A New Image Filtering Method: Nonlocal Image Guided Averaging

Jing Zhang*,†, Yang Cao*,†, Zengfu Wang*†‡

*Department of Automation, University of Science and Technology of China
†National Engineering Laboratory for Speech and Language Information Processing, Hefei, China
‡Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China

May 7, 2014
Motivation

Filtering a map under the guidance of a color image

- Joint bilateral filter
 - Spatial filter kernel
 - Range filter kernel (guidance image information)
- Image guided filter
 - Local linear model
- To design a new one
 - Nonlocal self-similarity of natural image
 - Nonlocal linear model?
Related work

Joint bilateral filter:

\[q_i = \frac{1}{k_i} \sum_{j \in \Omega} p_{ji} f(||i - j||) g(||I_i - I_j||) \]
Related work

\[
q_i = \frac{1}{|\omega|} \sum_{k:i \in \omega_k} (a_k^T I_i + b_k)
\]

Image guided filter kernel:

\[
W_{ij}(I) = \frac{1}{|\omega|^2} \sum_{k:(i,j) \in \omega_k} \left(1 + (l_i - \mu_k)^T (\Sigma_k + \epsilon)^{-1} (l_j - \mu_k)\right)
\]

See NLGF kernel
Nonlocal linear model: \(Q_{ij} \mathbf{q}_j = Q_{ij} \left(a_i^T \mathbf{l}_j + b_i \right), j \in N(i) \)

Here \(Q_{ij} = \sqrt{w_{ij} / \sum_{j \in N(i)} w_{ij}} \), \(w_{ij} \) is the nonlocal weight.

Energy function:
\[
E(\mathbf{a}, \mathbf{b}) = \sum_{i \in \Lambda} \left[\sum_{j \in N(i)} w_{ij} \left\| \mathbf{p}_j - \mathbf{q}_j \right\|^2 + \varepsilon \mathbf{a}_i^2 \right] \\
= \sum_{i \in \Lambda} \left[\sum_{j \in N(i)} w_{ij} \left\| \mathbf{p}_j - \left(a_i^T \mathbf{l}_j + b_i \right) \right\|^2 + \varepsilon \mathbf{a}_i^2 \right]
\]

See regression
Nonlocal linear model

\[
Q_{ij} \left(a_i^T I_j + b_i \right) = Q_{ij} q_j
\]
Remarks on the energy function:

- Weighted quadratic form of a_i and b_i,
- Applying the first-order condition on every pair of a_i and b_i separately.

Coefficients

\[
\frac{\partial E(a_i, b_i)}{\partial b_i} = 0 \Rightarrow b_i^* = \frac{p_w(N(i)) - a_i^T I_w(N(i))}{\Sigma_i, w + \varepsilon}
\]

\[
\frac{\partial E(a_i, b_i^*)}{\partial a_i} = 0 \Rightarrow a_i^* = \left(\Sigma_i, w + \varepsilon\right)^{-1} \times \left(\sum_{j \in N(i)} (w_{ij} p_j \times l_j) - \frac{p_w(N(i)) \times I_w(N(i))}{\Sigma_i, w + \varepsilon}\right)
\]
New filters v.s. GF

\[q_i = \sum_{j \in N(i)} w_{ij} \left(a_j^T l_j + b_j \right) \]

Filter kernel:
\[W_{ij} (l) = \frac{\partial q_i}{\partial p_j} = \sum_{k: (i,j) \in N(k)} w_{ik} w_{kj} \times \]
\[1 + \left(l_k - \bar{l}_w (N(k)) \right)^T (\Sigma_{k,w} + \varepsilon)^{-1} \left(l_j - \bar{l}_w (N(k)) \right) \]

Relation with guided filter: See GF kernel

\[q_i = \sum_{j \in N(i)} w_{ij} \left(a_j^T l_j + b_j \right) = \sum_{j \in N(i)} (w_{ij} a_j)^T l_i + (w_{ij} b_j) \]

Filter kernel:
\[W_{ij} (l) = \frac{\partial q_i}{\partial p_j} = \sum_{k: (i,j) \in N(k)} w_{ik} w_{kj} \times \]
\[1 + \left(l_i - \bar{l}_w (N(k)) \right)^T (\Sigma_{k,w} + \varepsilon)^{-1} \left(l_j - \bar{l}_w (N(k)) \right) \]
A New Image Filtering Method: Nonlocal Image Guided Averaging (9/16)

Jing Zhang*†, Yang Cao*†, Zengfu Wang*†‡

Introduction

Related Work

NLGA
Nonlocal Linear Model
Regression
A New Filter

Experiments
Depth SR
Dehazing
Denoising

Conclusion

Kernel comparisons

Figure: Kernels of GF, JBF, NLGF and NLGA.
Experiments: depth SR

Figure: Depth super-resolution results of GF, NLGF and NLGA, down-sampling factor: 10.
Experiments: depth SR

Table: PSNR (dB) of super-resolution results obtained by different methods: Nearest Interpolation, GF, NLGF and NLGA. The down-sampling factor is 10. $r = 20$, $\varepsilon = 10^{-3}$.

