晶体对称性

郑奇靖

中国科学技术大学,物理系

zqj@ustc.edu.cn

2023年2月20日

中国科学技术大学

目录

- ① 对称性的概念
 - 晶体中的宏观对称性
 - 晶体中允许的对称操作
- ② 晶体宏观对称性的表述: 点群
 - 点群对称性和晶体的物理性质
- ③ 晶体微观对称性的表述:空间群
- 附录

lacktriangler 一些生长比较完美的晶体在几何外形上表现出了明显的 ${f z}$ 观对称 ${f t}$ f (${\it external \ symmetry}ig) ^{-1}$

立方晶系: 12 面体 (dodecahedral) 石榴石 (garnet)

立方晶系: 含五角十二面体 (pyritohedron) 黄铁矿 (pyrite)

立方晶系:含立方面的八面体黄铁矿 (pyrite)

立方晶系: 立方黄铁矿

中国科学技术大学 2023 年 2 月 20 日

¹ https://opengeology.org/Mineralogy/10-crystal-morphology-and-symmetry/#1052_Characteristics_of_Crystals_Belonging_to_the_Different_Crystal_Systems ← □ ▶ ← ② ▶ ← ② ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ○ ○ ○

其他晶系的一些晶体

六方晶系:绿柱石 (beryl)

四方晶系: 脱镁石 (apophyllite)

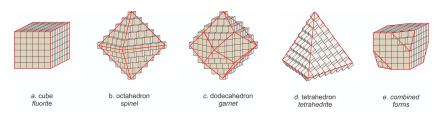
正交晶系: 重晶石 (barite)

单斜晶系:石膏 (gypsum)

三斜晶系: 钠长石 (albite)

晶体的宏观对称性

- 晶体的规则形状是其内部原子的排列方式 (internal atomic arrangement) 的反映,而晶体内部原子排列方式的基石就是单胞。
- 我们已经看到,相同形状单胞的晶体,其外形不一定一样,跟生长条件有关。比如立方晶系晶体可能的外形有:四面体、立方体、八面体、十二面体,甚至不规则外形。



☞ 因此,考察晶体的宏观对称性 (external symmetry) 应该对其单胞的对称性进行考察。

什么是对称性

一个物体(或图形)具有<mark>对称性(symmetry)</mark>²是指该物体(或图形)是经过一定的空间<mark>操作</mark>之后整个物体(或图形)<mark>保持不变</mark>的性质。

- ** 旋转: 圆形绕对绕圆心的任意旋转都是不变的; 正方形绕中心旋转 $\frac{\pi}{2}$ 、 π 、 $\frac{3}{2}$ π 保持不变; 后两个图形只能有 2π 的旋转。
- ★ 镜面/对称线: 圆形的任意一条直径都是对称线;正方形只有 4 条对称线,等腰梯形只有一条。

 $^{^2}$ "symmetry" 一词来源于古希腊词 "συμμετρία"

对称操作和对称元素

- 对称操作(symmetry operaction): 维持整个物体不变而进行的操作,操作前后物体任意两点间的距离保持不变。
 - 点对称操作:在对称操作过程中至少有一点保持不动的操作。有限大小的物体,只能有点对称操作。
 - □ 保持任意两点距离不变的变换 ⇒ 正交变换

数学上可以用一个 3×3 的正交矩阵 U 来表示点对称操作:

$$\mathbf{r}' = U\mathbf{r} \qquad \Rightarrow \qquad \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \tag{1}$$

其中,正交矩阵 U 满足:

$$U U^{T} = U^{T} U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \equiv 1 \qquad \Rightarrow \qquad U^{T} = U^{-1}$$
 (2)

距离不变: $\mathbf{r}' \cdot \mathbf{r}' = \mathbf{r}^T U^T U \mathbf{r} = \mathbf{r} \cdot \mathbf{r}$

对称元素 (symmetry element): 对称操作过程中保持不变的几何实体 (geometrical entity)。 比如反演中心(点)、旋转轴(线)、反映面(面)等。

点对称操作

- ★ 表示对称操作主要有两种记号: 3

 - 赫尔曼-莫甘记号(Hermann-Mauguin notation)
 5: 得名于德国晶体学家赫尔曼·卡尔(Carl Hermann,于 1928年提出)和法国矿物学家查尔斯-维克多克·莫甘(Charles-Victor Mauguin于 1931年修改)。1935年,在国际晶体学手册(International Tables For Crystallography)发表第一版时,赫尔曼-莫甘记号就被采用为标准记法,因而赫尔曼-莫甘记号也被称作国际记号(International notation)
 - 相比于熊夫利记号,赫尔曼-莫甘记号(国际记号)在晶体学中更加常用,其原因在于赫尔曼-莫甘记号更易于包含平移对称的元素,且指定了对称轴的方向。
- * 基本点对称操作(simple point symmetry operation)包括:绕固定轴转动(rotation)、镜面反映(reflection)以及中心反演(inversion)。其中恒等操作(identity)可以认为是绕固定轴旋转 2π 。

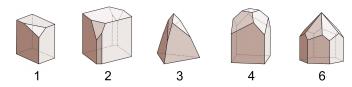
 $^{^{\}bf 5} {\tt https://en.wikipedia.org/wiki/Hermann\%E2\%80\%93Mauguin_notation}$

