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ABSTRACT
Computerized Adaptive Testing (CAT) arises as a promising person-

alized test mode in online education, targeting at revealing students’

latent knowledge state by selecting test items adaptively. The item

selection strategy is the core component of CAT, which searches for

the best suitable test item based on students’ current estimated abil-

ity at each test step. However, existing selection strategies behave

in a brute-force manner, which results in the time complexity being

linear to the number of items (𝑁 ) in the item pool, i.e.,𝑂 (𝑁 ). Thus,
in reality, the search latency becomes the bottleneck for CAT with

a large-scale item pool. To this end, we propose a Search-Efficient

Computerized Adaptive Testing framework (SECAT), which aims at

enhancing CAT with an efficient selection strategy. Specifically, SE-

CAT contains two main phases: item pool indexing and item search.

In the item pool indexing phase, we apply a student-aware spatial

partition method on the item pool to divide the test items into many

sub-spaces, considering the adaptability of test items. In the item

search phase, we optimize the traditional single-round search strat-

egy with the asymptotic theory and propose a multi-round search

strategy that can further improve the time efficiency. Compared
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with existing strategies, the time complexity of SECAT decreases

from 𝑂 (𝑁 ) to 𝑂 (𝑙𝑜𝑔𝑁 ). Across two real-world datasets, SECAT

achieves over 200x speed up with negligible accuracy degradation.
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1 INTRODUCTION
With the prevalence of intelligent educational systems, Comput-

erized Adaptive Testing (CAT) has been a crucial issue in many

real-world scenarios such as educational measurement, game, and

job recruitment [23, 36, 40]. CAT aims to uncover students’/test

takers’ knowledge state by selecting items adaptively and it has

been applied in many standard test organizations, such as Graduate

Management Admission Test (GMAT) [34] and Graduate Record

Examination (GRE) [31]. Compared with paper-pencil tests, CAT

needs fewer items to reach the same measurement accuracy[16].

As shown in Figure 1, CAT consists of three components: (1) An

item pool is preloaded before the test starts. It contains items with
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Figure 1: Overview of CAT workflow.

calibrated item parameters which are used for item selection and

ability estimation. (2) A selection strategy is applied to determine

the most suitable test item from the item pool at each test step

based on the currently diagnosed state. (3) A cognitive diagnosis
model (CDM) uncovers the students’ knowledge state based on

the preceding responses. The workflow of the CAT system is as

follows. Given a student, at step 𝑡 , the selection strategy first selects

an item 𝑞∗𝑡 based on the current state
ˆ𝜃𝑡 . Then, the student reads

and answers it. After receiving the response 𝑟𝑡 , CDM updates the

current state to
ˆ𝜃𝑡+1 according to the responses {𝑟1, 𝑟2, 𝑟3, ..., 𝑟𝑡 }.

The procedure repeats until meeting the termination criteria like

reaching the maximum testing length. The final diagnosed ability

will be produced as a testing result. As a key component in the

testing procedure, the selection strategy has received much effort

from researchers. Previous works put stress on how to promote

effectiveness by optimizing the score but ignore the latency issue,

which results in the search latency becoming an obstacle for a large

item pool. Concretely, contemporary selection strategies simply

use a score function to calculate the informativeness score of each

item, which leads to the time complexity of the exhaustive search

being linear to the scale of the item pool, i.e., 𝑂 (𝑁 ). For instance,
assuming a 100,000-size item pool which is common in online

intelligent education systems, selecting the most informative item

by Fisher information [26] (a classic informativeness score function)

in a brute-force manner costs more than 10 seconds at each step on

2.20 GHz Intel CPU, which is unacceptable in real-world scenarios.

Therefore, in practice, well-known organizations like GMAT [34]

and GRE [31] require experts to reduce the item candidates by

manually developing filtering rules, which is labor-intensive and

limits the effectiveness of CAT to a certain degree. To cope with it,

promoting the time efficiency of the selection strategy becomes an

urgent issue in CAT.

Inspired by successful methods to tackle the efficiency issue of

item selection in other areas (e.g., recommendation [39], informa-

tion retrieval [11, 28]), a potential solution is to divide items into

sub-spaces and efficiently search the suitable item from restricted

sub-spaces, which is known as Space partitioning [8]. However,

it’s difficult to design an efficient selection strategy in CAT due to

the following challenges. Firstly, in CAT, the item partition should

be student-aware. For example, given a specific student, the suit-

able items for him/her should be divided into the same sub-space.

Constructing an index barely on similarity distance ignores the

relevance of items to students. Thus, items’ adaptability to different

students should be considered in the indexing phase of the item

pool. Secondly, the score function should be a valid metric such as

dot product. However, the information quantity function is invalid

in Euclidean Space, which becomes an obstacle to dividing items

into sub-spaces. How to address the complex form of the score

function becomes a vital problem. Thirdly, item selection is multi-

round dependent. To obtain an accurate estimate, CAT selects items

step by step over the current estimate. The multi-round selections

by recursive estimates in CAT may cause redundant checks with

sub-spaces due to similar estimates.

To this end, we propose a Search-Efficient Computerized Adap-

tive Testing framework (SECAT). Specifically, we first optimize

the spatial partition method by considering the adaptability of the

item. In this way, the entire selection space (𝑂 (𝑁 )) is recursively
partitioned into many sub-spaces of logarithmic size (𝑂 (𝑙𝑜𝑔𝑁 )),
and items with similar selection possibility can be divided into the

same sub-spaces. Secondly, to deal with the complex form of the

score functions in selection strategies, we formulate a general score

function by distilling knowledge from existing strategies. This al-

lows us to divide items into sub-spaces on a valid metric. Thirdly,

we utilize the asymptotic theory to reduce the redundant look-ups

and further restrict the candidate sub-spaces. When the current

estimate is similar to one of the preceding estimates, we select items

from the corresponding sub-spaces that generated the best suitable

items in the preceding steps. Our approach reduces the linear time

complexity of the exhaustive search (𝑂 (𝑁 )) to logarithmic time

complexity (𝑂 (𝑙𝑜𝑔𝑁 )). For example, to select the most informative

item from a 100,000-size item pool, we only need to compute the

informativeness score of 83 items on average in SECAT at each step,

which cost less than 0.1 seconds. Our approach achieves similar

accuracy as the brute-force search with more than 200x speed up.