<table>
<thead>
<tr>
<th>Method</th>
<th>Interpolation</th>
<th>GF</th>
<th>NLGF</th>
<th>NLGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>22.94</td>
<td>25.64</td>
<td>25.92</td>
<td>26.10</td>
</tr>
<tr>
<td>Books</td>
<td>29.91</td>
<td>30.52</td>
<td>31.31</td>
<td>31.23</td>
</tr>
<tr>
<td>Dolls</td>
<td>31.97</td>
<td>33.09</td>
<td>33.87</td>
<td>33.74</td>
</tr>
<tr>
<td>Laundry</td>
<td>27.40</td>
<td>29.20</td>
<td>29.50</td>
<td>29.67</td>
</tr>
<tr>
<td>Moebius</td>
<td>30.24</td>
<td>31.32</td>
<td>32.67</td>
<td>32.49</td>
</tr>
<tr>
<td>Reindeer</td>
<td>24.97</td>
<td>28.97</td>
<td>28.47</td>
<td>28.54</td>
</tr>
</tbody>
</table>
Experiments: dehazing

(a) The hazy image. (e) Raw transmission map. (f)-(h) Filtered transmission map using GF, NLGF and NLGA respectively. (b)-(d) Recovered image using (f)-(h) respectively.
Experiments: denoising

Figure: Image denoising results of GF, NLGF, NLM and NLGA. (a) The original color test image: “House”. (b) Noisy image with Gaussian noise: $\sigma=20$, PSNR: 22.10dB. (c) Image Guided filtering result, PSNR: 25.13dB. (d) Result of NLGF, PSNR: 27.32dB. (e) Result of NLM, PSNR: 31.59dB. (f) Result of NLGA, PSNR: 32.04dB.
Experiments: denoising

<table>
<thead>
<tr>
<th>σ</th>
<th>Method</th>
<th>Lena</th>
<th>Barbara</th>
<th>Boats</th>
<th>House</th>
<th>Peppers</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noisy</td>
<td>GF</td>
<td>22.11</td>
<td>22.12</td>
<td>22.10</td>
<td>22.13</td>
<td>22.11</td>
<td>22.11</td>
</tr>
<tr>
<td>20</td>
<td>NLGF</td>
<td>27.14</td>
<td>26.49</td>
<td>26.66</td>
<td>27.46</td>
<td>26.64</td>
<td>26.88</td>
</tr>
<tr>
<td></td>
<td>NLM</td>
<td>30.29</td>
<td>28.79</td>
<td>28.91</td>
<td>30.86</td>
<td>29.02</td>
<td>29.57</td>
</tr>
<tr>
<td></td>
<td>NLGA</td>
<td>31.01</td>
<td>29.22</td>
<td>29.31</td>
<td>31.78</td>
<td>29.53</td>
<td>30.17</td>
</tr>
<tr>
<td>Noisy</td>
<td>GF</td>
<td>24.25</td>
<td>22.69</td>
<td>23.48</td>
<td>23.85</td>
<td>21.69</td>
<td>23.19</td>
</tr>
<tr>
<td>30</td>
<td>NLGF</td>
<td>24.00</td>
<td>23.42</td>
<td>23.64</td>
<td>24.17</td>
<td>23.60</td>
<td>23.77</td>
</tr>
<tr>
<td></td>
<td>NLM</td>
<td>27.90</td>
<td>26.37</td>
<td>26.69</td>
<td>28.24</td>
<td>26.58</td>
<td>27.16</td>
</tr>
<tr>
<td></td>
<td>NLGA</td>
<td>28.94</td>
<td>26.90</td>
<td>27.33</td>
<td>29.47</td>
<td>27.22</td>
<td>27.97</td>
</tr>
</tbody>
</table>
— A new image filtering method: NLGA
 ▶ exploiting the nonlocal self-similarity of the color image
 ▶ nonlocal linear model: adaptive regression
 ▶ robust to small textures and noise
 ▶ relation with image guided filter (NLGF v.s GF)

— Applications
 ▶ depth super-resolution
 ▶ image dehazing
 ▶ image denoising
Thank you!