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Sparsity in Inverse Geophysical Problems
Abstract

Many geophysical imaging problems are ill-posed in the sense that the solution does not depend continuously on the
measured data. Therefore their solutions cannot be computed directly, but instead require the application of
regularization. Standard regularization methods find approximate solutions with small   norm. In contrast, L 2 sparsity
regularization yields approximate solutions that have only a small number of nonvanishing coefficients with respect to a
prescribed set of basis elements. Recent results demonstrate that these sparse solutions often much better represent real
objects than solutions with small   norm. In this survey, recent mathematical results for sparsity regularization areL 2

reviewed. As an application of the theoretical results, synthetic focusing in Ground Penetrating Radar is considered,
which is a paradigm of inverse geophysical problem.

1 Introduction

In a plethora of industrial problems one aims at estimating the properties of a physical object from observed data. Often
the relation between the physical object and the data can be modeled sufficiently well by a linear equation

(1)

where  is a representation of the object in some Hilbert space , and  a representation of the measurement data, againu U v
in a Hilbert space  . Because the operator :  →  in general is continuous, the relationship (1) allows one to easilyV A U V
compute data  from the properties of the object , provided they are known. This is the so called . Inv u forward problem
many practical applications, however, one is interested in the  of estimating the quantity  from measuredinverse problem u
data . A typical feature of  is that the solution of (1) is very sensitive to perturbations in . Because inv inverse problems v
practical applications only an approximation   of the true data  is given, the direct solution of Eq. 1 by applying thev δ v
inverse operator is therefore not advisable (see Engl et al. ; Scherzer et al. ).1996 2009
By incorporating a priori information about the exact solution, regularization methods allow to calculate a reliable
approximation of  from the observed data  . In this chapter, the main interest lies in sparsity regularization, where the au v δ

priori information is that the true solution  is sparse in the sense that only few coefficients 〈 , ϕ 〉 with respect to someu u λ
prescribed basis (ϕ )  are nonvanishing. In the discrete setting of compressed sensing it has recently been shown thatλ λ ∈ Λ

sparse solutions can be found by minimizing the  -norm of the coefficients 〈 , ϕ 〉, see Donoho and Elad ( ) andℓ 1 u λ 2003

Candès et al. ( ). Minimization of the   norm for finding a sparse solutions has however been proposed and studied2006 ℓ 1

much earlier for certain geophysical inverse problems (see Claerbout and Muir ; Levy and Fullagar ; Oldenburg1973 1981
et al. ; Santosa and Symes ).1983 1986

1.1 Case Example: Ground Penetrating Radar

The case example of a geophysical inverse problem studied in this chapter is Ground Penetrating Radar , which(GPR)
aims at finding buried objects by measuring reflected radar signals (Daniels 2004). The reflected signals are detected in
zero offset mode (emitting and detecting antenna are at the same position) and used to estimate the reflecting objects.
The authors' interest in GPR has been raised by the possibility of locating avalanche victims by means of a GPR system
mounted on a flying helicopter (Haltmeier et al. 2005; Frhauf et al. 2009). The basic principle of collecting GPR data from
a helicopter is shown in .  .Fig 1
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Fig. 1 Collecting GPR data from a flying helicopter. At each position on the flight path , the antenna emits a short radar pulse. TheΓ
radar waves get reflected, and the scattered signals are collected in radargrams

In Sect. 5.1, it is shown that the imaging problem in GPR reduces to solving Eq. 1, with  being the circular RadonA
transform. The inversion of the circular Radon transform also arises in several other up-to-date imaging modalities, such
as in SONAR, , ultrasound tomography, and photo-/thermo-acoustic tomography (see, e.g., Norton andseismic imaging
Linzer ; Andersson ; Bleistein et al. ; Finch and Rakesh ; Patch and Scherzer ; Kuchment and1981 1988 2001 2007 2007
Kunyansky ; Scherzer et al. ; Symes  and the reference therein).2008 2009 2009

2 Variational Regularization Methods

Let  and  be Hilbert spaces and let :  →  be a bounded linear operator with unbounded inverse. Then, the problemU V A U V
of solving the operator equation

is ill-posed. In order to (approximately) solve this equation in a stable way, it is therefore necessary to introduce some a

priori knowledge about the solution , which can be expressed via smallness of some regularization functional :  →u U
[0, + ]. In classical regularization theory one assumes that the possible solutions have a small energy in some Hilbert∞

space norm-typically an   or  -norm is used-and defines  as the square of this norm. In contrast, in this chapterL 2 H 1

the situation of  constraints is considered, where one assumes that the possible solutions have a sparsesparsity
expansion with respect to a given basis.