To validate the effectiveness and efficiency of SECAT, we conduct

experiments on two real-world datasets from educational systems.

2 RELATEDWORK
2.1 Computerized Adaptive Testing
CAT is composed of an item pool, a cognitive diagnosis model and

a selection strategy. An item pool is preloaded as test content in

CAT system, and the number of test items can largely affect the

test fairness and quality [14]. During testing, cognitive diagnosis

model (CDM) [9, 13] and selection strategy work alternatively until

the selection criteria is satisfied. Representative CDMs involve tra-

ditional Item Response Theory (IRT) [7] and recent deep learning

models (e.g., NCD [41]). Selection strategy is the core component of

CAT, which consists of two parts: the score function that measures

the informativeness of items and the search strategy that finds the

most informative item. Previous works focus on the design of score

function and search in a brute-force way. The existing score func-

tions can be divided into two categories: maximum informativeness

score functions and data-driven score functions. Maximum infor-

mativeness score functions are designed manually to quantify the

informativeness. Lord [26] proposed a score function to quantify

item informativeness with the Fisher information (FSI). Also, Chang

and Ying [4] used Kullback–Leibler (KL) information as the score

function in CAT. FSI and KLI are designed on IRT family models.

Bi [2] proposed a Model-Agnostic framework designing the score

function according to expected model change, which is agnostic

with the underlying CDM. Data-driven score functions are learned

from data and they are inspired by reinforcement learning [24].

BOBCAT[10] was proposed to directly learn a data-driven score
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function from training data by recasting CAT as a bilevel optimiza-

tion problem in the meta learning. NCAT [44] formally redefined

CAT as a reinforcement learning problem and directly learns the

score function from real-world data. However, data-driven score

functions are trained by reinforcement learning, which is far more

computationally intensive on large datasets than on small ones.

It’s difficult to apply them to the large item pool because of too

much learning overhead. What’s more, the learned score functions

are prone to bias in historical data [10]. Therefore, we focus on

how to reduce the time complexity of strategies with maximum

informativeness score function in this paper.

2.2 Efficient Search
Search efficient methods [17] have been researched to retrieve items

accurately and efficiently, which can be organized into three cat-

egories. The first category is hash-based methods [27, 37], which

project the data from the original space to Hamming space. Some

hash based methods like Semantic Hashing [12] learn codes from

data. Almost all the hash-based methods suffer from severe in-

formation loss, leading to low accuracy of recommendation. The

second category is quantization-based methods [18, 20, 30]. Product

quantization [19] decomposes the space into sub-spaces, suitable

for high dimensional scenarios. Product quantization is usually

used for similarity search on Euclidean distance, yet LightRec [25]

utilizes product quantization to propose a Memory and Search-

Efficient framework based on dot product. The third category is the

graph-based method which improves retrieval efficiency through

the search of neighboring nodes, such as HNSW[29]. The fourth

category is tree-based methods using spatial partition structures,

such as KD-Tree [1] and Ball-tree [21, 33, 43]. Koenigstein [22] built

a metric tree from item representation, providing exact top-k recom-

mendation based on dot product. SECAT belongs to this taxonomy.

Instead of constructing the metric tree barely on item similarity,

we consider items’ adaptability to different students during spa-

tial partition. In the search phase, we exploit the dependency of

multi-round searches in CAT to further improve the time efficiency.

3 PRELIMINARIES
3.1 CAT Components
Specifically, CAT consists of three components: (1) An item pool𝑄
consists of items with calibrated parameters, such as difficulty and

discrimination. Before testing, items are assigned to professional

testers’ to collect answers, so that items can be calibrated and a

set of user abilities can be obtained as a by-product. The scale of

item pool should be considered for three reasons. First of all, a large

item pool has been proven to be more reliable because of higher

accuracy [14]. An important requirement for adaptive testing is

providing sufficient items with various difficulty parameters, so

that students of different ability levels can be accurately diagnosed.

Second, a large item pool is beneficial to testing fairness and security

by controlling the exposure rate. Third, with substantial available

items, large item pools are more common in online educational

intelligent systems. Since search latency is linear to the increasing

scale of item pool in existing selection strategies, reducing the

search latency becomes an urgent issue in the large-scale item pool.

(2) A cognitive diagnosis model𝑀 is used to uncover students’

knowledge state based on their responses. The most widely used

CDM is Item Response Theory (IRT). IRT uses a unidimensional

value 𝜃𝑖 to represent the latent feature of student 𝑖 and compute

the possibility the student 𝑖 answer the item 𝑗 correctly:

𝑃 (𝑟𝑖, 𝑗 | 𝜃𝑖 , 𝑎 𝑗 , 𝑏 𝑗 ) =
1

1 + 𝑒−1.7𝑎 𝑗 (𝜃𝑖−𝑏 𝑗 )
, (1)

where 𝑟𝑖, 𝑗 is student 𝑖’s response to item 𝑗 (1 indicates a correct

response). Each item is represented by two parameters, 𝑎 𝑗 is the

discrimination of the item 𝑗 and 𝑏 𝑗 is the difficulty of the item 𝑗 .

Recently, Neural Cognitive Diagnosis Model (NCD) [41] has been

proposed, which leverages the deep neural network to model the

multidimensional latent trait of the student.

