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ABSTRACT

Despite significant progress in recent years, few-shot learning (FSL)
still faces two critical challenges. Firstly, most FSL solutions in the
training phase rely on exploiting auxiliary tasks, while target tasks
are underutilized. Secondly, current benchmarks sample numer-
ous target tasks, each with only an N-way C-shot shot query set
in the evaluation phase, which is not representative of real-world
scenarios. To address these issues, we propose Guidepost, a target-
oriented FSL method that can implicitly learn task similarities using
a task-level learn-to-learn mechanism and then re-weight auxiliary
tasks. Additionally, we introduce a new FSL benchmark that satis-
fies realistic needs and aligns with our target-oriented approach.
Mainstream FSL methods struggle under this new experimental
setting. Extensive experiments demonstrate that Guidepost outper-
forms two classical few-shot learners, i.e., MAML and ProtoNet,
and one state-of-the-art few-shot learner, i.e., RENet, on several
FSL image datasets. Furthermore, we implement Guidepost as a
domain adaptor to achieve high accuracy wireless sensing on our
collected WiFi-based human activity recognition dataset.
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1 INTRODUCTION

In the deep learning era, training deep models with big data has
become a prevailing mode, and we have witnessed lots of successful
applications [18]. Such a pattern works well in cases where mas-
sively labeled data is available. However, when it comes to such
realistic scenarios as medical lesion recognition, drug discovery,
etc., where a huge labeled dataset is impossible or very expensive to
acquire [21], over-parameterized deep models would easily fall into
overfitting. Therefore, few-shot learning (FSL) [13] has attracted
many efforts as a promising solution towards tackling this issue
and has been developed with many frameworks. Unlike traditional
machine learning, it targets learning a model that can fast adapt
to a new task with the knowledge extracted from the past tasks,
instead of focusing on the optimization of a single task. To mitigate
the data scarcity issue, the paradigm of meta learning (most popu-
lar FSL framework) usually assumes that there exists an auxiliary
dataset that is full of labeled data but has no overlapped categories
with the target tasks. As a comparison, traditional machine learn-
ing usually follows a simple but strong assumption: the training
and test dataset are drawn 1.i.d. As such, the trained model can be
directly deployed during the test phase since it is supposed to have
no out-of-distribution (OOD) samples. Therefore, how to transfer
the learned ability on the auxiliary dataset to the target task is the
core challenge of FSL, especially when we cannot guarantee the
trained model is applicable for new coming target tasks.

Meta learning, the most widely used FSL solution, achieves
such rapid adaptation by learning a robust metric space [13] or
task-invariant representation [4], which requires only a few target-
relevant samples. Taking a task as the smallest unit, these works
adopt a so-called episodic training strategy to simulate the test
phase. When we look at the design natures of these works, we
can see that they strive for no preference on certain tasks so that
the trained few-shot learners show equal generalization ability to
all tasks. Unfortunately, such an intuition is infeasible when we
care more about the performance of the target tasks at hand than
the average performance of massive tasks. Purchasing overall per-
formance implies the sacrifice of certain tasks that we care about,
which goes against the needs of the most realistic scenario.

To cope with this problem, researchers have started to develop
task-adaptive or task-relevant FSL methods [14, 17], which resort
to encode more task-level features into the model to help with
task-specific fast adaptation. Unfortunately, none of these works
leverage the target tasks to guide the meta training process, which
cannot actually solve the problem mentioned above. Intuitively,
more target task interventions are required during meta training.
With this in mind, the source tasks are expected to be re-weighted
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by target tasks before feeding into the few-shot learner during meta
training. However, the current benchmark prevents target tasks
from participating in the meta training as it requires an evaluation
on the thousands of sampled target tasks to show the generalization.
It is meaningful for meta learning since it targets to learn a model
that can fast adapt to all tasks. Yet it fails to well evaluate the few-
shot learners due to two reasons: (1) A single target task in the
current benchmark only contains ~15 shots, which can hardly tell
the generalization on this single task. (2) In most realistic few-shot
occasions, there is only one target task to be solved, e.g., wireless
sensing, defect detection, drug discovery, etc. All we need is to train
a model that performs well on this target task with the auxiliary
dataset.