³International Tables for Crystallography (2016). Vol. A. ch. 3.3, pp. 777-779

⁴https://en.wikipedia.org/wiki/Schoenflies_notation

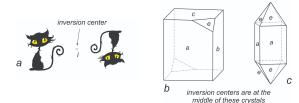
基本点对称操作

** 旋转 (rotation): 物体绕某一个轴<mark>逆时针</mark>旋转转 $2\pi/n$ 以及其整数倍的对称操作,国际记号为n,熊夫利记号为 C_n ,对应的对称元素称为n 重旋转轴(n-fold rotation axis)。



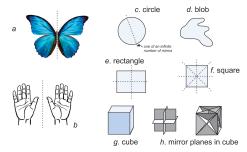
这种旋转操作又称为<mark>真旋转(*proper rotation*),我们之后会看到非真旋转(improper rotation)</mark>。

中心反演(inversion): 国际符号 1, 熊夫利记号 i, 对应的对称元素为反演中心(inversion center)。二维的情况,中心反演就是 2 重旋转操作。

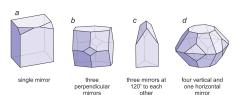


基本点对称操作

★ 镜面反映 (reflection): 国际符号 m, 熊夫利记号 σ, 对应的对称元素为镜面 (mirror plane)



具有镜面的几种晶体形状:



点对称操作对应的正交矩阵

☞ 旋转 (Rotation), 比如绕 z 轴转 θ 角

$$U = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

☞ 恒等 (Identity)

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

■ 中心反演 (Inversion) : $U\mathbf{r} = -\mathbf{r}$

$$U = -1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

镜面反映 (Reflection), 比如 xy 平面反映: $(x, y, z) \xrightarrow{U} (x, y, -z)$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

复合点对称操作

● 还有一类点对称操作是所谓的复合点对称操作(compound point symmetry operation),是两个基本点对称操作的连续应用,形成一个新的点对称操作。包括:旋转-反映操作(rotoreflection)、旋转-反演操作(rotoinversion)。

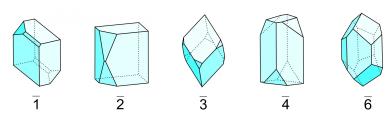


图 - 具有 1、2、3、4 和 6 重旋转-反演轴 (n-fold rotoinversion axis) 的晶体形状。

- * 旋转-反映操作就是连续进行旋转($2\pi/n$)和反映操作(顺序无所谓),旋转-反演则是连续进行旋转($2\pi/n$)和反演两种操作,这两种操作就是前面提到的所谓<mark>非真旋转(improper rotation)</mark>,其相应对称元素称为n 重非真旋转轴(n-fold improper rotation axis)。
- * 在三维情况下,旋转-反演和旋转-反映操作包含的操作是等价的,因为绕轴旋转 θ 加上反映,等同于绕同一个轴旋转 $\theta+\pi$ 加上反演。 6
- 「本 有趣的是,熊夫利记号选择标记旋转-反映 S_n (德语 Spiegel, 意为 "镜子");而国际符号选择标记旋转-反演 \bar{n} (念作"bar-n")。 \bar{n}

中国科学技术大学 2023 年 2 月 20 日

 $^{^6}$ 需要注意的是,等价并不意味着 $ar n=S_n$,比如 $ar 1=S_2,ar 2=S_1,ar 3=S_6,ar 4=S_4,ar 6=S_3$ 。

4 重非真旋转操作

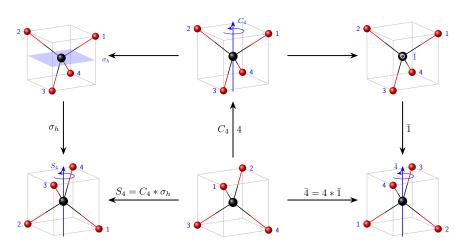
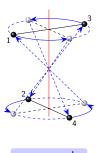


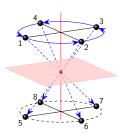
图 - 4 重非真旋转 $\bar{4} = S_4$ 。

中国科学技术大学

复合和组合对称操作



compound $4 * \bar{1} = \bar{4}$



 $\begin{array}{l} \text{combination} \\ 4+\bar{1} = \frac{4}{m} \end{array}$

图 - 注意区分复合 (compound/complex) 和组合 (combination) 对称操作。

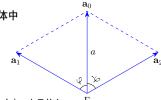
- 复合对称操作对物体连续应用两种基本操作,其本身是一个新的对称操作。
- 组合对称操作,以上图为例,既有4重轴,又有一个镜面,两者相交的地方又有一个反演中心。

晶体中允许的对称性

※ 除了点对称性、晶体微观点阵还有平移不变性、这会限制晶体中 可能的点对称性。

假设晶体中存在 n 重轴, a_0 是与该轴垂直的面上最短 的格矢, 长度为 a, n 重轴通过 Γ 点, 如图所示:

- **拳** 旋转 $\varphi = \frac{2\pi}{n}$, \mathbf{a}_0 转到了 \mathbf{a}_1 ; 旋转 $-\varphi$, \mathbf{a}_0 转到了 \mathbf{a}_2
- 根据定义、a1 和 a2 都是格矢、且 a1 + a2 在 a0 方向(或反方向), 也是格矢



$$2a\cos\varphi = 2a\cos\frac{2\pi}{n} = ma; \qquad (m = -2, -1, 0, 1, 2)$$
 (3)