(3) A selection strategy is the most important component that

selects the next item from the item pool depending on current

estimated student ability
ˆ𝜃𝑡 at step 𝑡 . The selection strategy consists

of the score function 𝑆 that measures the informativeness of the

item and the search strategy that find the most informative item

𝑞∗𝑡 :

𝑞∗𝑡 = argmax

𝑞 𝑗 ∈𝑄
𝑆

(
ˆ𝜃𝑡 , 𝑞 𝑗

)
. (2)

The search efficiency is difficult to improve due to the complex

form of score function. The score function is manually designed

and it describes the interaction between the student and the item in

a complex way. For example, FSI [26] defined the score function as:

𝑆 ( ˆ𝜃 ) =

[
𝑃 ′ ( ˆ𝜃 )

]
2

𝑃 ( ˆ𝜃 ) (1 − 𝑃 ( ˆ𝜃 ))
, (3)

where 𝑃 ( ˆ𝜃 ) denotes the possibility of correct response of the given

estimate
ˆ𝜃 and 𝑃 ′ ( ˆ𝜃 ) is the derivative of 𝑃 ( ˆ𝜃 ). In conclusion, the

forms of score functions in the selection strategies are quite different

from the similarity functions (dot product, cosine similarity) and

they are invalid in Euclidean space, which becomes an obstacle to

the improvement of the time efficiency in the search phase.

3.2 Problem Definition
As mentioned above, CAT system includes an item pool of 𝑁 -size

items 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑁 }. Given a new student 𝑠𝑖 , at step 𝑡 , the

student’s proficiency is estimated based on preceding responses by

a cognitive diagnosis model𝑀 :

𝑃 (𝑟𝑖, 𝑗 = 1 | 𝜃𝑖 , 𝑞 𝑗 ), (4)

where 𝜃𝑖 is the ability of the student and 𝑟𝑖, 𝑗 is student 𝑖’s response

to item 𝑗 (1 indicates a correct answer). We use 𝑀,𝑞 𝑗 , 𝑟𝑖, 𝑗 to get

estimated
ˆ𝜃 . Afterward, a selection strategy selects the item with

max informativeness on the current estimated proficiency
ˆ𝜃 as

shown in Equation (2).

Supposing the time complexity of computing the score function

𝑆 ( ˆ𝜃 ) is 𝐷 , traditional strategies calculate the information of each

item in the 𝑁 -size item pool and select the most informative item

in a brute-force way, so the time complexity of selection at each

step is 𝑂 (𝑁𝐷). Our goal is to reduce search latency by narrowing

the selection scale 𝑁 with negligible loss of testing accuracy.
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Figure 2: Overview of SECAT workflow.

4 METHODOLOGY
4.1 Overview
SECAT contains two main phases: item pool indexing and item

search. In the indexing phase, we build a spatial partition tree

on the item pool, which divides the items into binary sub-spaces

recursively with the consideration of their adaptability. In the item

search phase, we propose an efficient multi-round search strategy

to enhance the existing selection strategies. As shown in Figure 2,

if the current estimate is asymptotic, we search from the leaves

of selected items in preceding rounds, otherwise, we search from

the entire tree. Our framework SECAT can be applied to all the

score functions of selection strategies, except for NCAT [44] and

BOBCAT [10], since they change the paradigm of CAT. In Section 4,

we will first introduce how to build an spatial partition tree on the

item pool. Then we illustrate the efficient search strategy on the

premise of the indexing pool. Finally, we conduct a time complexity

analysis of the proposed selection strategy.

4.2 Item Pool Indexing
In the traditional CAT setting, the item pool is a collection of un-

structured items. With the goal of reducing search latency, we need

to index the item pool with a data structure before testing.

4.2.1 Student-aware Spatial Partition . We first partition the items

into sub-spaces to restrict the selection space. The complex score

function of the selection strategy is an important issue in efficient

search. We will address the problem in Section 4.2.2 afterward. In

this section, we divide the space based on the Euclidean distance.

Inspired by previous works [6, 22], we build a metric tree for the

item pool by space partition. The root tree node contains the entire

items in the item pool and the items are partitioned into binary

hyperspheres (balls) by a hyperplane. By recursive partitions, all

the items are split into the smallest sub-spaces, denoted as leaves.

In traditional partition method introduced by Andrew Moore

[32]. Each node 𝑥 is split by following steps: 1) Choose two furthest

points𝐴, 𝐵 from each other as two centroids. 2) Define a hyperplane

by centroids of two sub-partitions:

𝑦 (𝑥) = 𝑤 ∗ 𝑥 + 𝑏, (5)

Partition on Item adaptability Partitioned Item Pool

…
Items

Students

Partitions
Recursive

Figure 3: The illustration of student-aware spatial partition.

where,

𝑤 = 𝐵 −𝐴, 𝑏 = −1
2

(∥𝐵∥2 − ∥𝐴∥2) . (6)

3) Separate all the points to two sub-partitions by the hyperplane.

However, the hyperplane determined by two random farthest points

overlooks the items’ relevance to students. The objective of dividing

the items into two sub-spaces is to reduce extra look ups in both

sub-spaces. For example, as shown in Figure 3, students in blue color

are proficient at skills and students in green color are unskilled. The

items suitable for skilled and unskilled students should be separately

into different sub-spaces. By recursive partitions, items suitable for

similar proficiency can be divided into the same sub-spaces.

We propose the student-aware spatial partition method in Algo-

rithm 1. We first obtain a set of student abilities Ω in the calibration

stage, when items are assigned to professional testers to collect

answers[38]. During each partition, instead of picking the two far-

thest items, we choose two items suitable for the highest ability and

lowest ability in the set as two centroids. Afterward, user abilities

in Ω are partitioned into two sets respectively for the next partition.

Thus, the hyperplane is determined by the two best-suitable items

for different students. As a consequence, we can get a more reason-

able hyperplane and the well-organized item pool is constructed

by recursive partitions.