In the following,   denotes any -minimizing solution of the equation   = , provided that it exists, that is,u † A u v

In applications, it is to be expected that the measurements  one can obtain are disturbed by noise. That is, one is notv
able to measure the true data , but only has some noisy measurements   available. In this case, solving thev v δ

constrained minimization problem ( ) → min subject to   =   is not suitable, because the ill-posedness of theu A u v δ

equation will lead to unreliable results. Even more, in the worst case it can happen that   is not contained in the range ofv δ

, and thus the equation   =   has no solution at all. Thus, it is necessary to restrict oneself to solving the givenA A u v δ

equation only approximately.
Three methods are considered for the approximate solution, all of which require knowledge about, or at least some
estimate of, the noise level .δ: = ||  − ||v vδ

Residual method: Fix τ ≥ 1 and solve the constrained minimization problem

(2)

Tikhonov regularization with discrepancy principle: Fix τ ≥ 1 and minimize the Tikhonov functional
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(3)

where α > 0 is chosen in such a way that Morozov's discrepancy principle is satisfied, that is,  with 

.

Tikhonov regularization with a priori parameter choice: Fix  > 0 and minimize the Tikhonov functional (3) with aC
parameter choice

(4)

The residual method aims for the minimization of the penalty term  over all elements  that generate approximationsu

of the given noisy data  ; the size of the permitted defect is dictated by the assumed noise level δ. In particular, the truev δ

solution   is guaranteed to be among the feasible elements in the minimization problem (2). The additional parameter τu †

≥ 1 allows for some incertitude concerning the precise noise level; if τ is strictly greater than 1, an  of theunderestimation
noise would still yield a reasonable result.

If the regularization functional  is convex, the residual method can be shown to be equivalent to Tikhonov
regularization with a parameter choice according to Morozov's discrepancy principle, provided the size of the signal is
larger than the noise level, that is, the signal-to-noise ratio is larger than τ. In this case, the regularization parameter α in
(3) plays the role of a Lagrange parameter for the solution of the constrained minimization problem (2). This equivalence
result is summarized in the following theorem (see Ivanov et al. , Theorems 3.5.2, 3.5.5):2002
Theorem 1.

Assume that the operator : U → V is linear and has dense range and that the regularization term  is convex. InA

addition assume that (u) = 0 if and only if u = 0. Then the residual method and Tikhonov regularization with an a
posteriori parameter choice by means of the discrepancy principle are equivalent in the following sense:

Let v  ∈        δ V and δ > 0 satisfy ∥v δ ∥ > τδ. Then u δ solves the constrained problem ( 2 ), if and only if

    and there exists some α > 0 such that u δ minimizes the Tikhnonov functional ( 3 ).
In order to show that the methods introduced above are indeed regularizing, three properties have to be necessarily
satisfied, namely existence, stability, and convergence. In addition, convergence rates can be used to quantify the quality
of the method:

Existence: For each regularization parameter α > 0 and every   ∈  the regularization functional  attainsv δ V

its minimum. Similarly, the minimization problem (2) has a solution.
Stability is required to ensure that, for fixed noise level δ, the regularized solutions depend continuously on the
data  .v δ

Convergence ensures that the regularized solutions converge to   as the noise level decreases to zero.u †

Convergence rates provide an estimate of the difference between the minimizers of the regularization functional
and  .u †

Typically, convergence rates are formulated in terms of the  (see Burger and Osher ; Resmerita Bregman distance 2004

; Hofmann et al. ; Scherzer et al. ), which, for a convex and differentiable regularization term  with2005 2007 2009

subdifferential  and ξ ∈  (  ), is defined as∂ u †

That is,  measures the distance between the tangent and the  . In general,convex function
convergence with respect to the Bregman distance does not imply convergence with respect to the norm, strongly
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reducing the significance of the derived rates. In the setting of sparse regularization to be introduced below, however, it is
possible to derive convergence rates with respect to the norm on .U

3 Sparse Regularization

In the following, the focus lies on  promoting regularization methods. To that end, it is assumed that (ϕ )  is ansparsity λ λ ∈ Λ
orthonormal basis of the Hilbert space , for instance a wavelet or Fourier basis. For  ∈ , the support of  with respectU u U u
to the basis (ϕ )  is denoted byλ λ ∈ Λ

If | supp( ) | ≤  for some , then the element  is called -sparse. It is called , if it is -sparse for some u s u s sparse s

, that is, | supp( ) | < . Given weights  , λ ∈ Λ, bounded below by some constant   > 0, the authorsu ∞ w λ w min

define for 0 <  ≤ 2 the   -regularization functional ,q ℓ q

If  = 2, then the regularization functional is simply the weighted squared Hilbert space norm on .q U
If  is smaller than 2, small coefficients 〈ϕ , 〉 are penalized comparatively stronger, while the penalization of largeq λ u

coefficients becomes less pronounced. As a consequence, the reconstructions resulting by applying any of the above
introduced regularization methods will exhibit a small number of significant coefficients, while most of the coefficients will
be close to zero. These sparsity enhancing properties of   -regularization become more pronounced as the ℓ q parameter q
decreases. If one choose  at most 1, then the reconstructions are necessarily sparse in the above, strict sense, that is,q
the number of nonzero coefficients is at most finite (see Grasmair ):2010
Proposition 1

