MTAN model performance averaged over 3 random seeds.

semantic segmentation, depth estimation, and surface nor-
mal prediction. The results, presented in Table ??, show that
IMGrad surpasses the previous SOTA in terms of ∆m%,
highlighting the effectiveness of incorporating imbalance sen-
sitivity. IMGrad also achieves best performance on segmen-
tation and depth tasks without much promise on other tasks.
CityScapes. The CityScapes dataset is used for MTL evalua-
tion, focusing on semantic segmentation and depth estimation
tasks. Following the previous experimental setup, we utilize a
coarser version that categorizes segmentation into 7 classes.
The results, presented in Table ??, indicate that IMGrad
exhibits a similar trend to its performance on NYUv2 and
achieves SOTA results in terms of ∆m%.

MT10 CelebA

Method Success ± SEM ↑ Method ∆m% ↓
LS 0.49 ± 0.070 LS 4.15
STL SAC 0.90 ± 0.032 SI 7.20

MTL SAC 0.49 ± 0.073 RLW 1.46
MH SAC 0.54 ± 0.047 DWA 3.20
SM 0.73 ± 0.043 UW 3.23
CARE 0.84 ± 0.051 MGDA 14.85
PCGrad 0.72 ± 0.022 PCGrad 3.17
CAGrad 0.83 ± 0.045 CAGrad 2.48
Nash-MTL 0.91 ± 0.031 Nash-MTL 2.84
FAMO 0.83 ± 0.050 FAMO 1.21

IMGrad 0.93 ± 0.068 (+0.10) IMGrad 1.27

Table 4: Reinforcement learning (MT10, 10 tasks) and image clas-
sification (CelebA, 40-task).

CelebA. CelebA is a widely used face attributes dataset con-
taining over 200,000 images annotated with 40 attributes. Re-
cently, it has been adopted as a 40-task MTL benchmark to

evaluate a model’s ability to handle a large number of tasks.
The results, presented in Table ??, are averaged over three
random seeds. While IMGrad does not achieve the best
performance, it consistently ranks among the top methods,
underscoring the importance of imbalance sensitivity.

6.2 Reinforcement Learning
Reinforcement learning is another domain where MTL is of-
ten essential, as it seeks to acquire a policy capable of suc-
ceeding across various manipulation tasks. To evaluate the
generalizability of our proposed method, we use CAGrad as
the baseline and conduct experiments on the MT10 environ-
ment from the Meta-World benchmark [Yu et al., 2020b].
The results, presented in Table ??, report the average success
rate on the validation set over 10 random seeds. Consistent
with the improvements observed in supervised learning eval-
uations, IMGrad enhances CAGrad by over 0.10, achieving
SOTA performance on this benchmark. It is worth noting that
Nash-MTL does not provide an official implementation for
reinforcement learning benchmarks. As a result, we did not
augment it for evaluation in this context.

7 Conclusion
In this paper, we begin by empirically demonstrating the signif-
icance of addressing the imbalance issue in optimization-based
MTL. We assert that incorporating imbalance-sensitivity is
crucial for avoiding Pareto failures and promoting balanced in-
dividual progress. Building upon this motivation, we propose
IMGrad, a method derived from a projection norm constraint,
which is further simplified as an adaptive balancer between
decoupled objectives. Through extensive experiments, we val-
idate the effectiveness of our proposed approach. We believe
that our explicit emphasis on the imbalance issue, rather than
the conflict issue, provides valuable insights for the future
development of optimization-based MTL.
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Appendix for ‘Injecting Imbalance Sensitivity for Multi-Task Learning’

A Implementation Details
A.1 MTL Baselines
CAGrad [Liu et al., 2021a]: CAGrad strikes a balance be-
tween Pareto optimality and globe convergence by regulating
the combined gradients in proximity to the average gradient.:

max
d∈Rm

min
ω∈W

g⊤
ω d s.t. ∥d− g0∥ ≤ c ∥g0∥ (14)