To achieve this goal, we first propose a novel task descriptor
to represent a single task. Then a task-level learn-to-learn mech-
anism is employed to implicitly learn the task similarities. After
such a module is well-trained, we re-weight the source tasks by
measuring their similarities with the target tasks. Besides, to fur-
ther evaluate the generalization of few-shot learners on the target
tasks, we proposed a new FSL benchmark, which engages more
target samples into the query set. At last, a target-oriented few-shot
learner is trained by these re-weighted source tasks. In a nutshell,
our contributions are three-fold: (1) We propose a task-level learn-
to-learn mechanism to implicitly learn the task similarities with the
proposed task descriptor and develop a target-oriented few-shot
learner named Guidepost. (2) A new FSL benchmark is proposed to
satisfy realistic needs, and we empirically observe that represen-
tative FSL models fail to perform well. (3) We evaluate Guidepost
according to two aspects: domain adaptation and few-shot learning.
Extensive experiments demonstrate that Guidepost outperforms its
baselines on multiple benchmarks, which verifies the superiority
of the target-oriented property.

2 THE PRINCIPLE OF GUIDEPOST
2.1 Problem Definition and Background

Formally, FSL adopts episodic training to train a few-shot learner.
Assume there exist a training dataset (i.e., auxiliary dataset) D", a
validation dataset D4 and a test dataset DS, D" is utilized to
train the model and D?® is utilized to select the best model to test
on D?S. All these three datasets have disjoint classes. Suppose we
sample a single task 7; from the task distribution p(7") of a certain
dataset (D'", D@ or D'S). During training/validation/test, 7; is
further divided into support set S; and query set Q;. S; contains
N classes with K shots each class, while Q; contains N classes
with C shots each class. The labels of the query set Q; are used
for training only in the training phase and for evaluation in the
reminder phases.

MAML [4] is regarded as a landmark work of FSL, and we take
it as an example to elaborate Guidepost in this paper. Denote the
initial model function as f and its weights as ¢; in the i;, episode.
A task 7; is sampled from the task distribution p(7") of the training
dataset D" And 7; is divided into support set S; and query set
Q;. MAML first feeds S; into the model and updates its weights
to temporary weights ¢;mp. Then Q; passes through ¢smp and
the computed loss is derived from ¢; to get the gradients. At last,
MAML takes the gradients to update ¢; to ¢;+1. The former update
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is usually termed inner loop optimization, while the latter update
is termed outer loop optimization. Such a bi-level optimization can
be denoted as below:

Inner loop:

¢tmp —di-a Vg, ‘C{E(Si’f@') (1)
Outer loop: ¢ir1 < ¢i — BV, -C7;(Qi,f¢,mp) (2

where o and f are the learning rates. From this bi-level optimization,
we can observe that MAML does not care about the performance on
the support set. Instead, it tries to minimize the error on the query
set, which endows MAML with the good capability to generalize
via multiple-step optimization in both inner and outer loops. In
a more general view, MAML learns task-invariant representation,
enabling it quickly adapt to those target tasks that are similar to the
trained tasks. However, when a new coming task is quite dissimilar
to the trained tasks, MAML fails to adapt quickly and may suffers
from significant performance degradation. This is the major chal-
lenge that will be tackled in this paper. Our solution is to explicitly
measure the similarities between the source tasks and target tasks
before regular training, and re-weight the source tasks to help learn
a target-oriented few-shot learner. Such an idea provides the po-
tential to bridge the gap between the source domain and the target
domain. The detailed design is elaborated as follows.