因而, n 只能取有限几个值, 即

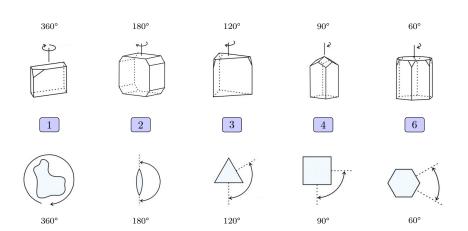
m	-2	-1	0	1	2
\overline{n}	2	3	4	6	1

定理

由于平移对称性,晶体中允许的旋转轴只有: $1 \times 2 \times 3 \times 4$ 和 6 重旋转轴。

2023年2月20日

晶体中允许的旋转轴⁸

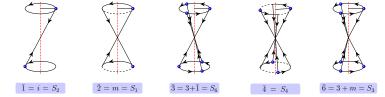


中国科学技术大学 2023 年 2 月 20 日

⁸ https://opengeology.org/Mineralogy/10-crystal-morphology-and-symmetry/#1014_Motational_Symmetry ≧

晶体中独立的宏观点对称元素

● 晶体中允许的点对称操作: 5 种旋转操作、1 种晶面反映、1 种中心反演和 5 种旋转-反演操作,似乎总共有 12 种点对称操作。



- 晶体中的点对称操作可以归结为真旋转(proper rotation)和非真旋转(improper rotation) 两 类共 10 种。恒等操作是特殊的旋转操作,反演和晶面可以认为是特殊的非真旋转。
- ☞ 晶体中独立的宏观对称元素只有 8 种! 9

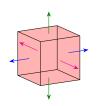
熊夫利符号	$E(C_1)$	C_2	C_3	C_4	C_6	i	σ	S_4
国际符号	1	2	3	4	6	ī	m	<u> </u>

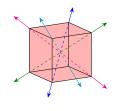
实际晶体的点对称性就是由以上8种独立点对称元素的各种可能组合。

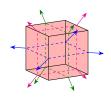
 $^{^9}$ 熊夫利记号选择标记旋转-反映 S_n ,而国际符号选择标记旋转-反演符号 n。 4 \square $^+$ 4 \square $^+$ 4 \square $^+$ 4 \square + +

立方体的对称操作

立方体具有较高的对称性, 共有 48 个对称操作!







- ☀ 1 个恒等操作
- * 绕 3 条立方轴可以旋转 $\frac{\pi}{2}$ 、 π 和 $\frac{3}{2}\pi$, 共 $3 \times 3 = 9$ 个对称操作
- * 绕 4 条体对角线可以旋转 $\frac{2}{3}\pi$ 和 $\frac{4}{3}\pi$, 共 $4 \times 2 = 8$ 个对称操作
- * 绕 6 条棱对角线可以旋转 π , 共 $6 \times 1 = 6$ 个对称操作
- 立方体的体心为反演中心,以上的1+9+8+6=24个旋转操作加上中心反演形成24个旋转-反演操作

正四面体有24个对称操作,正六棱柱也有24个对称操作,详见黄昆书 p22。

目录

- 1 对称性的概念
 - 晶体中的宏观对称性
 - 晶体中允许的对称操作
- ② 晶体宏观对称性的表述: 点群
 - 点群对称性和晶体的物理性质
- ③ 晶体微观对称性的表述:空间群
- 附录

对称操作群

定义

群是定义了 "乘法规则" (*) 的一组元素 (群元) 的非空集合,记为 $G=\{E,A,B,C,D,\ldots\}$

此外, 群还必须满足以下四个性质:

- * 封闭性: $\forall A, B \in G, C = A * B \in G$
- * 结合律: $\forall A, B, C \in G, A * (B * C) = (A * B) * C$
- * 有唯一单位元素 E: $\forall A \in G$, E * A = A * E = A
- * 存在逆元素: $\exists ! A^{-1} \in G, A^{-1} * A = A * A^{-1} = E$
- ★ -1 和 1,以普通乘法运算为群乘法,可以组成一个群;所有的整数集合,以普通加法为群乘法,组成整数群,其中 0 位单位元素, n 的逆元素为 -n。
- 以保持某个物体不变的全部对称操作为群元,以连续操作为群乘法,构成的群称为对称操作群。 若对称操作全部是点对称操作,则该群又称为点群。
 - lacktriangle 恒等操作为单位元素;绕轴转 heta 角的逆变换是绕改轴转 - heta 角;中心反演的逆还是中心反演。

32 种晶体学点群

- 理论证明,晶体中由 10 种(8 种独立)宏观对称操作只能组成 32 种不同的晶体学点群(crystallography point group),即晶体的宏观对称(external symmetry)只能有 32 种不同的类型— 32 种晶类(crystal class)。¹⁰
- ◈ 晶体学点群主要有三种不同的标记符号,现介绍其中的两种: 11
 - 🧇 国际符号(International notation),又称赫尔曼-莫甘符号(Hermann-Mauguin notation)
 - 🏶 熊夫利符号 (Schoenflies notation): 点群用字母符号 (C, S, D, T, O) 加下标表示。
 - ☆ C_n (循环, Cyclic) 表示该群有一个 n 重旋转轴 C_{nh}表示该群除 n 重旋转轴外还有一个与之垂直的镜面 C_{nv}表示该群除 n 重旋转轴外还有一个与之平行的镜面
 - \$\frac{\phi}{2}\$ \$S_{2n}\$ (Spiegel) 表示该群含 2n 重旋转-反映轴
 - ✿ D_n (二面体, Dihedral) 表示这个群只有一根 n 重旋转轴和 n 根垂直于这根主轴的二重轴 D_{nh}是加上一个与 n 次旋转轴垂直的镜面 D_{nn}则是 D_n 是加上 n 个与 n 次旋转轴平行的镜面
 - ightharpoonup 字母 T 代表四面体 (Tetrahedron) ,表示这个群有四面体的对称性。 T_d 则包括了旋转反映操作,T 群本身则不包含旋转反映操作, T_b 则是 T 群加上与旋转轴垂直的镜面。