Let q ≤ 1, α > 0, v  ∈      δ V . Then every minimizer of the Tikhonov functional with regularization term q is

sparse.
There are compelling reasons for using an exponent  ≥ 1 in applications, as this choice entails the convexity of theq
ensuing regularization functionals. In contrast, a choice  < 1 leads to nonconvex minimization problems and, as aq
consequence, to numerical difficulties in their minimization. In the convex case  ≥ 1, there are several possible strategiesq

for computing the minimizers of regularization functional . Below, in Sect. 4, two different, iterative methods are

considered: an Iterative  Algorithm for regularization with a priori parameter choice and 1 ≤  ≤ 2Thresholding q
(Daubechies et al. ), and a log-barrier method for Tikhonov regularization with an a posteriori parameter choice by2004
the discrepancy principle in the case  = 1 (Candès and Romberg ). Iterative thresholding algorithms have also beenq 2005
studied for nonconvex situations, but there the convergence to global minima has not yet been proven (Bredies and
Lorenz ).2009

3.1 Convex Regularization

Now the theoretical properties of   type regularization methods with  ≥ 1 are studied, in particular the questions ofℓ q q
existence, stability, convergence, and convergence rates. In order to be able to take advantage of the equivalence result
Theorem 1, it is assumed in the following that the operator :  →  has dense range.A U V
The question of existence is easily answered (Grasmair et al. 2008, 2009b):
Proposition 2 (Existence)

For every α > 0 and v  ∈      δ V the functional has a minimizer in U. Similarly, the problem of minimizing q (u)

 ∥ u − v ∥≤ τδ .subject to the constraint A δ admits a solution in U
Though the previous lemma states the existence of minimizers for all  ≥ 1, there is a difference between the cases  = 1q q
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and  > 1. In the latter case, the regularization functional  is strictly convex, which implies that the minimizer mustq

be unique. For  = 1, the regularization functional is still convex, but the strict convexity holds only, if the operator  isq A
injective. Thus, it can happen that one does not obtain a single approximate solution, but a whole (convex and closed) set
of minimizers. Because of this possible nonuniqueness, the stability and convergence results have to be formulated in
terms of subsequential convergence.
Also, one has to differentiate between a priori and a posteriori parameter selection methods. In the latter case, the
stability and convergence results can be formulated solely in terms of the noise level δ. In the case of an a priori
parameter choice, it is in addition necessary to take into account the actual choice of α in dependence of δ. For the
following results see Lorenz ( ) and Grasmair et al. ( ).2008 2009b
Proposition 3 (Stability)
Let δ > 0 be fixed and let v    k → v δ . Consider one of the following settings:

Residual method   ∈   : Let u k U be solutions of the residual method with data v k and noise level δ.

Discrepancy principle   ∈   : Let u k U be solutions of Tikhonov regularization with data v k and an a posteriori parameter

choice according to the discrepancy principle for noise level δ.
A priori parameter choice   ∈   : Let α > 0 be fixed, and let u k U be solutions of Tikhonov regularization with data v k and

regularization parameter α.

Then the sequence      has a subsequence converging to a regularized solution u δ obtained with data v δ and

     .the same regularization method. If u δ is unique, then the whole sequence converges to u δ

Proposition 4 (Convergence)
Let δ    ∈ k → 0 and let v k V satisfy

 ∈  u = v and  (u) < +∞. Consider one of the following settings:Assume that there exists u U with A q
Residual method   ∈    .: Let u k U be solutions of the residual method with data v k and noise level δ k
Discrepancy principle   ∈   : Let u k U be solutions of Tikhonov regularization with data v k and an a posteriori parameter

 .choice according to the discrepancy principle with noise level δ k

A priori parameter choice:            ∈ Let α k > 0 satisfy α k → 0 and δ k
2 ∕α k → 0, and let u k U be solutions of Tikhonov

   .regularization with data v k and regularization parameter α k

Then the sequence        uhas a subsequence converging to an q -minimizing solution u † of the equation A

= v. If u  is unique, then the whole sequence  converges to u .† †

Note that the previous result in particular implies that an   -minimizing solution   of   =  indeed exists. Also,q u † A u v

the uniqueness of   is trivial in the case  > 1, as then the functional   is strictly convex. Thus, one obtains in thisu † q q

situation indeed convergence of the whole sequence .