4.2.2 Score Function Distillation. The score functions of existing
selection strategies are invalid in Euclidean space. With the spatial

partition method, we divided all the items into leaves, but finding

the possible candidate leaves can be challenging because of the

incompatibility of the score function and the metric tree. Therefore,

it is especially urgent to bring up a valid score function that can be

used to effectively partition spaces. Considering the form of score

function on students and items, we adopt the dot product distance
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Algorithm 1 Student-aware Spatial Partition Method

Require: Item pool 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑁 }, Students Ω =

{𝜃0, 𝜃1, ..., 𝜃𝑀 }, Score function 𝑆

1: function MakeTree(Students Ω, Items 𝑄)

2: 𝑇 .𝑄 ← 𝑄

3: 𝑇 .𝑐𝑒𝑛𝑡𝑒𝑟 ←𝑚𝑒𝑎𝑛(𝑄)
4: 𝑇 .𝑟𝑎𝑑𝑖𝑢𝑠 ← max𝑞𝑖 ∈𝑄 ∥𝑇 .𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑞𝑖 ∥

//𝑁0 is the maximum number of items in a leaf.

5: if |𝑄 | ≤ 𝑁0 then
6: return 𝑇

7: else
8: (𝑤,𝑏) ← 𝑀𝑎𝑘𝑒𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒 (Ω, 𝑄)
9: 𝑄𝑙 ← {𝑞𝑖 ∈ 𝑄 : 𝑤⊤𝑞𝑖 + 𝑏 ≤ 0}
10: 𝑄𝑟 ← 𝑄 −𝑄𝑙

11: 𝜃𝑚 =𝑚𝑒𝑑𝑖𝑎𝑛𝜃𝑖 ∈Ω ∥𝜃𝑖 ∥
12: Ω𝑙 ← {𝜃 ∈ Ω : ∥𝜃 ∥ < ∥𝜃𝑚 ∥}
13: Ω𝑟 ← Ω − Ω𝑙

14: 𝑇 .𝑙𝑒 𝑓 𝑡 ← 𝑀𝑎𝑘𝑒𝑇𝑟𝑒𝑒 (Ω𝑙 , 𝑄𝑙 )
15: 𝑇 .𝑟𝑖𝑔ℎ𝑡 ← 𝑀𝑎𝑘𝑒𝑇𝑟𝑒𝑒Ω𝑟 , 𝑄𝑟 )
16: end if
17: return 𝑇

18: end function
19:

20: function MakeHyperplane(Students Ω, Items 𝑄)

21: 𝜃𝑙 ← 𝑚𝑖𝑛
𝜃𝑖 ∈Ω
∥𝜃𝑖 ∥;

22: 𝜃𝑟 ← 𝑚𝑎𝑥
𝜃𝑖 ∈Ω
∥𝜃𝑖 ∥;

23: 𝐴← 𝑎𝑟𝑔𝑚𝑎𝑥𝑞𝑖 ∈𝑄𝑆 (𝜃𝑙 , 𝑞𝑖 );
24: 𝐵 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑞𝑖 ∈𝑄𝑆 (𝜃𝑟 , 𝑞𝑖 );
25: 𝑤 ← 𝐵 −𝐴;
26: 𝑏 ← − 1

2
(∥𝐵∥2 − ∥𝐴∥2);

27: return (𝑤,𝑏)
28: end function

to approximate existing strategies by double-tower network:

𝑆 (𝜃, 𝑞) ← 𝑓 (𝜃 )⊤𝑔(𝑞), (7)

where 𝑓 means the user tower encoder, 𝑔 means the item tower

encoder and 𝑆 represents the informativeness such as Fisher and

KL information. We use a double-tower [5, 15] structure to distill

knowledge from complex computation for informativeness. Con-

cretely, the student’s information (estimated ability and historical

responses) is fed into the user tower to obtain student representa-

tions, and the item’s (calibrated difficulty and discrimination pa-

rameters) is fed into the item tower for item representations. Both

encoding towers can be an embedding module or the state-of-art

module to model side information. And the distillation loss is:

𝐿𝑜𝑠𝑠 =

𝑁∑︁
𝑗=0

∥ 𝑓 (𝜃 )⊤𝑔(𝑞 𝑗 ) − 𝑆 (𝜃, 𝑞 𝑗 )∥2 . (8)

With the double-tower network, we use the dot product to approxi-

mate the informativeness score.

4.3 Item Search
In line with the general score function in Section 4.2.2, we use the

dot product function to approximate the score function. In this

section, we employ a depth-first branch-and-bound algorithm to

search for the most informative item with negligible degradation

in performance.

4.3.1 Single-round Search Strategy. In the partitioned item pool

in Figure 3, we denote 𝐵 to be the ball(sub-space) of items, and

each ball is centered around 𝑞𝑐 within radius 𝑟 . According to Noam

Koenigstein [22], there exists an upper bound for the maximum

possible dot product in ball 𝐵:

max

𝑞𝑖 ∈𝐵
𝑓 (𝜃 )⊤𝑔(𝑞 𝑗 ) ≤ 𝑓 (𝜃 )⊤𝑞𝑐 + 𝑟 ∥ 𝑓 (𝜃 )∥ . (9)

With Equation (7) (8) in the score function distillation, we have

𝑆 (𝜃, 𝑞𝑖 ) ≈ 𝑓 (𝜃 )⊤𝑔(𝑞 𝑗 ). (10)

Hence,

max

𝑞𝑖 ∈𝐵
𝑆 (𝜃, 𝑞𝑖 ) ≲ 𝑓 (𝜃 )⊤𝑞𝑐 + 𝑟 ∥ 𝑓 (𝜃 )∥ . (11)

In this way, the information quantity of the items in the ball B has a

approximate upper bound: 𝑓 (𝜃 )⊤𝑞𝑐 + 𝑟 ∥ 𝑓 (𝜃 )∥. We search for item

of the most information quantity in a depth-first manner in Algo-

rithm 2. Before the test, all the items has been transformed by item

tower encoder 𝑔. During the test, we compute the user representa-

tion 𝑓 (𝜃 ) by user tower encoder 𝑓 . Following the search algorithm

in metric tree[22], if the items in a sub-space has a greater upper

bound than the current max information quantity, we traversed the

children of the sub-space recursively. Otherwise, the sub-space will

be pruned and the computation of the items in it can be waived.