中国科学技术大学 2023 年 2 月 20 日

¹⁰ http://newton.ex.ac.uk/research/qsystems/people/goss/symmetry/Solids.html

¹¹ International Tables for Crystallography (2016). Vol. A. ch. 3.3. pp. 777-779

32 种晶体学点群简介

- C_n 群: 5 种
 - * $C_n = \{C_n, C_n^2, \dots, C_n^n = E\}$ 为循环群, 生成元为 C_n ,阶数(群元个数)为 n
- ② Cnh 群: 5 种
 - * 由 Cn 群与水平镜面 σ_h 组合而成, $C_{nh} = C_n \times \{E, \sigma_h\}$ 为阿贝尔群(群乘法 满足交换律),阶数为 2n
- **⑤** C_{nv} 群: 4 种 $(C_{1v} = C_{1h})$
 - \circ 由 Cn 群与包含主轴的镜面 σ_v 组合而成, $C_{nv} = C_n \times \{E, \sigma_v\}$,阶数为 2n
- **⑤** S_n 群: 3 种
 - 仅包含 n 重旋转反映轴。当 n 为奇数时,与
 C_{nh} 群一样,因此 n 只能取偶数: S₂(C_i),
 S₄, S₆
- **⑤** D_n 群: 4 种 $(D_1 = C_2)$
 - ② 仅包含 n 重轴和与之垂直的 2 重轴

- **1** D_{nh} 群: 4 种 $(D_{1h} = C_{2v})$
 - lacktriangledown 由 D_n 群和水平镜面 σ_h 组合而成,阶数为 4n
- **②** D_{nd} 群: 2 种 $(D_{1h} = C_{2v})$
 - \bullet 由 D_n 群和垂直镜面 σ_d 组合而成,其中 σ_d 镜面包含主轴并垂直平分于主轴的相邻二重 轴之间的夹角,阶数为 4n。
 - $D_{1d}=C_{2v},\ D_{4d}$ 中出现 S_8 旋转反映, D_{6d} 中出现 $S_{12},\$ 这两个操作在晶体中不可能
- 立方体群: 5 种
 - T 群 (四面体群): 3 个 2 重轴和 4 个 3 重 轴组成, 12 阶
 - □ T_d 群 (全四面体群): 24 阶
 - T_h 群: $T_h = T_d \times C_i$, 24 阶
 - O 群 (八面体群): 4 个 3 重轴和 3 个 4 重 轴组成, 24 阶
 - O_h 群: $O_h = O \times C_i$, 48 阶

晶体学点群: 熊夫利符号

符号	符号意义	包含点群	数目
C_n	具有 n 重旋转对称轴	C_1 , C_2 , C_3 , C_4 , C_6	5
C_i	反演中心 (i)	$C_i (= S_2)$	1
C_s	晶面 (σ)	$C_s(=C_{1h})$	1
C_{nh}	h 代表除 n 重轴外还有与轴垂直的水平对称面	C_{2h} , C_{3h} , C_{4h} , C_{6h}	4
C_{nv}	v 代表除 n 重轴外还有通过该轴铅垂对称面	C_{2v} , C_{3v} , C_{4v} , C_{6v}	4
D_n	具有 n 重旋转对称轴及 n 个与之垂直的二重旋转轴	D_2 , D_3 , D_4 , D_6	4
D_{nh}	h 代表除 n 重轴外还有与轴垂直的水平对称面	D_{2h} , D_{3h} , D_{4h} , D_{6h}	4
D_{nd}	d 表示还有 1 个平分两个二重轴夹角的对称面	D_{2d} , D_{3d}	2
S_n	n 重旋转-反映轴	S_4 , S_6	2
T	代表有 4 个三重轴和 3 个二重轴(四面体对称性)	T	1
T_h	h 代表除 n 重轴外还有与轴垂直的水平对称面	T_h	1
T_d	d 表示还有 1 个平分两个二重轴夹角的对称面	T_d	1
0	代表 3 个互相垂直的 4 重轴及 6 个 2 重轴、4 个三重轴	O , O_h	2
			32

7个晶系

● 根据某些特征的对称元素,可以把 32 个晶体学点群(32 个晶类)归为 7 个晶系(crystal system)、7 个格子系(lattice system)。

晶族 (crystal family)	晶系 (crystal system)	格子系 (lattice system)	单胞基矢特征	包含点群	点群 数目	对称性特征
三斜 (Monoclinic)	三斜 (Monoclinic)	三斜 (Monoclinic)	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma$	C_1 , $C_i(S_2)$	2	只有 C ₁ 或 i
单斜 (Monoclinic)	单斜 (Monoclinic)	单斜 (Monoclinic)	$\begin{array}{c} a\neq b\neq c\\ \alpha=\gamma=90^{\circ}\neq\beta \end{array}$	$C_2, C_{1h}(C_s), \frac{C_{2h}}{C_{2h}}$	3	唯一 C ₂ 或 m
正交 (Orthorhombic)	正交 (Orthorhombic)	正交 (Orthorhombic)	$\begin{array}{c} a\neq b\neq c\\ \alpha=\beta=\gamma=90^{\circ} \end{array}$	D_2 , C_{2v} , D_{2h}	3	3 个 C2 或 m
四方 (Tetragonal)	四方 (Tetragonal)	四方 (Tetragonal)	$\begin{array}{c} a=b\neq c\\ \alpha=\beta=\gamma=90^{\circ} \end{array}$	C_4 , S_4 , C_{4h} , D_4 , C_{4v} , D_{2h} , D_{4h}	7	唯一 C ₄ 或 S ₄
六方	三方 (Trigonal)	菱方 (Rhombohedral)	$\begin{array}{c} a=b=c\\ \alpha=\beta=\gamma<120^{\circ}\neq90^{\circ} \end{array}$	$C_3, S_6, D_3, C_{3v}, \\ D_{3d}$	5	唯一 C ₃ 或 S ₆
(Hexagonal)	六方 (Hexagonal)	六方 (Hexagonal)	$a = b \neq c$ $\alpha = \beta = 90^{\circ};$ $\gamma = 120^{\circ}$	C_6 , C_{3h} , C_{6h} , D_6 , C_{6v} , D_{3h} , D_{6h}	7	唯一 C ₆ 或 S ₃
立方 (Cubic)	立方 (Cubic)	立方 (Cubic)	$\begin{array}{c} a=b=c\\ \alpha=\beta=\gamma=90^{\circ} \end{array}$	T , T_h , O , T_d , O_h	5	4 ↑ C ₃
6	7	7			32	