Though it is known now that approximative solutions converge to true solutions of the considered equation as the noise
level decreases to zero, no estimate for the speed of the convergence is obtained. Indeed, in general situations the

convergence can be arbitrarily slow. If, however, the   -minimizing solution   satisfies a so-called sourceq u †

condition, then one can obtain sufficiently good convergence rates in the strictly convex case  > 1. If, in addition, theq
solution   is sparse and the operator  is invertible on the support of  , then the convergence rates improve further.u † A u †

Before stating the convergence rates results, the authors recall the definition of the source condition and its relation to the
well-known Karush-Kuhn-Tucker condition used in convex optimization.
Definition 1.
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The   -minimizing solution   of the equation   =  satisfies the source condition, if there exists ξ ∈  such that  q u † A u v V A

 ξ ∈    (  ). Here    (  ) denotes the subdifferential of the function   at  , and   :  →  is the∗ ∂ q u † ∂ q u †
q u † A ∗ V U

adjoint of .A
In other words, if  > 1 one hasq

and if  = 1 one hasq

The conditions   ξ ∈    (  ) for some ξ ∈  and    =  are nothing more than the Karush-Kuhn-TuckerA ∗ ∂ q u † V A u † v

conditions for the constrained minimization problem

In particular, it follows that  ∈  is an   -minimizing solution of the equation   =  whenever  satisfies theũ U q A u v ũ

equation   =  and one has    ∩    ( )≠  (Ekeland and Temam , Proposition 4.1).A ũ v ran A ∗ ∂ q ũ ∅ 1974

The following convergence rates result can be found in Lorenz ( ) and Grasmair et al. ( ). It is based on results2008 2009b
concerning convergence rates with respect to the Bregman distance (see Burger and Osher ) and the fact that, for  2004 ℓ
 -regularization, the norm can be bounded from above, locally, by the Bregman distance.q

Proposition 5
Let 1 < q ≤ 2 and assume that u    ∈       † satisfies the source condition. Denote, for v δ V satisfying ∥v δ − v∥≤ δ, by u δ := u(v δ

  ) the solution with data v δ of either the residual method, or Tikhonov regularization with Morozov's discrepancy principle,
or Tikhonov regularization with an a priori parameter choice α = Cδ for some fixed C > 0. Then

In the case of an a priori parameter choice, one additionally has that

The convergence rates provide (asymptotic) estimates of the accuracy of the approximative solution in dependence of the
noise level δ. Therefore, the optimization of the order of convergence is an important question in the field of inverse

.problems
In the case of Tikhonov regularization with a priori parameter choice, the rates can indeed be improved, if the stronger

source condition   η ∈    (  ) for some η ∈  holds. Then, one obtains with a parameter choice α = δ  aA ∗ A ∂ q u † U C 2 ∕ 3

rate of order (δ ) (see Groetsch ; Resmerita ). For quadratic Tikhonov regularization it has been shown thatO 2 ∕ 3 1984 2005
this rate is the best possible one. That is, except in the trivial case   = 0, there exists no parameter selection method,u †

neither a priori nor a posteriori, that can yield a better rate than (δ ) (see Neubauer ). This saturation resultO 2 ∕ 3 1997
poses a restriction on the quality of reconstructions obtainable with quadratic regularization.
In the nonquadratic case  < 2 the situation looks different. If the solution   is sparse, then the convergence ratesq u †

results can be improved beyond the quadratic bound of (δ ). Moreover, they also can be extended to the case  = 1.O 2 ∕ 3 q
For the improvement of the convergence rates, an additional injectivity condition is needed, which requires the operator A
to be injective on the (finite dimensional) subspace of  spanned by the basis elements ϕ , λ ∈ supp(  ). This lastU λ u †

condition is trivially satisfied, if the operator  itself is injective. There exist, however, also interesting situations, where theA
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   =  is vastly underdetermined, but the restriction of  to all sufficiently low-dimensional subspaceslinear equation A u v A
spanned by the basis elements ϕ  is injective. These cases have recently been well studied in the context ofλ compressed

 (Donoho and Elad ; Candès et al. ). The first improved convergence rates have been derived insensing 2003 2006
(Grasmair et al. , 2009b).2008
Proposition 6
Let q ≥ 1 and assume that u    † satisfies the source condition. In addition, assume that u † is sparse and that the restriction

   span{ϕ  : λ ∈ supp   .of the operator A to λ (u † )} is injective

Then, with the notation of Proposition 5, one has

The most interesting situation is the case  = 1. Here, one obtains a linear convergence of the regularized solutions to  .q u †