In our experimental setup, we utilize the official code 5

that encompasses the implementations of MGDA, PCGrad,
and CAGrad. Additionally, we extend this implementation
to include IMGrad. For more comprehensive information,
please consult the official implementation.
Nash-MTL [Navon et al., 2022]: Nash-MTL provides the
individual progress guarantee via the following objective:

min
ω

∑
i

βi(ω) + φi(ω) (15)

s.t.∀i,−φi(ω) ≤ 0, ωi > 0. (16)

where φi(ω) = log(ωi) + log(g⊤
i Gω), G =

[g1, g2, ..., gK ]. As demonstrated, the individual progress
is ensured through the projection, subject to the constraint
βi = g⊤

i Gω ≥ 1
ωi

. However, in cases where conflicting
individuals arise, such as when gi conflicts with gj , the
official implementation 6 of Nash-MTL opts to skip the
current step, which poses a potential risk in handling these
conflicting individuals. It is important to acknowledge that the
experiments conducted on CityScapes in the main text regard-
ing Nash-MTL were performed using our re-implementation,
as the official version does not offer the corresponding
implementation.
Our Extension to Nash-MTL: As previously stated, Nash-
MTL opts to skip the current step and retain the weights from
the previous step only when negative terms exist in g⊤

i G,
indicating a conflict issue in the current step. Moreover, the
co-existence of both imbalance and conflict issues necessi-
tates a specialized design for MTL. By assuming H-Lipschitz
continuity on gradients, we expect a similar imbalance sta-
tus between consecutive steps. To address the conflict issue,
we incorporate imbalance sensitivity, which allows greater
weighting on

∑
i g

⊤
i Gω.

5https://github.com/Cranial-XIX/CAGrad
6https://github.com/AvivNavon/nash-mtl/tree/main

A.2 Datasets
NYUv2: NYUv2 is an indoor scene dataset comprising 1449
RGBD images, accompanied by dense per-pixel labeling en-
compassing 13 classes. This dataset is commonly employed
for tasks such as semantic segmentation, depth estimation, and
surface normal prediction.
CityScapes: CityScapes is a renowned benchmark dataset for
multi-task learning, comprising 5000 high-resolution street-
view images accompanied by dense per-pixel labels for tasks
such as semantic segmentation and depth estimation. In ac-
cordance with the previous configuration [Liu et al., 2021a;
Navon et al., 2022], we resized the images to 128*256 di-
mensions prior to inputting them into the model, aiming to
enhance computational efficiency.
MT10: MT10 is a widely recognized benchmark for multi-
task reinforcement learning, encompassing 10 robot manip-
ulation tasks. For visual references, please consult [Liu et
al., 2021a]. Our implementation builds upon the official im-
plementation of CAGrad and leverages the well-established
MTRL environment 7.

A.3 Synthetic Examples
We adopt the toy optimization example introduced in [Liu et
al., 2021a; Navon et al., 2022], which involves two objectives
that consider the variables ϑ = (ϑ1, ϑ2):

L1(ϑ) = c1(ϑ)f1(ϑ) + c2(ϑ)g1(ϑ)
(17)

L2(ϑ) = c1(ϑ)f2(ϑ) + c2(ϑ)g2(ϑ) where

f1(ϑ) = log(max(|0.5(−ϑ1 − 7)− tanh(ϑ2)|, 5.e− 6)) + 6,

f2(ϑ) = log(max(|0.5(−ϑ1 + 3)− tanh(ϑ2) + 2|, 5.e− 6)) + 6,

g1(ϑ) = ((−ϑ1 + 7)2 + 0.1 ∗ (−ϑ2 − 8)2)/10− 20,

g2(ϑ) = ((−ϑ1 − 7)2 + 0.1 ∗ (−ϑ2 − 8)2)/10− 20,

c1(ϑ) = max(tanh(0.5 ∗ ϑ2), 0),

c2(ϑ) = max(tanh(−0.5 ∗ ϑ2), 0).

The initial points in Figure 2 of the main text are
{(−8.5, 7.5), (−8.5, 5), (0, 0), (9, 9), (10,−8)}, while those
in Figure 4 are {(−8.5, 7.5), (0, 8), (5, 9)}.

B Convergence Analysis
Let’s first recall the convergence analysis of CAGrad in Theo-
rem 4.