4□ > 4□ > 4 = > 4 = > = 99

晶体学点群: 国际符号

如果把点群对称元素的方向(镜面的方向为其法线方向)做一个归类,可以发现至多只能分成3类。

International Tables for Crystallography (2016). Vol. A. ch. 3.3, pp. 777-779

每个晶系的的三个方向定义如下:

	Crystal family	Anorthic (triclinic)	Monoclinic	Orthorhombic	Tetragonal	Hexagona	ıl	Cubic
	Schoenflies	Ci	C_{2h}	D_{2h}	D_{4h}	D_{6h}	D_{3d}	O_h
Lattice point group	Hermann-Mauguin	ī	$\frac{2}{m}$	$\frac{2}{m}\frac{2}{m}\frac{2}{m}$	$\frac{4}{m}\frac{2}{m}\frac{2}{m}$	$\frac{6}{m}\frac{2}{m}\frac{2}{m}$	$\bar{3}\frac{2}{m}$ †	$\frac{4}{m}\bar{3}\frac{2}{m}$
Set of lattice symmetry directions	Primary	-	[010] b unique [001] c unique	[100]	[001]	[001]	[001]	[001]
	Secondary	-	-	[010]	[100]	[100]	[100]	[111]
	Tertiary	-	-	[001]	[110]	[110]	-	[110]
								[110]‡

[†] In this table, the directions refer to the hexagonal description. The use of the primitive rhombohedral cell brings out the relations between cubic and rhombohedral groups: the primary set is represented by [111] and the secondary by [110]. ‡ Only for 43m and 432 [for reasons see text].

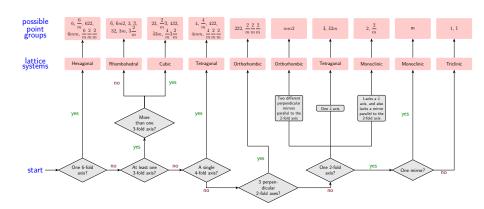
- 国际符号用1 到 3 组符号来表示点群,每组符号是 n, \bar{n} 或 $\frac{n}{m}$ 中的一个,标明了每类方向的最高对称性,比如立方体的对称点群符号: $\frac{4}{m}\bar{3}\frac{2}{m}$ 。
 - n 表示该方向有一个 n 重旋转轴
 - ♥ \bar{n} 表示该方向有一个 \bar{n} 重旋转-反演轴
 - $\stackrel{\bullet}{=}$ 也可以写成 n/m, 表示除了 n 重旋转轴, 还有一个垂直于该轴的镜面

32 个晶体学点群国际符号

晶系		32 个晶体学点群							
三斜 (Monoclinic) 单斜	1 [C ₁]	$\bar{1}$ [C_s]							
— कर्न (Monoclinic)	2 [C ₂]	m [C_s]	$2/m [C_{2h}]$						
正交 (Orthorhombic)	222 [D ₂]	$mm2 [C_{2v}]$	$\frac{2}{m} \frac{2}{m} \frac{2}{m} [D_{2h}]$ (mmm)						
四方 (Tetragonal)	4 [C ₄]	$\bar{4}$ [S ₄]	$4/m$ [C_{4h}]	422 [D ₄]	$4mm$ [C_{4v}]	$ar{4}2m~[D_{2d}]$	$\frac{4}{m} \frac{2}{m} \frac{2}{m} \left[D_{4h} \right]$ $\left(\frac{4}{m} mm \right)$		
三方 (Trigonal)	3 [C ₃]	$\bar{\bf 3} \ [C_{3i}/S_6]$	32 [<i>D</i> ₃]	$3m [C_{3v}]$	$\frac{\bar{3}\frac{2}{m}\left[D_{3d}\right]}{\left(\bar{3}m\right)}$				
六方 (Hexagonal)	6 [C ₆]	$\bar{6} \ [C_{3h}]$	$6/m$ [C_{6h}]	622 [D ₆]	6mm $[C_{6v}]$	$\bar{6}m2 \ [D_{3h}]$	$\frac{6}{m} \frac{2}{m} \frac{2}{m} \left[D_{6h} \right]$ $\left(\frac{6}{m} mm \right)$		
立方 (Cubic)	23 [T]	$rac{2}{m}ar{3} \left[T_h ight] \ \left(mar{3} ight)$	432 [<i>O</i>]	$\overline{4}3m$ $[T_d]$	$\frac{4}{m}\bar{3}\frac{2}{m}\left[O_{h}\right]$ $(m3m)$		m		