That is, the approximative inversion of  is not only continuous, but in fact Lipschitz continuous; the error in theA

reconstruction is of the same order as the data error. In addition, the source condition   ξ ∈    (  ) in someA ∗ ∂ q u †

sense becomes weakest for  = 1, because then the subdifferential is set-valued and therefore larger than in the strictlyq
convex case. Moreover, the source condition for  > 1 requires that the support of   ξ equals the support of  , whichq A ∗ u †

strongly limits the applicability of the convergence rates result.
While Proposition 6 concerning convergence rates in the presence of a  assumption and restricted injectivity holdssparsity
for all 1 ≤  ≤ 2, the rates result without these assumptions, Proposition 5, requires that the  is strictly greaterq parameter q
than 1. The following converse result shows that, at least for Tikhonov regularization with an a priori parameter choice, a
similar relaxation of the assumptions by dropping the requirement of restricted injectivity is not possible for  = 1; theq
assumptions of sparsity and injectivity of  on supp(  ) are not only sufficient but also necessary for obtaining anyA u †

sensible convergence rates (see Grasmair et al. ).2009a
Proposition 7

Let q = 1 and assume that u   unique      ∈ † is the 1 -minimizing solution of the equation Au = v. Denote, for v δ V

    :=   )   satisfying ∥v δ − v∥≤ δ, by u δ u(v δ the solution with data v δ of Tikhonov regularization with an a priori parameter
choice α = Cδ for some fixed C > 0. If the obtained data error satisfies

  then u † is sparse and the source condition holds. In particular, also

3.2 Nonconvex Regularization

In the following, the properties of   regularization with a sub-linear regularization term, that is, 0 <  < 1, are studied. Inℓ q q
this situation, the regularization functional is nonconvex, leading to both theoretical and numerical challenges. Still,
nonconvex regularization terms have been considered for applications, because they yield solutions with even more
pronounced sparsity patterns than   regularization.ℓ 1

From the theoretical point of view, the lack of convexity prohibits the application of Theorem 1, which states that the
residual method is equivalent to Tikhonov regularization with Morozov's discrepancy principle. Indeed, it seems that an
extension of said result to nonconvex regularization functionals has not been treated in the literature so far. Even more,
though corresponding results have recently been formulated for the residual method, the question, whether the
discrepancy principle yields stable reconstructions, has not yet been answered. For these reasons, the discussion of
nonconvex regularization methods is limited to the two cases of the residual method and Tikhonov regularization with an
a priori parameter choice. Both methods allow the derivation of basically the same, or at least similar, results as for

convex regularization, the main difference being the possible nonuniqueness of the   -minimizing solutions of theq
equation   =  (see Grasmair ; Grasmair et al. ; Zarzer ).A u v 2009 2009b 2009
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Proposition 8
Consider either the residual method or Tikhonov regularization with an a priori parameter choice. Then Propositions 2-4
concerning existence, stability, and convergence remain to hold true for 0 < q < 1.
Also the convergence rates result in the presence of sparsity, Proposition 6, can be generalized to nonconvex
regularization. The interesting point is that the source condition needed in the convex case apparently is not required any
more. Instead, the other conditions of Proposition 6, uniqueness and  of   and restricted injectivity of , aresparsity u † A
already sufficient for obtaining linear convergence (see Grasmair ; Grasmair et al. ).2010 2009b
Proposition 9

Let 0 < q < 1 and assume that u   unique     † is the q -minimizing solution of the equation A u = v. Assume moreover

      : λ ∈ supp   )}   ∈ that u † is sparse and that the restriction of the operator A to span{ϕ λ (u † is injective. Denote, for v δ V

 ∥   ∥       satisfying v δ − v ≤ δ, by u δ := u(v δ ) the solution with data v δ of either the residual method or Tikhonov regularization
with an a priori parameter choice α = Cδ for some fixed C > 0. Then

In the case of Tikhonov regularization with an a priori parameter choice, one additionally has that

4 Numerical Minimization

4.1 Iterative Thresholding Algorithms

In Daubechies et al. ( ), an iterative algorithm has been analyzed that can be used for minimizing the Tikhonov2004

functional  for fixed α > 0, that is, for an a priori parameter choice. To that end, the authors define for  > 0 and 1b

≤  ≤ 2 the function q

If  > 1, the function   is a one-to-one mapping from  to . Thus, it has an inverse q F , b q

. In the case  = 1 one definesq

(5)

Using the functions   , for  and 1 ≤  ≤ 2, the    :  → , is definedS , b q q Shrinkage Operator S , b q U U

as

(6)

Proposition 10
Let v  ∈   := (     .  μ∥   ∥ < 1.   ∈ δ V , α > 0, and 1 ≤ q ≤ 2, and denote w w λ ) λ∈Λ Let μ > 0 be such that A ∗ A Choose any u 0 U and

define inductively



9

SpringerReference
Markus Grasmair, Markus Haltmeier and Otmar Scherzer
Sparsity in Inverse Geophysical Problems

3 Feb 2012 17:26http://www.springerreference.com/index/chapterdbid/205073

© Springer-Verlag Berlin Heidelberg 2012

(7)