In fact, only 𝐿 leaves with greater upper bound are checked. The

order of traversing sub-spaces is determined by the upper bound

in the node, aiming to find the possible leaves as soon as possible.

Therefore, based on the upper bound of items in the sub-spaces,

the single-round search strategy reduce the information quantity

computation by restricting items in 𝐿 leaves.

4.3.2 Multi-round Search Strategy. Though we proposed an effi-

cient single-round search strategy to reduce latency at each step, the

dependency among multi-round searches has not been exploited.

The CAT system provides the best suitable item from the item pool

on the current estimate adaptively, and the 𝑡-th item is chosen

according to the preceding 𝑡 − 1 responses {𝑟1, 𝑟2, ..., 𝑟𝑡−1}. Accord-
ingly, Chang and Ying [42] has demonstrated that the sequence

of recursive estimates { ˆ𝜃1, ˆ𝜃2, ..., ˆ𝜃𝑡−1} is asymptotically consistent

with the ground truth 𝜃0:

lim

𝑛→∞
Pr

{��� ˆ𝜃𝑛 − 𝜃0��� ≥ 𝜖

}
= 0, (12)

where 𝜖 is any arbitrary small positive quantity. The asymptotic

theory explains that the estimated ability
ˆ𝜃 approaches the ground

truth gradually during the testing. Thus, it’s possible that the cur-

rent estimate is similar to that of the preceding queries. In this

occasion, similar estimate may cause redundant selections.

Therefore, we propose a novel selection strategy for multi-round

searches by exploiting the search results in previous rounds. When

the current estimated ability
ˆ𝜃 is quite similar to historical queries,

we select the item from the candidate leaves of preceding selections.

On the contrary, when
ˆ𝜃 is dissimilar to all the historical queries,

we use Algorithm 2 to select the item from the entire metric tree.

Therefore, how to quantify query similarity is a crucial issue in the

multi-round search problem.
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Algorithm 2 Single-round Search Strategy

Require: Estimated student ability
ˆ𝜃 , User tower encoder 𝑓 , Item

tower encoder 𝑔, Item Tree Node T, Score function S.

Ensure: The selected item T.M

1: 𝑇 .𝑀 ← 𝑁𝑜𝑛𝑒;

2: SearchTree(
ˆ𝜃,𝑇 );

3: return 𝑇 .𝑀

4:

5: function SearchTree(Query 𝜃 , Item Tree Node 𝑇 )

6: if 𝑇 .𝑀 < 𝑓 (𝜃 )⊤𝑇 .𝑐𝑒𝑛𝑡𝑒𝑟 +𝑇 .𝑟𝑎𝑑𝑖𝑢𝑠 ∥ 𝑓 (𝜃 )∥ then
7: if 𝑖𝑠𝐿𝑒𝑎𝑓 (𝑇 ) then
8: 𝑞 ← argmax

𝑔 (𝑞 𝑗 ) ∈𝑇 .𝑄
𝑆 (𝜃, 𝑞𝑖 );

9: if 𝑆 (𝜃, 𝑞) > 𝑆 (𝜃,𝑇 .𝑀) then
10: 𝑇 .𝑀 ← 𝑞;

11: end if
12: else
13: 𝐼𝑙 ← 𝑓 (𝜃 )⊤𝑇 .𝑙𝑒 𝑓 𝑡 .𝑐𝑒𝑛𝑡𝑒𝑟 +𝑇 .𝑙𝑒 𝑓 𝑡 .𝑟𝑎𝑑𝑖𝑢𝑠 ∥ 𝑓 (𝜃 )∥;
14: 𝐼𝑟 ← 𝑓 (𝜃 )⊤𝑇 .𝑟𝑖𝑔ℎ𝑡 .𝑐𝑒𝑛𝑡𝑒𝑟 +𝑇 .𝑟𝑖𝑔ℎ𝑡 .𝑟𝑎𝑑𝑖𝑢𝑠 ∥ 𝑓 (𝜃 )∥;
15: if 𝐼𝑙 ≤ 𝐼𝑟 then
16: SearchTree(𝜃,𝑇 .𝑟𝑖𝑔ℎ𝑡 );

17: SearchTree(𝜃,𝑇 .𝑙𝑒 𝑓 𝑡 );

18: else
19: SearchTree(𝜃,𝑇 .𝑙𝑒 𝑓 𝑡 );

20: SearchTree(𝜃,𝑇 .𝑟𝑖𝑔ℎ𝑡 );

21: end if
22: end if
23: end if
24: end function

Algorithm 3 Multi-Round Search Strategy

Require: Estimated student ability
ˆ𝜃𝑡 , User tower encoder 𝑓 , Item

Tree Node𝑇 , Historical queriesΘ = { ˆ𝜃1, ˆ𝜃2, ..., ˆ𝜃𝑡−1}, Historical
candidates 𝐶 , Threshold 𝛿 , Score function S.

Ensure: The selected item T.M

1: 𝐶𝑡 ← ∅;
2: if max

ˆ𝜃𝑡 ′ ∈Θ
𝑆𝑖𝑚( ˆ𝜃𝑡 , ˆ𝜃𝑡 ′ ) > 𝛿 then

//With the asymptotic query, the selection space is restricted

in former selected leaves.

3: for each ˆ𝜃𝑡 ′ ∈ Θ do
4: if 𝑆𝑖𝑚( ˆ𝜃𝑡 , ˆ𝜃𝑡 ′ ) > 𝛿 then
5: 𝐶𝑡 ← 𝐶𝑡 ∪𝐶. ˆ𝜃𝑡 ′ ;
6: end if
7: end for
8: 𝑇 .𝑀 ← argmax

𝑞𝑖 ∈𝐶𝑡

𝑆 (𝜃, 𝑞𝑖 );

9: else
10: SearchTree(𝜃 , 𝑇 );

//Items in the selected leaf are denoted as Mleaf .