注:圆括号内为国际符号简称,中括号内为对应熊夫利符号。12

由对称元素判断格子系和可能的点群 13



中国科学技术大学 2023 年 2 月 20 日

点群对称和晶体的物理性质

🏶 物体的物理性质,通常由两个物理量之间的关系来定义,比如以下关系分别给出了密度、电导 率和介电常数:

$$M = \rho_m V, \qquad \vec{j} = \sigma \vec{E}, \qquad \vec{D} = \varepsilon_0 \varepsilon \vec{E}$$

晶体中的很多物理性质是各向异性的,依赖于测量的方向,数学上用张量表示,如

$$D_i = \varepsilon_0 \sum_j \varepsilon_{ij} E_j, \qquad \varepsilon = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix}$$

Neumann 定理

如果晶体在某个对称操作下保持不变,其宏观物理性质在此对称操作下也保持不变。

- 晶体物理性质的对称性不能低于晶体所属点群的对称性。若晶体物理性质的对称性高于晶体所 属点群对称性,则高出的部分是由该物理性质张量的固有对称性决定的。
- 点群的对称性将大大减少独立的张量元数目,一般可以通过选择主轴为坐标轴,来使得张量对 角化。例如,选择六重轴为 z 轴,六角晶系的介电常数就可以用 ε_{\perp} 和 ε_{\parallel} 来表示。

中国科学技术大学

28 / 42

点群对称和晶体的物理性质

$$\vec{D} = \varepsilon_0 \varepsilon \vec{E} \quad \Rightarrow \quad \vec{D'} = U \vec{D} = \varepsilon_0 \, U \varepsilon \vec{E} = \varepsilon_0 \, U \varepsilon \, U^{-1} \, U \vec{E} = \varepsilon_0 \, U \varepsilon \, U^T \, \vec{E'}$$

由于操作前后晶体与自身重合,应有 $\varepsilon = U \varepsilon U^T$,即

$$\varepsilon_{ij} = \sum_{mn} U_{im} \, \varepsilon_{mn} \, U_{nj}^T = \sum_{mn} U_{im} \, U_{jn} \, \varepsilon_{mn} \tag{4}$$

- 假设晶体具有立方对称性、选取惯用晶胞的三个晶轴为主轴。
 - * 考虑绕 z 轴旋转 180° 的对称操作,对应的正交矩阵 $U_z^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,根据式(4),

$$\begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & -\varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & -\varepsilon_{23} \\ -\varepsilon_{31} & -\varepsilon_{32} & \varepsilon_{33} \end{pmatrix} \Rightarrow \varepsilon = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & 0 \\ \varepsilon_{21} & \varepsilon_{22} & 0 \\ 0 & 0 & \varepsilon_{33} \end{pmatrix}$$

再做绕 y 轴或绕 x 轴旋转 180° 的操作,可以得到介电常数在此坐标系下是对角的,即 $\varepsilon_{ii} = \varepsilon_i \delta_{ii}$ 。

点群对称和晶体的物理性质

參 绕
$$z$$
 轴旋转 90° , $U_z^4 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 根据式 (4) ,

$$\begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \varepsilon_2 & 0 & 0 \\ 0 & \varepsilon_1 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix}$$

因此, $\varepsilon_1 = \varepsilon_2$ 。同理, 做绕 x 或 y 轴旋转90° 可以进一步得到 $\varepsilon_1 = \varepsilon_2 = \varepsilon_3$ 。

 ϵ 在具有立方对称的晶体中,介电常数张量为标量 $\epsilon = \epsilon \mathbb{1}$,不依赖坐标轴的选取。

< □ > < 圖 > 〈 필 > 〈 필 > 〈 필 > 〈 필 : 《 의 < () ·

目录

- 1 对称性的概念
 - 晶体中的宏观对称性
 - 晶体中允许的对称操作
- ② 晶体宏观对称性的表述: 点群
 - 点群对称性和晶体的物理性质
- 3 晶体微观对称性的表述:空间群
- 4 附录

三维布拉维格子

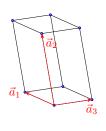
一共有 14 种三维布拉维格子: 在 7 个晶系(格子系)对应的简单布拉维格子的基础上增加体心、面心等。看是否出现新的布拉维格子。

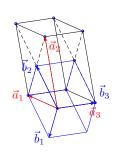
符号	分数坐标
I	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
F	$(\frac{1}{2}, \frac{1}{2}, 0)$, $(\frac{1}{2}, 0, \frac{1}{2})$, $(0, \frac{1}{2}, \frac{1}{2})$
С	$(\frac{1}{2}, \frac{1}{2}, 0)$
В	$(0, \frac{1}{2}, \frac{1}{2})$
Α	$(\frac{1}{2}, 0, \frac{1}{2})$
R	$(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$
	I F C B

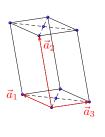
注: 分数坐标 (f_1, f_2, f_3) 表示附加格点位置 $\tau = \sum_{i=1}^3 f_i \mathbf{a}_i$

三维布拉维格子

单斜简单格子 $(\gamma \neq 90^\circ, \,$ 左图) 在底心 C 增加格点并不会形成新的格子 (中) ,在底心 A 增加格点则会形成新的格子 (右图) 。







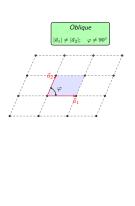
◉ 立方晶系,由于 4 个三重轴,只增加一个底心显然会破会三重轴,因此只能增加体心或者面心。