  ,     Then the iterates u n defined by the  iteration (thresholding 7 ), converge to a minimizer of the functional as n

.→∞
The method defined by the iteration (7) can be seen as a forward-backward splitting algorithm for the minimization of 

, the inner update  being a  step for the functional ∥   −   gradient descent A u A v δ

∥ , and the shrinkage operator a gradient descent step for α   . More details on the application of forward-backward2
q

splitting methods to similar problems can, for instance, be found in Combettes and Wajs ( ).2005

4.2 Second Order Cone Programs

In the case of an a posteriori parameter choice (or the equivalent residual method), the iterative thresholding algorithm (7)
cannot be applied directly, as the regularization parameter α > 0 is not known in advance. One can show, however, that
the required parameter α depends continuously on δ (see Bonesky ). Thus, it is possible to find the correct2009

parameter iteratively, starting with some initial guess α > 0 and computing some .

Depending on the size of the residual û −  , one subsequently either increases or decreases α and computes theA v δ

minimizer of  using the new regularization parameter. This procedure of updating α and minimizing  is

stopped, as soon as the residual satisfies ∥ û −   ∥ ≈ τδ.A v δ

In the important case  = 1, a different solution algorithm has been established, which takes advantage on the fact thatq

the constrained minimization problem  ( ) → min subject to ∥   −   ∥  ≤ δ can be rewritten as a second-order1 u A u v δ 2

cone program (SOCP) (Cands and Romberg (2005)). To that end the authors introduce an additional variable  = (  )a a λ λ ∈

 ∈  (Λ) and minimize ∑      subject to the constraints   ≥ | 〈 , ϕ 〉 | for all λ ∈ Λ and ∥   −   ∥  ≤ τδ .Λ ℓ 2
λ ∈ Λ w λ a λ a λ u λ A u v δ 2 2

The former bound consisting of the two linear constraints   ≥ ± 〈 , ϕ 〉, the authors arrive at the SOCPa λ u λ

(8)

If the pair ( , ) solves (8), then  is a solution of the residual method.u a u
The solutions of the program (8) can be computed using a log-barrier method, defining for η > 0 the functional

As η → , the minimizers of  converge to a solution of (8). Moreover, one can show that the solution (  ,  )∞ u δ a δ

of (8) and the minimizer    ,    of  satisfy the relationu η
δ a η

δ

(9)

that is, the value of the minimizer of the   lies within  of the optimal value of the originalrelaxed problem (|Λ| + 1) / η

minimization problem (Renegar ).2001
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In order to solve (8), one alternatingly minimizes  and increases the parameter η. That is, one chooses some

parameter μ > 1 defining the increase of η and starts with  = 1 and some initial parameter η  > 0. Then one iterativelyk (1)

computes , set η  : = μη  and increases  until the value  is smaller(  + 1)k ( )k k (|Λ| + 1) / η( )k

than some predefined tolerance-according to (9), this implies that also the value  is within the same

tolerance of the actual minimum. For the minimization of , which has to take place in each iteration step, one can

use a Newton method combined with a line search that ensures that one does not leave the domain of  and that

the value of  actually decreases. More details on the minimization algorithm can be found in Candès and

Romberg ( ).2005

5 Application: Synthetic Focusing in Ground Penetrating Radar

In this section,  regularization is applied to data obtained with Ground Penetrating Radar  mounted on asparsity (GPR)
flying helicopter (see .  ). As stated in Sect. 1, the imaging problem will be written as the inversion of the circularFig 1
Radon transform.

5.1 Mathematical Model

For simplicity of presentation, polarization effects of the electromagnetic field are ignored and a small isotropic antenna is
assumed. In this case, each component of the electromagnetic field (  ; , ) induced by an antenna that is located at E x ant x t

 is described by the scalar wave equation

(10)

Here δ  denotes the three-dimensional delta distribution,   represents the temporal shape of the emitted radar signal (3D w b
 function of the antenna) with bandwidth , and ( ) denotes the wave speed.impulse response b c x

GPR systems are designed to generate ultrawideband radar signals, where the bandwidth  is approximately equal to theb
central frequency, and the pulse duration is given by τ = 1 ∕ . Usually,   is well approximated by the second derivativeb w b
of a small Gaussian (Ricker wavelet), see Daniels ( ).   shows a typical radar signal emitted by a radar2004 Figure 2
antenna at 500 MHz and its Fourier transform.