2.2 Task Descriptor

Before measuring the task similarities, we need to figure out the
descriptor of the task. Usually, most FSL methods naively sum up
all prototypes in a single task to form a “task prototype” as the task
descriptor. Such an approach seems simple but cannot represent the
task since it considers little the correlations among prototypes. And
the model measures the task similarity by computing the distance
among “task prototypes”, which is not stable and hard to generalize.
To generate a task descriptor that conserves both discriminative
features and correlations among prototypes, we propose a new
method as shown in Fig. 2. As for an N-way K-shot task 7, we first
feed all prototypes into a shallow convolutional network C,, to get
their representations denoted as a matrix Pyxp, where D is the
dimension of the representation. After that, we adopt SVD to do
decomposition and extract the components as follows:

Tap = UPnxp. U.S.V =SVD(P{,p) 3)
Pnxp =Pnxp — PIB", Paxp = Cop(T) (4)

where C, is the function of the shallow CNN; P{';fg" is the mean
of Pyxp in the first dimension; U, S, V are the corresponding
decomposition results of P{]x ps Tap is the final task descriptor.
After representing the task with the descriptor, we can measure
task similarity and optimize it. Next, we propose a task-level learn-
to-learn mechanism to optimize the task similarity metric module.

2.3 Task-level Learn-to-learn Mechanism

The goal of our task similarity metric module is to assign the related
tasks with higher weights so that they can contribute more during
few-shot learning. As depicted in Fig. 1(a), with generated task
descriptors, we calculate their cosine similarity as the similarity
metric. Denoted the parameters of the auxiliary model as 0y, then
we feed task 1 into the model and update it to 8¢p. During this
update process, we leverage the similarity of task 1 and task 2 to
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Figure 1: The overview of Guidepost. Illustrated with 3-way 1-shot tasks. (a) is the framework of learning task similarity, and
only the task similarity metric module will be updated during training. (b) is the framework of training by re-weighted source
tasks. The weight of each source task is assigned by the task similarity metric module trained by step (a).

Figure 2: The detailed structure of the task similarity module
M. It comprises a shallow CNN noted as C, and an SVD
layer, while ¢ consists of 64-channel 4 stacked CNN layers.

modulate the inner loop learning rate Ir;;, so that the inner loop
optimization is determined by the task correlation:

etmp =0y — Sim * Irjp * VHO'EO (5)
L . 2

Sim = exp(cos_szm(po po)) 6)
7! .12

dp dp (7)

AR

Specially, to avoid the semantic confusion between the inner
and outer loop, the classifier of the model (i.e., 8y, 0¢mp) is non-
parametric. Thus, according to the metric-based FSL, the objective-
ness of the inner loop is:

cos_sim(T T2

Lo = —log(pg, (y = klx)) (8)
exp(—d(fy, (x), cx)) ©)
Yk exp(—d(fa, (x), cx))

where cy. is the prototype of the class k and d(-) is the distance
metric function. Task 2 is later fed into 6;,p and the corresponding
loss £; is computed by the same formulas as Eq. (8) and Eq. (9).
And the gradients of the outer loop optimization are derived from ¢,
since we only update the task similarity metric module with outer

o, (y = klx) =

loop learning rate Ir,, during training:

o=@ —lrou=VyLy (10)

2.4 Target-oriented Bi-level Optimization

Now that we have a module to measure the similarities among
tasks, we can meta learn with source tasks guided by target tasks.
As shown in Figure 1(b), each source task sampled from the auxiliary
dataset is compared with the target task and then assigned to a
weight. With amounts of weighted source tasks, the optimization
of the few-shot learner (e.g., MAML) can be formulated as:

Ptmp — Pi — aw Vg, L3 (Si, f,) (11)
pir1 — ¢i = Py, L7(Qi. fp,,,,) (12)

where w is the corresponding weight assigned by M,,. And Lg;
here is the task-specific loss of the few-shot learner, which could
be a parametric/non-parametric classifier or regressor.

3 PERFORMANCE EVALUATION
3.1 Evaluation Setup

We implement Guidepost as both the few-shot learner and domain
adaptor to evaluate its rapid adaptation ability. Specifically, we
evaluate Guidepost on both image and wireless-based benchmarks.
As for the image-based tasks, to satisfy the realistic needs and fit our
target-oriented property, we propose a new benchmark based on
mainstream FSL datasets. The previous benchmark usually samples
anumber of target tasks with N-way C-shot query set from the test
dataset, thus the performance of the few-shot learner on a certain
task is regarded as the accuracy on its query set. However, with
only C-shot in its query set, the few-shot learner cannot be well
evaluated. In addition, we only face a single target task in most
realistic scenarios. To address it, we sample the target task,
which comprises a few-shot support set and a query set that
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Table 1: Comprehensive 1 on 1 domain adaptation experiment results. ‘FT’ represents the model is fine-tuned by target 1-shot
labeled sample. The bold one represents rank first. ‘Guidepost-M’ is the MAML version of Guidepost.