7https://github.com/facebookresearch/mtrl

https://github.com/Cranial-XIX/CAGrad
https://github.com/AvivNavon/nash-mtl/tree/main
https://github.com/facebookresearch/mtrl


Theorem 4. (Convergence of CAGrad) With a fix step size
α and the assumption of H-Lipschitz (0 < H ≤ 1/α) on
gradients, i.e., ∥∇Li(θ)−∇Li(θ

′)∥ ≤ H ∥θ − θ′∥ for i =
1, 2, ..., K. Denote d∗(θt) as the optimization direction of
IMGrad at step t, then we have:

(1) If 0 ≤ c < 1, then CAGrad converges to stationary
points of L0 convergence rate in that

T∑
t=0

∥g0(θt)∥2 ≤ 2(L(θ0)− L(θT+1))

α(1− c2)
(18)

Proof.

L(θt+1)− L(θt) = L(θt − αd∗(θt))− L(θt)

≤ −αg0(θt)
⊤d∗(θt)+

Hα2

2
∥d∗(θt)∥2

≤ −αg0(θt)
⊤d∗(θt)+

α

2
∥d∗(θt)∥2

//α ≤ 1/H

≤ −α

2

(
∥g0(θt)∥2 + ∥d∗(θt)∥2

− ∥g0(θt)− d∗(θt)∥2 +
α

2
∥d∗(θt)∥2

= −α

2

(
∥g0(θt)∥2 − ∥g0(θt)− d∗(θt)∥2

)
≤ −α

2
(1− c2) ∥g0(θt)∥2

//CAGrad′s Bound

Using telescoping sums, we have L(θt+1) − L(0) =

−(αβ/2)(1− c2)
∑T

t=0 ∥gm(θt)∥2. Thus, we further have

min
t≤T

∥g0(θt)∥2 ≤ 1

T + 1

T∑
t=0

∥g0(θt)∥2

≤ 2(L(θ0)− L(θT+1))

α(1− c2)(T + 1)
(19)

Generally, if L is lower bounded, then min
t≤T

∥g0(θt)∥2 =

O(1/T ). Besides, the upper bound of min
t≤T

∥g0(θt)∥2 is har-

nessed by β, which is positively related to the imbalance ratio
of individuals.

Take a close at the above convergence analysis, we
can find that the proof only leverages the property of
∥g0(θt)− d∗(θt)∥ ≤ c ∥g0(θt)∥, ignoring the solved gω,
which is essential for mitigating Pareto failures and imbal-
anced individual progress claimed in the main text. Hence we
re-organize the proof as following:

Proof.

L(θt+1)− L(θt) = L(θt − αd∗(θt))− L(θt)

≤ −αg0(θt)
⊤d∗(θt)+

Hα2

2
∥d∗(θt)∥2

≤ −αg0(θt)
⊤d∗(θt)+

α

2
∥d∗(θt)∥2

//α ≤ 1/H

= −α(1 + c cosφ) ∥g0(θt)∥2 +
α

2
∥g0(θt)∥2

+
α

2
∥d∗(θt)∥2 −

α

2
∥g0(θt)∥2

≤ −α(1 + c cosφ) ∥g0(θt)∥2 +
α

2
∥g0(θt)∥2

+
α

2
∥d∗(θt)− g0(θt)∥2

= −α(1 + c cosφ) ∥g0(θt)∥2 +
α

2
∥g0(θt)∥2

+
αc2

2
∥g0(θt)∥2

= −α

2
(1− c2 + 2c cosφ) ∥g0(θt)∥2

//Our Bound

where φ is the angle between g0(θt) and gω(θt). And it
should noted that although ∥g0(θt)− d∗(θt)∥ ≤ c ∥g0(θt)∥
is constrained in CAGrad, the practical implementation always
satisfied ∥g0(θt)− d∗(θt)∥ = c ∥g0(θt)∥, thus we directly
apply it in the above analysis. According to the final derived
equation, the convergence rate of CAGrad is harnessed by
cosφ. Specifically, when all individuals are balanced, i.e.,
cosφ = 1, then our bound degrades to the CAGrad’s bound.

In particular, we provide a tighter bound when 0◦ < φ ≤
90◦, but a looser bound when φ ≥ 90◦ (extreme imbalance).
However, the percentage of extreme cases is very small (see
Figure 5(b) in the main text) and therefore does not affect its
convergence generally. Besides, according to the simplified
objective in Eqn. 11 in the main text, IMGrad tends to choose
a larger φ, leading to a slower convergence to guarantee a more
balanced individual progress.

C Additional Experiments
C.1 Imbalance Examination
We provide the statistical imbalance ratios of MTL approaches
on CityScapes in Figure 7.
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Figure 7: Statistical imbalance ratios of MTL approaches.