Fig. 2 Ricker wavelet (second derivative of a small Gaussian) with a central frequency of  = 500 MHz in the time domain ( ) and inb left
the frequency domain ( )right

5.1.1 Born Approximation



11

SpringerReference
Markus Grasmair, Markus Haltmeier and Otmar Scherzer
Sparsity in Inverse Geophysical Problems

3 Feb 2012 17:26http://www.springerreference.com/index/chapterdbid/205073

© Springer-Verlag Berlin Heidelberg 2012

Scattering of the radar signals occurs at discontinuities of the function . In the sequel, it is assumed thatc

where   is assumed to be constant (the light speed) and   is a possibly nonsmooth function. Moreover, the followingc 0 u 3D

decomposition is made:

where   denotes the incident field (the solution of the wave equation (10) with  replaced by  ), and   is theE 0 c c 0 E scat
scattered field.
From (10) it follows that the scattered field satisfies

The Born approximation consist in replacing the total field  in the above equation by the incident field  . This results inE E 0
the approximation   ≃  , where   solves the equationE scat E Born E Born

(11)

Together with the initial condition  (  ; , ) = 0 for  <  , Eq. 11 can be solved explicitly via Kirchhoff's formula, seeE scat x ant x t t t 0
Courant ( , p. 692),1962

The identity

with δ  denoting the one-dimensional delta distribution, leads to1D

(12)

In GPR, the data are measured in zero offset mode, which means that the scattered field is only recorded at location  = x x
. In this situation, Eq. 12 simplifies toant
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where the formula  has been used. By partitioning the above integral over 

 into integrals over spheres centered at  , and using the definition of the one-dimensional deltax ant

distribution, one obtains that

(13)

with

(14)

denoting the (three-dimensional) spherical Radon transform. This is the basic equation of GPR, that relates the unknown
function   with the scattered data measured in zero offset mode.u 3D

5.1.2 The Radiating Reflectors Model

In the presented application (see .  ), the distances between the antenna position   and the positions  of theFig 1 x ant y
reflectors are relatively large. In this case, multiplication by  and convolution with    in (13) can be (approximately)t w b ′

interchanged, that is,

(15)

One notes that Φ is the solution at position   of the wave equationx ant

(16)

Equation (16) is named the , as the inhomogeneity   now appears as activeradiating (or exploding) reflectors model u 3D

source in the wave equation.

5.1.3 Formulation of the Inverse Problem

Equation (15) relates the unknown function   ( ) with the data Φ(  , ). Due to the convolution with the function   ,u 3D x x ant t w b ′

which does not contain high frequency components (see .  ), the exact reconstruction of   is hardly possible. It isFig 2 u 3D

therefore common to apply migration, which is designed to invert the spherical Radon transform.
When applying migration to the data defined in (15), one reconstructs a band-limited approximation of   . Indeed, fromu 3D

Haltmeier et al. ( , Proposition 2.2), it follows that2009

(17)

where
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(18)

Therefore, the data (  , ) can be viewed as the spherical Radon transform of the band-limited reflectivity function  tΦ x ant t u 3

  ( ), and the application of migration to the data (  , ) will reconstruct the function    ( ).D
b x tΦ x ant t u 3D

b x

A characteristic of the presented application (see .  ) is that the radar antenna is moved along a one-dimensionalFig 1
path, that is, only the two-dimensional data set

is available from which one can recover at most a function with two . Therefore, it is assumed that thedegrees of freedom
support of the function    is approximately located in the plane {(  ,  ,  ) :   = 0}, that is,u 2D

b x 1 x 2 x 3 x 3

Together with (17) this leads to the equation

(19)

where

(20)

denotes the circular Radon transform (the spherical Radon in two dimensions). Equation (19) is the final equation that will
be used to reconstruct the bandlimited reflectivity function    (  ,  ) from data (  , ).u 2D

b x 1 x 2 v x ant r

5.2 Migration Versus Nonlinear Focusing

If the values      (  , ) in (19) were known for all  and all  > 0, then    could be reconstructedR 2D u 2D
b x ant r r u 2D

b

by means of explicit reconstruction formulas. At least two types of theoretically exact formulas for recovering    haveu 2D
b

been derived: Temporal back-projection and Fourier domain formulas (Andersson ; Fawcett ; Norton and Linzer1988 1985
; Stolt ). These formulas and their variations are known as migration, backprojection, or synthetic focusing1981 1978

techniques.

5.2.1 The Limited Data Problem

In practice, it is not appropriate to assume      (  , ) is known for all , and the antenna positionsR 2D u 2D
b x ant t

and acquisition times have to be restricted to domains ( − , ) and (0,  ∕  ), respectively. We model the availableX X R c 0
partial data by

(21)

where   is a smooth cutoff function that vanishes outside the domain ( − , ) ×(0, ). Without a priori knowledge, thew cut X X R

reflectivity function    cannot be exactly reconstructed from the  (21) in a stable way (see Louis andu 2D
b incomplete data

Quinto ). It is therefore common to apply migration techniques just to the partial data and to consider the resulting2000
image as approximate reconstruction.
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Applying Kirchhoff migration to the partial data (21) leads to

With Kirchhoff migration, the horizontal resolution at location (0, ) is given by    ∕ (2 ) (see Borcea et al. ,d c 0 d Xb 2005

Appendix A.1 for a derivation).
Incorporating a priori knowledge via nonlinear inversion, however, may be able to increase the resolution. Below it is
demonstrated that this is indeed the case for  regularization using a Haar wavelet basis. A heuristic reason is thatsparsity
sparse objects (reconstructed with sparse regularization) tend to be less blurred than images reconstructed by linear
methods.