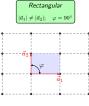
14 种三维布拉维格子

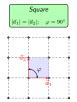
	Triclinic	Monoclinic	Orthorhombic	Tetragonal	Cubic	Trigonal	Hexagonal
	$ \vec{a}_1 \neq \vec{a}_2 \neq \vec{a}_3 $ $\alpha \neq \beta \neq \gamma$	$ \vec{a}_1 \neq \vec{a}_2 \neq \vec{a}_3 $ $\alpha \neq 90^\circ = \beta = \gamma$	$\begin{split} \vec{a}_1 \neq \vec{a}_2 \neq \vec{a}_3 \\ \alpha = \beta = \gamma = 90^\circ \end{split}$	$ ec{a}_1 = ec{a}_2 eq ec{a}_3 $ $lpha=eta=\gamma=90^\circ$	$ ec{a}_1 = ec{a}_2 = ec{a}_3 $ $lpha=eta=\gamma=90^\circ$	$\begin{split} \vec{a}_1 &= \vec{a}_2 = \vec{a}_3 \\ \alpha &= \beta = \gamma < 120^\circ \neq 90^\circ \end{split}$	$\begin{aligned} \vec{a}_1 &= \vec{a}_2 \neq \vec{a}_3 \\ \alpha &= \beta = 90^\circ, \gamma = 120 \end{aligned}$
Primitive	\vec{a}_2 \vec{a}_3 \vec{a}_1	\vec{a}_2 \vec{a}_1	\vec{a}_2 \vec{a}_1	\vec{a}_2 \vec{a}_1	\vec{a}_2 \vec{a}_3 \vec{a}_4	\tilde{d}_3 \tilde{d}_1	\vec{a}_2
Base-centered		\vec{a}_2 \vec{a}_1	$ec{a}_2$ $ec{a}_3$ $ec{a}_1$	-			$ec{a}_1$
Body-centered			\vec{a}_2 \vec{a}_1	\vec{a}_2	\vec{a}_2 \vec{a}_1		$\cos \alpha = \frac{\vec{a}_2 \cdot \vec{a}_3}{ \vec{a}_2 \times \vec{a}_3 }$
Face-centered				$ec{a}_1$			$\cos \beta = \frac{\vec{a}_1 \cdot \vec{a}_3}{ \vec{a}_1 \times \vec{a}_3 }$ $\vec{a}_1 \cdot \vec{a}_2$

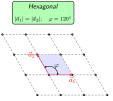
二维布拉维格子

★ 二维情况下,共有 10 个晶体学点群, 4 个晶系, 5 种布拉维格子。









非点对称操作

- 平移操作(translation),对应对称元素为平移轴。总共有 14 种布拉维格子,也就有 14 个平移群。
- * 螺旋旋转(screw rotation),对应的对称元素为螺旋轴(screw axis),国际符号为 n_m ,旋转 $2\pi/n$ 并沿格矢方向移动 m/n 个格矢长度。晶体中允许的螺旋轴有: $2_1, 3_1, 3_2, 4_1, 4_2, 4_3, 6_1, 6_2, 6_3, 6_4, 6_5$

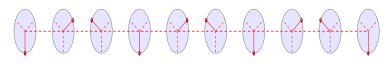


图 - 3 重螺旋轴

常 滑移(glide translation), 对应的对称元素为滑移面(glide plane)

230 种空间群

- 32 种晶体学点群,加上上面提到的 3 类操作可以导出 230 种空间群,其中
 - 73 种简单空间群,由平移和点对称操作组成
 - 157 中复杂空间群,包含点对称操作、滑移和螺旋操作
- 空间群是对晶体对称性更细致的分类,反映了晶体中各原子的位置及环境特点,对于深入分析晶体的性质、非常重要。
- 所有的晶体结构,就它的对称性而言,共有230种类型,这是理论上的分析结果这是理论上的分析结果。至目前为止,还有几十种空间群尚未找到具体晶体的例子。

7 个晶系, 14 个布拉维格子, 73 个空间群

晶系	单胞基矢特征	布拉维格子	空间群
三斜	$\begin{array}{l} a\neq b\neq c\\ \alpha\neq\beta\neq\gamma \end{array}$	简单三斜 (P)	$P1,\ Par{1}$
单斜	$a \neq b \neq c$	简单单斜 (P)	P2, Pm, P2/m
半計	$\alpha=\beta=90^{\circ}\neq\gamma$	底心单斜 (B 或 A)	B2, Bm, B2/m
		简单正交 (P)	$P222,\ Pmm2,\ Pmmm$
正交	$a \neq b \neq c$	底心正交 (C, B 或 A)	C222, $Cmm2$, $Amm2$, $Cmmm$
шХ	$\alpha = \beta == \gamma = 90^{\circ}$	体心正交 (I)	I222, $Imm2$, $Immm$
		面心正交 (F)	$F222,\ Fmm2,\ Fmmm$
四方	$a = b \neq c$	简单四方 (P)	$P4,\ P\bar{4},\ P4/m,\ P422,\ P4mm,\ P\bar{4}2m,\ P\bar{4}m2,\ P4/mmm$
四万	$\alpha=\beta=\gamma=90^{\rm o}$	体心四方 (I)	$I4,\ I\overline{4},\ I4/m,\ I422,\ I4mm,\ I\overline{4}2m,\ I\overline{4}m2,\ I4/mmm$
三方	a = b = c $\alpha = \beta = \gamma < 120^{\circ} \neq 90^{\circ}$	三方 (R,P)	$R3,\ R\bar{3}\ R32,\ R3m,\ R\bar{3}m,\ P3,\ P\bar{3},\ P312,\ P321,\ P3m1,\ P31m,\ P\bar{3}1m,\ P\bar{3}m1$
六方	$a = b \neq c$ $\alpha = \beta = 90^{\circ};$ $\gamma = 120^{\circ}$	六方 (P)	$P6,\ P\tilde{6},\ P6/m,\ P622,\ P6mm,\ P\tilde{6}m2,\ P\tilde{6}2m,\ P6/mmm$
		简单立方 (P)	$P23, Pm3, P432, P\bar{4}3m, Pm3m$
立方	a = b = c $\alpha = \beta = \gamma = 90^{\circ}$	体心立方 (I)	$I23$, $Im3$, $I432$, $I\bar{4}3m$, $Im3m$
		面心立方 (F)	$F23,\ Fm3,\ F432,\ F\bar{4}3m,\ Fm3m$