C.2 Sensitivity of µ
One concern arises regarding whether µ (cosθ) effectively
adjusts the combined gradient. In other words, does µ exhibit
sufficient sensitivity to address varying imbalance circum-
stances? To address this question, we provide statistics of
µ for both NYUv2 and CityScapes datasets, which are pre-
sented in Figure 8. The results demonstrate that µ exhibits a
wide range of values that effectively cater to the manipulation
requirements.
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Figure 8: Sensitivity examinations of µ.

C.3 Verification of Negative Correlation between
Imbalance Ratio and cos θ

To justify our choice of using cos θ as an alternative for the
imbalance ratio in implementing IMGrad, it is necessary to
establish their negative correlation. To demonstrate this, we
track the imbalance ratio and cos θ while running CAGrad on
NYUv2 and CityScapes datasets, presenting their statistical
results in Figure 9. The results indicate a positive correlation
between 1/Imb. and cos θ during optimization, regardless of
whether it involves two (CityScapes) or three (NYUv2) tasks.
Additionally, we observe that the values of cos θ are confined
within the range of [0, 1], while the imbalance ratio can vary
significantly. This discrepancy in stability makes cos θ a more
suitable choice for modulation.
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Figure 9: Negative correlation examination between imbalance ratio
and cos θ.

C.4 Alternatives of µ
There are several alternatives to quantify the imbalance ratio
among tasks, we provide the following choices:
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Figure 10: Pareto failures and individual progress examination. The
top row presents the gradient similarity, while the bottom row illus-
trates the individual progress for MGDA and GradDrop, respectively.

• Direct Calculation (DC): DC is the standard operation
to obtain the imbalance ratio by directly calculate the
their norm ratio, i.e., |gi∥ / |gj∥. Specifically, to control
the range of µ, we adopt µ = 1/(1 + log(|gi∥ / |gj∥)).

• Least Mean (LM): LM quantifies the imbalance ratio
by calculating the cosine similarity between g0 and the
individual with the smallest norm. The utilization of θ in
LM is depicted in Figure 11 (b).

• Plumbline Mean (PM): PM is just the operation that
adopted in the main text, and is illustrated in Figure 11
(a).

The corresponding results are presented in Table 5, reveal-
ing that PM exhibits the most favorable overall performance.
However, LM demonstrates competitiveness in the context
of semantic segmentation tasks, while DC shows moderate
performance. This outcome can be attributed to the wide range
of imbalance ratios, which makes it challenging to achieve
adaptive balancing of the decoupled objectives. The inferior
performance of LM can be attributed to the variation of cos θ,
which can range between -1 and 1, making it difficult to tune
hyper-parameters effectively.



Table 5: µ alternatives comparison on CityScapes. The GPU time reported here refers to the cumulative duration of the entire run.

Method

Segmentation Depth

∆ m% ↓ GPU Time (h) ↓(Higher Better) (Lower Better)

mIoU Pix. Acc. Abs Err Rel Err
CAGrad 75.16 93.48 0.0141 37.60 11.58 13.83
DC 74.20 93.36 0.0132 34.27 7.23 16.90
LM 74.85 93.47 0.0132 36.56 8.83 17.40
PM 74.84 93.39 0.0132 33.99 6.58 20.25

gi

gj

gmg0

（a） （b）

𝜃

gi

gj

gmg0

𝜃

Figure 11: The illustration of different choice of µ. (a) represents the
PM, while represents the LM.
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Figure 12: The impact of step size to the overall performance.

C.5 Speedup Analysis
While the primary focus of this paper does not revolve around
achieving speedup, it is worth mentioning that general speedup
approaches, such as sampling a subset of tasks [Liu et al.,
2021a], utilizing feature-level gradients [Sener and Koltun,
2018], and updating ω periodically instead of every itera-
tion [Navon et al., 2022], continue to be applicable to methods
augmented with IMGrad.

On the other hand, based on the findings presented in Ta-
ble 5, we have introduced two additional computation-efficient
alternatives for µ. These alternatives offer reduced GPU time
requirements while still maintaining an acceptable level of
performance sacrifice.