11: 𝐶. ˆ𝜃𝑡 ← 𝑇 .𝑀𝑙𝑒𝑎𝑓 ;

12: end if
13: return 𝑇 .𝑀

As we mentioned in Section 4.2.2, with the distillation score

function, the estimated ability
ˆ𝜃 is transformed to 𝑓 ( ˆ𝜃 ) by user

encoder 𝑓 and the item 𝑞 is transformed to 𝑔(𝑞) by item encoder 𝑔.

We use dot product form to approximate the score function 𝑆 :

𝑆 ≈ 𝑓 ( ˆ𝜃 )⊤𝑔(𝑞) = ∥ 𝑓 ( ˆ𝜃 )∥∥𝑔(𝑞)∥𝑐𝑜𝑠𝛼, (13)

where 𝛼 is the angle between the transformed student vector and

the transformed item vector. In Equation (13), the length of the

query vector doesn’t affect the search result, which depends on the

angle 𝛼 and item vector length ∥𝑔(𝑞)∥. In other words, the small

angle between two user vectors implies that two estimated abilities

have a similar value. Therefore, we first use the cosine function of

queries to quantify the query similarity in Definition 1. And we

further define asymptotic query by Definition 2 which is used to

search from historical candidate leaves.

Definition 1. Query Similarity: Given a student 𝑖 with the
ability 𝜃𝑖 and student 𝑗 with the ability 𝜃 𝑗 , the similarity of students’
ability is :

𝑆𝑖𝑚(𝜃𝑖 , 𝜃 𝑗 ) = 𝑐𝑜𝑠 (𝑓 (𝜃𝑖 ), 𝑓 (𝜃 𝑗 )). (14)

Definition 2. Asymptotic Query: Given a student 𝑖 with esti-
mated ability ˆ𝜃𝑡 at step 𝑡 , similarity threshold 𝛿 and the student’s
historical estimated ability set Θ = { ˆ𝜃1, ˆ𝜃2, ..., ˆ𝜃𝑡−1}, the current se-
lection has an asymptotic query if

min

ˆ𝜃𝑡 ′ ∈Θ
𝑆𝑖𝑚( ˆ𝜃𝑡 , ˆ𝜃𝑡 ′ ) > 𝛿. (15)

As shown in Algorithm 3, we use a similarity threshold 𝛿 to

decide whether to search from previous candidate leaves or the

entire metric tree. First, the estimated student’s proficiency will be

used to compare with historical estimates. If the maximum simi-

larity is greater than the threshold 𝛿 , which means the selection

has an asymptotic query, we search the historical candidate leaves

instead of using the single-round search strategy. With efficient

multi-round search strategy, redundant searches from the entire

item pool can be further reduced.

4.4 Time Complexity Analysis
Supposing that the time complexity of score function 𝑆 ( ˆ𝜃, 𝑞) is
𝐷 and the size of the item pool is 𝑁 , the time complexity of the

exhaustive search at each step is𝑂 (𝑁𝐷). In SECAT, we constructed

a metric tree on the item pool. Since the metric tree divides 𝑁

items into binary sub-spaces recursively, the smallest sub-spaces

(leaves) have items of 𝑂 (𝑙𝑜𝑔𝑁 ) size. By pruning the sub-spaces

with a small upper bound, we assume 𝐿 leaves are traversed during

selection. Therefore, the time complexity is reduced to𝑂 (𝐷𝐿𝑙𝑜𝑔𝑁 )
in the metric tree with single-round search. With the multi-round

search strategy, the selection space is restricted to selected leaves in

previous rounds when the current estimate changes little compared

with the preceding estimates. So 𝐿 is further reduced in the multi-

round search strategy, which will be examined by experiments in

Section 5.5.

4.5 Relation to ANN methods
Since we use the dot product to approximate the informative-

ness quantity score. Technically, the approximate nearest neighbor

(ANN) search for the max dot product can also be applied in CAT.

ANNmethods aim to search the approximate items frommillions of

items, which has outstanding performance in other tasks (CV[35]
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Dataset Eedi Exam

#Students 118,971 1,897,707

#Items 27,613 122,950

#Response logs 15,867,850 89,106,879

#Response logs per student 133 47

#Response logs per item 575 725

Table 1: Statistics of the datasets
and RS[25]). However, CAT has a higher demand for accuracy since

it uses fewer questions than paper-pencil testing. SECAT can re-

duce the accuracy degradation in two aspects: 1) The backbone of

SECAT is Ball Tree, which searches for the exact item for the query.

2) During searching in the leaves, SECAT utilizes the approximate

upper bound to compute the information quantity by the vanilla

score function 𝑆 (FSI, KL, EMC). The approximate upper bound is

only valid in Ball Tree, so it cannot be applied in other ANN meth-

ods. Therefore, ANN could cause extra degradation in accuracy. In

conclusion, SECAT can guarantees the accuracy of testing in item

searches better.

5 EXPERIMENTS
5.1 Experimental Settings
Datasets.Weuse two real-world datasets in this experiment, namely

Eedi and EXAM. Eedi
1
refers to the dataset in the NeurIPS 2020

Education Challenge. The EXAM dataset was supplied by iFLYTEK

Co., Ltd., which contains mathematical exercises and logs of high

school examinations. We choose datasets with large item pools to

evaluate our proposed method. Table 1 shows the complete statis-

tics of the datasets.

Data Partition. We split student-item interactions into historical

data and testing data for different targets. The historical data is

collected before testing to calibrate item parameters, such as diffi-

culty and discrimination. We filter out learners with less than 30

response logs for Eedi and Exam respectively in historical data to

guarantee the quality of calibrated items. The test data is used to

simulate the adaptive testing process in the experiment.

Evaluation Tasks. Following previous works[2, 44], we perform
experiments on a simulation study and a student performance pre-

diction task.