谢谢!

目录

1 对称性的概念

🐠 附录

- 晶体中的宏观对称性
- 晶体中允许的对称操作
- ② 晶体宏观对称性的表述: 点群
 - 点群对称性和晶体的物理性质
- ③ 晶体微观对称性的表述: 空间群

32 个晶体学点群

晶系	熊夫利符号	国际符号		对称元素	群元素数
		全称	简称		
三斜	C_1	1	1	E	1
(Triclinic)	S_2	$\bar{1}$	$\bar{1}$	E, i	2
	C_2	2	2	E, C_2	2
单斜 (Monoclinic)	C_{1h}	m	m	E , σ_h	2
(wondenine)	C_{2h}	2/m	2/m	E , C_2 , i , σ_h	4
	D_2	2 2 2	2 2 2	E, C2, 2C' ₂	4
正交 (Orthorhombic)	C_{2v}	mm2	mm2	E , C_2 , $2\sigma_v$	4
	D_{2h}	(2/m)(2/m)(2/m)	mmm	E , C_2 , $2C_2'$, i, σ_h , $2\sigma_v$	8
	C_4	4	4	$E, 2C_4, C_2$	4
	S_4	$\bar{4}$	$\bar{4}$	$E, 2S_4, C_2$	4
m→	C_{4h}	4/m	4/m	$E, 2C_4, C_2, i, 2S_4, \sigma_h$	8
四方 (Tetragonal)	D_4	4 2 2	$4\ 2\ 2$	$E, 2C_4, C_2, 2C'_2, 2C''$	8
(Tetrugonar)	C_{4v}	4mm	4mm	E , $2C_4$, C_2 , $2\sigma_v$, $2\sigma_d$	8
	D_{2h}	$\bar{4}2m$	$\bar{4}2m$	E , C_2 , $2C_2'$, $2\sigma_d$, $2S_4$	8
	D_{4h}	(4/m)(2/m)(2/m)	4/mmm	E , $2C_4$, C_2 , $2C_2'$, $2C_2''$, i , $2S_4$, σ_h , $2\sigma_v$, $2\sigma_d$	16

32 个晶体学点群

晶系	熊夫利符号	国际符号		对称元素	群元素数
		全称	简称		
	C_3	3	3	E, 2C ₃	3
	S_6	3	3	$E, 2C_3, i, 2S_6$	6
三方 (Trigonal)	D_3	32	32	E , $2C_3$, $3C'_2$	6
(Tilgoliai)	C_{3v}	3m	3m	E , $2C_3$, $3\sigma_v$	6
	D_{3d}	$\bar{3}(2/m)$	$\bar{3}m$	$E, 2C_3, 3C_2, i, 3\sigma_v, 2S_6$	12
	C_6	6	6	$E, 2C_6, 2C_3, C_2$	6
	C_{3h}	$\bar{6}$	$\bar{6}$	$E, 2C_3, \sigma_h, 2S_3$	6
	C_{6h}	6/m	6/m	E , $2C_6$, $2C_3$, C_2 , i , $2S_3$, $2S_6$, σ_h	12
六方 (Hexagonal)	D_6	6 2 2	$6\ 2\ 2$	E , $2C_6$, $2C_3$, C_2 , $3C_2'$, $3C''$	12
(Trexagoriar)	C_{6v}	6mm	6mm	$E, 2C_6, 2C_3, C_2, 3\sigma_v, 3\sigma_d$	12
	D_{3h}	$\bar{6}m2$	$\bar{6}m2$	$E, 2C_3, 3C'_2, \sigma_h, 2S_3, 3\sigma_v$	12
	D_{6h}	(6/m)(2/m)(2/m)	6/mmm	E, $2C_6$, $2C_3$, C_2 , $3C_2'$, $3C_2'$, i , $2S_3$, $2S_6$, σ_h , $3\sigma_v$, $3\sigma_d$	24
	T	23	23	$E, 8C_3, 3C_2$	12
	T_h	$(2/m)\bar{3}$	$m\bar{3}$	$E, 8C_3, 3C_2, i, 8S_6, 3\sigma_h$	24
立方 (Cubic)	0	4 3 2	$4\ 3\ 2$	$E, 8C_3, 3C_2, 6C_2, 6C_4$	24
(Cable)	T_d	$\bar{4}3m$	$\bar{4}3m$	$E, 8C_3, 3C_2, 6\sigma_d, 6S_4$	24
	O_h	$(4/m)\bar{3}2/m$	m3m	E , $8C_3$, $3C_2$, $6C_2$, $6C_4$, i , $8S_6$, $3\sigma_h$, $6\sigma_d$, $6S_4$	48