We have also implemented a commonly used practical
speedup approach, i.e., updating the weights less frequently.
In this regard, we have chosen the update step sizes from the
set [2, 4, 8, 16], and the corresponding results are presented
in Figure 12. Generally, as the step size increases, the over-
all performance (∆m%) tends to deteriorate, although it still

demonstrates improvements compared to the vanilla CAGrad.
Interestingly, the performance appears to be better when the
step size is set to 16 compared to 4 and 8, suggesting that fre-
quent weight updates may not be necessary. However, further
exploration of this aspect is left for future research.

D Visualizations
D.1 Synthetic Examples
In order to further illustrate the effectiveness of IMGrad in
different imbalance scenarios, we present additional compar-
ative synthetic examples in Table 6. The results reveal that
LS, PCGrad, and CAGrad exhibit failure cases across nearly
all scenarios, while IMTL [?] and Nash-MTL fail to reach
the global optimum, although they do converge to the Pareto
stationary. In contrast, IMGrad consistently achieves the
optimal solution in all scenarios, demonstrating its robust
and stable performance. This underscores the significance of
imbalance-sensitivity in enhancing optimization outcomes.

D.2 Pareto Failure and Individual Progress
Examinations

Here we aim to provide a visual understanding of the advan-
tages brought by IMGrad in terms of reducing Pareto failures
and achieving a balanced individual progress. In Figure 13,
concerning CAGrad, the IMGrad-augmented version can ef-
fectively avoids Pareto failures and optimizes both individuals
in a more balanced manner by seeking a direction that ex-
hibits rough similarities among all individuals. In the case
of Nash-MTL, IMGrad successfully reduces the number of
Pareto failures from 249 to 161 and further narrows the gap in
individual progress.

Besides, we present supplementary analysis on the Pareto
failure and individual progress using MGDA, PCGrad, and
GradDrop, and showcase the outcomes in Figure 10. As
depicted, both MGDA, PCGrad and GradDrop exhibit pro-
nounced imbalance issues based on their gradient similarities,
leading to unsatisfactory and imbalanced individual progress.
These findings align with the tendencies and indications stated
above, further supporting the claims made.

E Past Imbalance-Sensitive MTL
As we have discussed Nash-MTL previously, here we mainly
introduce another two imbalance-sensitive MTL methods, i.e.,
IMTL [?], and FAMO [Liu et al., 2023].
IMTL: IMTL addresses the imbalance issue by integrating
two key strategies. It employs gradient balance to adjust shared
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(b) Pro: CAGrad
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(c) Sim: Nash-MTL
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(d) Pro: Nash-MTL
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(e) Sim: CAGrad+IMGrad
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(f) Pro: CAGrad+IMGrad
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(g) Sim: Nash-MTL+IMGrad
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(h) Pro: Nash-MTL+IMGrad

Figure 13: Pareto failures and individual progress examinations. ‘Sim’ and ‘Pro’ are short for similarity and progress, respectively.

parameters without bias towards any task, using a closed-
form solution that ensures equal projections of the aggregated
gradient onto individual task gradients. Additionally, it applies
loss balance to dynamically weigh task losses, preventing any
single task’s loss scale from dominating the training process.
By combining these strategies into a hybrid approach, IMTL
achieves scale invariance, maintaining robust performance
regardless of the magnitude of task losses.
FAMO: FAMO is a gradient-free optimization-based MTL
method, which introduces a dynamic weighting method that
adapts to the performance of individual tasks, ensuring that
each task progresses at a similar rate without the need for
extensive computational resources. FAMO operates with a
constant space and time complexity of O(1) per iteration,
which is a significant advantage over traditional methods that
require O(k) space and time complexities, where k represents
the number of tasks. This efficiency makes FAMO particularly
well-suited for large-scale multitask scenarios.

F Limitations
Although our proposed method has demonstrated effective-
ness, it is important to acknowledge its limitations. First, the
method is only applicable to scenarios with a decoupled objec-
tive, such as CAGrad and Nash-MTL, since IMGrad aims to
dynamically balance objectives during optimization. Second,
the introduction of additional computations to calculate gm
through MGDA represents another limitation. Although reduc-
ing the iterations of MGDA can mitigate this issue, this paper
currently does not provide the corresponding performance and
efficiency reports.



Table 6: Comparison of MTL optimization methods on synthetic two-task benchmark. (a1, a2) denotes a1 ∗ L1 + a2 ∗ L2.

LS PCGrad CAGrad IMTL Nash-MTL IMGrad
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