1) Simulation Study: Traditional CAT studies have a evaluation

process called simulation study, which first initializes student

abilities and then generates records on the entire item pool with

a CDM. During testing, CAT estimates the student ability by

adaptively selecting the records. Since CAT selects the item from

the entire item pool in simulation study, the search latency is

close to real world.

2) Student Performance Prediction: We conduct an experiment

on the student performance prediction task to examine the per-

formance of CAT. For evaluation, we limit our selection to those

items whose response has been recorded in the testing data.

Evaluation Metrics. We use the following two categories of met-

rics to evaluate the experimental results.

1) Efficiency Metrics: Intuitively, we use the time (seconds) spent

on selection tomeasure search time efficiency. To further analyze

1
https://eedi.com/projects/neurips-education-challenge

the time complexity, we use the number of traversed leaves 𝐿 in

the metric tree to estimate the computation cost at each step.

2) Effectiveness Metrics: In simulation study, we calculate the

mean squared error (MSE) between the estimated parameters

and the simulated parameters. In the student performance task,

we predict the students’ performance on items whose responses

have been recorded. From the binary classification perspective,

we use accuracy (ACC) and Area Under ROC (AUC) [3] to eval-

uate different selection strategies.

Baseline Methods. The score function of the selection strategy

in CAT relies on Cognitive Diagnosis Model (CDM) as mentioned

above. We use Item Response Theory(IRT) [7] and a deep learning-

based model(NCD) [41] as the underlying CDM. We use the follow-

ing state-of-art score functions of selection strategies as baselines.

• Random: The random search method is a benchmark to

show other methods’ improvement.

• FSI [26]: Fisher information is the most popular score func-

tion designed for IRT.

• KLI [4]: KL information is designed to improve accuracy at

the beginning of the test. It utilizes Kullback-Leibler infor-

mation to measure the divergence between two consecutive

posteriors of proficiency. It’s designed for IRT-based Models.

• MAAT [2]: MAAT is inspired by active learning methods,

using expected model change (EMC) to quantify the infor-

mativeness. It’s agnostic to underlying CDMs.

We use X + SECAT to denote SECAT with additional student-ware

hyperplane and multi-round selection strategy.

Our framework SECAT can be applied to all the score functions,

except for data-driven algorithms(NCAT and BOBCAT), since they

change the paradigm of CAT and it’s difficult to apply them to

large item pools. For example, in the dataset Exam, training the

selection algorithm with BOBCAT in an epoch takes more than 18

hours on GPU and the entire training requires tens to hundreds of

epochs. Also, the turnaround time grows rapidly as the item pool

size increases. Therefore, data-driven algorithms are not suitable

for the large item pool.

ImplementationDetails. The threshold for the maximum num-

ber of items in a leaf is 50 in Eedi and 100 in Exam for that Exam

has more items. The dimension of the student vector and item vec-

tor is 15 in the general score function to reduce the inner product

computation cost. For the multi-round search strategy, the thresh-

old of query similarity is 0.95 and the related analysis is shown in

Section 5.6. All the methods are developed and trained on two 2.20

GHz Intel Xeon E5-2650 v4 CPUs and a TITAN Xp GPU
2
.

5.2 Simulation Study
The ultimate goal of CAT is to get the estimate of the student’s

ability 𝜃 . Since the ground truth 𝜃0 is unknown, we conduct the

simulation experiment of proficiency estimation. Specifically, we

initialize students’ abilities artificially and generate responses on

the entire item pool. Since the simulation study is only suitable

for those CDMs with simple and explainable parameters, we only

conduct the simulation study with IRT.

2
Our code is available at https://github.com/bigdata-ustc/SECAT.
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Figure 4: The search latency of simulation study
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Figure 5: The MSE of simulation study.

5.2.1 Efficiency Analysis. Figure 4 shows the average search la-

tency of brute-force methods and SECAT at one step. We use double

Y axes to measure the latency in both datasets because brute-force

search methods cost much more time than efficient search meth-

ods. Specifically, our proposed SECAT refers to the left axis and

the brute-force search method refers to the right axis. Firstly, we

can see that SECAT outperforms the brute-force method on both

datasets. In the mildest condition, the accumulated latency of brute-

force search by FSI score function costs more than 20 seconds,

while the accumulated latency of SECAT costs less than 0.1 sec-

onds. Therefore, SECAT achieves over 200x speed up on brute-force

method in simulation study. Secondly, although brute-force method

on different score functions cost various search latency, SECAT

significantly reduces the search latency of all score functions to

the order of magnitude of the random search method. For brute-

force method, the computation of information quantity in MAAT

is more time-consuming than FSI and KLI. For SECAT, it reduces

the computation of information quantity by restricting the number

of items. By search latency reduction, SECAT makes it possible to

select the item from a tremendous pool of items.

5.2.2 Effectiveness Analysis. As shown in Figure 5, we denote the

efficient search methods on different score functions as X+SECAT.

Firstly, we can see that the X+SECAT can approximate the selec-

tion of brute-force methods in MSE metric, which means efficient

strategies maintain precision during testing. Secondly, the effective-

ness of Random selection in the dataset Exam is inferior to Eedi,

while the designed score function (MFI, KLI, MAAT) achieves better

performance than Eedi. The reason can be that Exam provides a

larger item pool, which covers more potential possible abilities. In

conclusion, SECAT plays a crucial role in a large item pool because

Dataset Eedi Exam

CDM IRT NCD IRT NCD

Score function FSI KLI MAAT MAAT FSI KLI MAAT MAAT

Accumulated

latency(s)

Random 0.417 0.417 0.417 0.462 0.758 0.758 0.758 0.823

Brute-force 1.583 2.742 7.192 18.085 1.375 1.742 3.34 14.952

SECAT 0.676 0.688 0.704 0.88 0.68 0.69 0.717 0.769

ACC(%)

Random 68.89 68.89 68.89 70.18 76.1 76.1 76.1 76.41

Brute-force 69.59 69.64 70.35 72.55 78.27 78.05 79.0 80.89

SECAT 69.75 69.29 70.23 72.38 78.23 78.22 78.97 80.37

AUC(%)

Random 70.93 70.93 70.93 71.27 85.1 85.1 85.1 85.52

Brute-force 72.07 72.05 72.53 73.11 86.03 86.06 87.38 87.61

SECAT 71.94 72.14 72.52 72.92 86.0 86.0 87.33 87.56

Table 2: The results of student performance prediction.