5.2.2 Application of Sparsity Regularization

For the sake of simplicity, only Tikhonov regularization with  penalty term and uniform weights is considered,
leading to the regularization functional

(22)

where (ϕ )  is a Haar wavelet basis and α is the regularization parameter. Here  and   are elements of the Hilbertλ λ ∈ Λ u v δ

spaces

The circular Radon transform  , considered as operator between  and  , is easily shown to be bounded linear (see,R 2D U V

e.g., Scherzer , Lemma 3.79)2009
For the minimization of (22), we apply the iterative  algorithm (7), which in this context reads asthresholding

(23)

Here   is the shrinkage operator defined by (6) and (5), and μ is a positive parameter such that μ ∥      ∥ < 1.S μα, 1 R 2D
∗ R 2D

5.3 Numerical Examples

In the numerical examples,  = 2 m and  = 12 m. The scatterer  is the characteristic function of a small disk located atX R u
position (0, ) with  = 7 m, see .  . It is assumed that the emitted radar signal is a Ricker wavelet   with a centrald d Fig 3 w b

frequency of 250 MHz (compare with .  ). The data (  , ) are generated by numerically convolving    with theFig 2 v x ant r R 2D u

second derivative of the Ricker wavelet.
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Fig. 3 Geometry in the numerical experiment. Data (  , ), caused by a small scatterer positioned at location (0, 7{ m}), arev x ant r
simulated for (  , ) ∈ ( − , ) ×(0, ) with  = 2 m and  = 12 mx ant r X X R X R

The reconstructions obtained with Kirchhoff migration and with sparsity regularization are depicted in .  . BothFig 4
methods show good resolution in the vertical direction (often called axial or range resolution). The horizontal resolution
(lateral or cross-range resolution) of the scatterer, however, is significantly improved by sparsity regularization. This
shows that sparsity regularization is indeed able to surpass the resolution limit    ∕ (2 ) of linear reconstructionc 0 d Xb

techniques.
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Fig. 4 Exact data experiment. : Data. : Reconstruction by Kirchhoff migration. : Reconstruction withTop left Top middle Top right
sparsity regularization. : Vertical and horizontal profiles of the reconstructionsBottom

In order to demonstrate the stability with respect to data perturbations, we also perform reconstructions after adding
Gaussian noise and clutter. Clutter occurs from multiple reflections on fixed structures and reflections resulting from the
inhomogeneous background (Daniels ). A  of clutter is that is has similar spectral2004 characteristic property
characteristics as the emitted radar signal
The reconstruction results from data with clutter and noise added are depicted in .  . Again, sparsity regularizationFig 5
shows better horizontal resolution than Kirchhoff migration. Moreover, the image reconstructed with sparsity regularization
is less noisy.
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Fig. 5 Noisy data experiment. : Data. : Reconstruction by Kirchhoff migration. : Reconstruction with Top left Top middle Top right
 regularization. : Vertical and horizontal profiles of the reconstructionssparsity Bottom

5.4 Application to Real Data

Radar measurements were performed with a 400 MHz antenna (  One  instrument). The investigated area was aRIS GPR
complex avalanche deposit near Salzburg, Austria. The recorded data are shown in .  . In the numericalFig 6
reconstruction, an aperture of  = 3. 3 m and a time window of  ∕   = 50 ns are chosen. The extracted data areX R c 0
depicted in the left image in .  . One clearly sees a diffraction hyperbola stemming from a scatterer in the subsurface.Fig 7
Moreover, the data agree very well with the  depicted in the left image in .  .simulated data Fig 5
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Fig. 6 Measured radar data. For the numerical reconstruction only the partial data Φ((  , 0, 0), ), with x ant t ( , )∈( − , )×(0,  / )xant t X X R c0
where  = 3. 3 m and  ∕   = 50 ns, have been usedX R c 0

Fig. 7 Reconstruction from real data. : Data. : Reconstruction by Kirchhoff migration. : Reconstruction withTop left Top middle Top right
sparsity regularization. : Vertical and horizontal profiles of the reconstructionsBottom

The reconstruction results with Kirchhoff migration and with sparsity regularization are depicted in .  . TheFig 7
regularization parameter α is chosen as 0. 02, and the scaling parameter μ is chosen in such a way, that μ ∥      ∥R 2D

∗ R 2D
is only slightly smaller than 1.
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