Accuracy (%) | 2—1 2—3 2—4 2—5 2—6 1—3 1—4 1—5 1—6 3—4 3—5 3—6 4—5 4—6 5—6 Ave.
CNN 80.22 80.22 64.81 79.64 82.53 75.15 67.60 81.26 79.30 60.45 80.31 82.48 69.74 62.20 77.53 74.90
CNN_FT 79.34 75.82 64.63 79.75 83.16 74.10 67.78 81.82 80.34 60.45 80.31 82.38 67.11 63.56 81.02 74.77
EI 82.70 81.79 65.83 79.42 84.72 70.75 64.72 76.40 76.64 62.89 79.47 82.01 72.09 65.02 78.52 74.86
ELFT 75.33 73.28 67.25 76.01 85.77 74.40 63.07 77.91 75.91 56.01 83.22 78.94 54.59 62.15 79.25 72.21
MatNet 78.54 75.52 73.52 75.17 85.74 76.49 68.32 80.86 76.70 63.02 84.15 83.32 68.81 67.82 87.29 76.35
HDA 84.66 83.71 69.97 82.77 84.70 76.50 70.23 85.09 78.56 54.86 86.00 83.33 78.91 81.18 72.38 78.17
PACL 75.40 79.31 72.00 79.65 82.21 72.31 70.82 86.94 80.11 65.82 88.76 84.53 86.29 66.95 80.53 78.11
RFENet 60.37 45.78 50.62 67.23 62.86 47.83 58.33 66.55 56.04 43.92 62.84 56.51 55.84 45.35 58.68 55.92
MetaSense 85.57 87.01 68.99 87.02 87.80 67.69 60.45 65.60 73.21 65.24 80.76 81.18 78.91 78.57 81.26 76.85
MetaSense_FT 85.57 87.16 68.81 87.02 87.75 70.97 60.54 68.46 74.94 65.24 80.76 82.01 78.91 78.73 81.33 77.27
Guidepost-M | 86.62  88.51  69.86 87.55  88.01  71.64 60.28 72.37 74.54 65.94  81.82 81.88 80.98 81.75  82.38 78.28

Table 2: Few-shot classification results on CUB-200 on 5-way
1-shot. ProtoNet.X is the X-way version of ProtoNet during
training.

Accuracy (%) [ 1 2 3 4 5 6 7 8 9 10 [ Ave.

MAML 21.38 26.10 41.69 46.44 47.80 48.81 45.42 4542 39.31 44.75|40.71

Guidepost + MAML 45.86 40.00 46.44 46.78 47.80 52.20 54.24 51.53 47.93 48.14 | 45.75
ProtoNet.5 47.93 43.05 35.59 24.07 44.07 42.37 51.86 46.44 17.24 41.69|39.43
ProtoNet.30 22.41 22.03 31.19 41.69 47.46 26.10 54.58 44.07 32.41 23.73|34.57
Guidepost + ProtoNet.5 | 46.55 46.10 44.07 44.41 45.76 49.49 46.78 50.17 47.59 48.47 | 46.94
RENet 24.32 23.58 26.04 23.53 22.33 23.32 27.82 25.10 24.23 27.49|24.78
Guidepost + RENet 47.92 49.26 44.44 50.00 49.26 50.37 48.52 42.96 44.15 41.48|46.84

Table 3: Few-shot classification results on MinilmageNet on
5-way 1-shot.