Metric ACC AUC MSE

Brute-Force 72.55 73.11 0.17

SECAT 72.38 72.92 0.178
ANNOY 71.94 72.21 0.695

HNSW 72.03 72.67 0.313

Table 3: ComparisonwithANNmethods on eedi dataset using
NCD at step 10.

the relative improvement of the designed score function is more

obvious in a larger item pool.

5.3 Student Performance Prediction
We also conduct an experiment on the student performance pre-

diction task to verify the efficiency and effectiveness of selection

strategies. Table 2 reports the accumulated search latency, ACC

and AUC at step 10 during the testing. First, SECAT can signifi-

cantly reduce search latency than the brute-force search method on

two datasets. Especially, the brute-force search method relying on

NCD-MAAT costs almost 7 seconds in Eedi and 14 seconds in Exam

during adaptive testing. In both datasets, SECAT reduces the search

latency of MAAT to the order of magnitude of the random search

method. Secondly, as shown in Table 2, the negative influence of

our proposed SECAT on ACC/AUC is negligible. SECAT achieves

competitive performance on prediction performance. For example,

SECAT based on NCD-MAAT achieves nearly the same perfor-

mance as the brute-force method. It means restricted selection item

space in SECAT preserves the possible items properly. Moreover,

we note that the search latency of the brute-force method on FSI

and KLI didn’t show a significant difference between SECAT. We

believe that this is mainly due to the following reason: In terms

of accumulated latency, CAT selects items from the items whose

responses have been recorded in testing data, which is a small frac-

tion of the item pool. Therefore, the limited scale of selection space

leads to similar accumulated latency.

5.4 SECAT vs ANN Methods
As mentioned in Section 4.5, ANN can also be applied in CAT after

the score function distillation. Thus, we compare the effectiveness of
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Figure 6: The averaged traversed leaves number at each step.

SECAT with two powerful ANNmethods: ANNOY
3
and HNSW[29]

in Table 3. We can see that the degradation of SECAT is negligible

in all effectiveness metrics while ANNOY and HNSW cause extra

degradation in ACC and AUC. Especially in MSE, the estimation of

ANN methods exists significant deviation. Since the goal of CAT is

accurate parameter estimation, ANN methods are not suitable for

CAT. The reason may be that ANN methods are designed to solve

for high dimensionality items search at the sacrifice of accuracy.

In short, compared to ANN methods, SECAT maintains the testing

accuracy and is more suitable for testing scenarios.

5.5 Ablation Study
By performing an ablation study on a simulation study with IRT,

we analyze the effectiveness of student-aware spatial partition and

multi-round search strategy by comparing the number of traversed

leaves. The results are shown in Figure 6. We denote the SECAT

without the multi-round search strategy as SECAT-m and SECAT

without the student-aware spatial partition method as SECAT-s.

Firstly, for SECAT-s, the number of traversed leaves increases as

the step increases, which means more leaves need to be explored

in the latter steps. The reason is that CAT doesn’t allow duplicate

selected items in different steps and it explores more possible leaves

in the tree in the latter rounds. Secondly, the number of traversed

leaves of SECAT decreases in the latter rounds, which means the

multi-round selection strategy with the asymptotic query plays a

more crucial role in reducing the selection space at the following

3
https://github.com/spotify/annoy
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Figure 7: Influence of 𝛿 balances the prediction accuracy and
search latency.

steps. Thirdly, we can see that SECAT-s searches more leaves for

the most suitable item, which means the student-aware hyperplane

restricts the selection space at the beginning of testing.

We denote the traversed leaves number as 𝐿, and 𝐿 is decreased

to a constant value in SECAT. In conclusion, the time complexity of

SECAT-m is 𝑂 (𝐷𝐿𝑙𝑜𝑔𝑁 ) with 𝐿 traversed leaves. SECAT reduces

the averaged 𝐿 nearly to a constant value in most rounds. Therefore,

the time complexity for SECAT is approximately 𝑂 (𝐷𝑙𝑜𝑔𝑁 ).

5.6 Model Parameter Analysis
In SECAT, the trade-off parameter 𝛿 in the multi-round search

strategy plays an important role in balancing the effectiveness and

efficiency by deciding whether to select from the previous leaves or

the entire item pool. We carry out the parameter-sensitive experi-

ment with the NCD-MAAT score function on student performance

prediction task to see the influence of 𝛿 . The 𝛿 ranges from 0 to 1.

When 𝛿 is smaller, the possibility of selecting from a leaf is higher.

Conversely, as 𝛿 is larger, SECAT tends to select from the entire

space. When 𝛿 equals 1, the model selects the item with the single-

round search strategy.

As shown in Figure 7, when 𝛿 increases, the ACC increases. This

indicates that properly exploring the items in unselected leaves

is beneficial for effectiveness. When 𝛿 is too large, the number

of traversed averaged leaves glows rapidly, which leads to long

search latency. These results show that it’s vital to choose a proper

threshold 𝛿 to balance effectiveness and efficiency.

6 CONCLUSION
In this paper, we proposed a novel Search-Efficient Computerized

Adaptive Testing framework for intelligent education systems. To

find the possible candidates as fast as possible, we proposed a

student-aware space partition method by considering the adapt-

ability of items. Furthermore, we used the asymptotic theory in

CAT to utilize preceding responses to help with the next selection.

As a general work, SECAT can be applied to many score functions.

Extensive experiments have demonstrated the efficiency and effec-

tiveness of SECAT. In future work, we will explore more realistic

constraints in CAT such as exposure control.
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