Accuracy (%) |1 2 3 4 5 6 7 8 9 10 | Ave.
MAML 26.24 2621 30.88 26.68 26.51 29.28 28.81 26.88 26.54 28.41|27.64
Guidepost + MAML 2630 26.91 31.68 28.14 27.95 29.62 29.24 28.35 26.58 28.54 |28.33
ProtoNet.5 2153 2348 3559 12.71 23.38 20.07 24.57 17.29 21.58 23.55|22.38
ProtoNet.30 15.98 21.08 33.27 11.64 23.23 19.72 28.83 1546 2239 2152|2131
Guidepost + ProtoNet.5 | 24.37 26.91 23.54 22.80 27.05 23.37 23.81 23.81 21.80 25.11|24.26
RENet 2356 23.29 25.56 24.59 21.95 24.25 26.64 23.84 23.82 25.58|24.31
Guidepost + RENet 24.05 2453 26.38 25.52 22.03 24.03 27.37 23.16 23.65 26.35|24.68

contains all samples per category except for those in the
support set and validation set. We also develop Guidepost as a
domain adaptor and evaluate it on a wireless sensing task.

3.2 Guidepost for Image

Following the aforementioned evaluation setup, we mainly conduct
experiments on two FSL datasets: MinilmageNet and CUB-200. To
show the effectiveness of Guidepost, we take three representative
FSL methods (i.e., MAML, ProtoNet, and RENet [10]) as the base-
lines for evaluation. We randomly sample 2000 source tasks for
meta training and 10 target tasks for evaluation, and the experimen-
tal results on both datasets are presented in Table 2 and Table 3.

CUB-200: We implement MAML and RENet according to their orig-
inal researches. As for ProtoNet, popular metric-based FSL methods
usually train with sampled 30-way 1/5-shot source tasks. Therefore,
we provide the experimental results of the ProtoNet trained with 30-
way 1-shot source tasks (denoted as ProtoNet.30). We also conduct
the experiments of training with 5-way 1-shot source tasks (denoted

as ProtoNet.5) for the convenience of deploying Guidepost. Surpris-
ingly, different from most researches reported, ProtoNet.5 largely
outperforms ProtoNet.30 under our evaluation setup. According
to Table 2, MAML, ProtoNet and RENet are significantly improved
with Guidepost, which shows the superiority of the target-oriented
property. And although RENet serves as a state-of-the-art method
under the traditional FSL setting, it cannot generalize well when
engaging more evaluation samples in a single task.
MinilmageNet: According to Table 3, MAML, ProtoNet, and RENet
cannot achieve fast adaptation on the larger query set. With Guide-
post augmented, ProtoNet still can be benefited with a ~2% per-
formance gain. Differently, MAML and RENet are less augmented
by Guidepost though it’s still benefited. It might owe to that Mini-
ImageNet has a larger domain shift between its training and test
datasets compared to CUB-200 and learning an task-invariant rep-
resentation is harder than learning a “common” metric space.

3.3 Guidepost for Wireless Sensing

Wireless sensing [3, 6-8, 15, 16, 19, 20, 22, 23] has been a promising
solution for smart homes, healthcare, and VR/AR, etc. Here we
collect a WiFi-based human activity recognition (HAR) dataset,
which employs 9 volunteers to perform 4 kinds of activities (i.e.,
walking, standing up/sitting down, jumping, and turning around)
across 6 different environments (domains, numbered 1 to 6). It
totally contains 9156 samples while each domain has a roughly
equal number of samples. In this evaluation, we conduct few-shot
domain adaptation experiments by sampling 1-shot labeled sample
in the target domain. And we compare Guidepost with the following
seven mainstream domain adaptation for WiFi-based HAR methods:
CNN, EI [9], MatNet [12], HDA [1], PACL [11], MetaSense [5],
and RFNet [2]. The main purpose of this experiment is to verify
the effectiveness of the Guidepost framework rather than simply
achieve performance gain, so we apply the same pre-processing
operations to all methods. And all methods have the same four
stacked convolutional layers as the backbone network.
According to Table 1, MAML-based Guidepost is an excellent
domain adaptor for WiFi-based HAR. Although sometimes may
not correctly re-weight the source tasks, it still ranks top in many
1 on 1 domain adaptation cases and achieves the best performance
averagely compared to state-of-the-art WiFi-based HAR domain
adaptation methods. It indicates the generalization of Guidepost on
bridging the gap between the source domain and target domain.
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