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Chapter 1

Introduction

1.1 Characteristics of seismic waveforms in different

distance ranges

Figure 1.1: Example observations and synthetics at ranges where the Earth appears simple
(>30◦), slightly complicated (upper-mantle ranges, 30◦ to 14◦) and quite complicated (<14◦),
from [Helmberger, 1983].

1



Table 1.1: Instrument constants of different seismometers
STS-1 STS-2 CMG-3ESP CMG-40T FBA-23 Episensor

f0, Hz 2.7778×10−3 8.3333×10−3 8.3333×10−3 3.3333×10−2 50 180
G 2500 V/m/s 1500 V/m/s 2000 V/m/s 800 V/m/s 5 V/g 10 V/g

1.2 Seismic instruments and seismic data processing

1.2.1 Seismic instrument response

The output y(t) of a simple vertical seismometer consisting of a spring k and a dash board
η in response to ground motion x(t) can be described by:

mÿ = −ky − ηẏ +mGẍ (1.1)

or
ÿ + 2hω0ẏ + ω2

0y = Gẍ, (1.2)

where ω0 =
√
k/m (natural frequency of the spring), h = η/2

√
mk (damping constant), and

G is the amplification factor. Essentially, the response of a simple mechanical seismometer
is determined by these three constants.

The frequency response of the seismometer is

H(ω) =
Y (ω)

X(ω)
=

Gω2

ω2 − 2ihω0ω − ω2
0

. (1.3)

Responses of modern broadband seismometers such as STS-1 and STS-2 take the same form
as above, but are often responses to ground velocity instead of displacement. Accelerometers
(e.g. FBA) respond to ground acceleration. Their responses are in the form

H(ω) =
−Gω2

0

ω2 − 2ihω0ω − ω2
0

, (1.4)

with a very large ω0 (50 to 180 Hz) so that the response is essentially flat at G for ω � ω0.

The analog output of a seismometer, normally in the unit of volts, is converted into
digital counts by the data logger, which also applies a low-pass filter to the signal to avoid
sampling aliasing. A 24-bit data logger has a dynamic range of 224 = 144 dB. For exam-
ple, the Quantera Q680’s digitization constant is 223 counts/20 V and the K2’s constant is
223 counts/2 V.

The frequency and dynamic ranges of several popular seismometers are shown in Fig. 1.2.

Often an instrument response is expressed in terms of poles and zeros using z-transform:

H(z) = A0

∏
j(z − zj)∏
j(z − pj)

, (1.5)

where z = iω. For example, the two poles for the response in Eq. 1.3 are ω0(−h± i
√

1− h2).

2



Figure 1.2: Spectral amplitudes of ambient seismic noise, earthquakes (magnitude 5 and 9
recorded at a distance of 4,500 km), and Earth tides.

1.2.2 Digital signal processing

The output of a seismic instrument is the convolution of input x(t) and instrument response:

y(t) = h(t) ∗ x(t) =

∫ ∞

−∞
h(τ − t)x(τ)dτ. (1.6)

Removing instrument response in y(t) (deconvolution) can therefore be done either in the
frequency domain using spectrum division in the time domain by solving a linear equation
system.
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1.3 Exercises

1. Use program stp to retrieve waveforms of seismic station TAB from a M4.4 earthquake
on Aug. 20, 1998, near the San Andreas Fault (event CUSP ID 9064568).

2. According to documentation (see www.data.scec.org/stations/seed/dl seed.php), chan-
nel HHZ is from a Guralp CMG-40T sensor and channel HLZ is from a FBA-23 sensor.
Remove instrumental responses in these two channels to obtain vertical displacement
waveform at TAB.

3. Plot and compare the displacement waveforms from these two sensors.

4



Chapter 2

Seismic Sources

2.1 Seismic sources

2.1.1 Seismic source representation

Earthquakes and other indigenous sources can be considered to be the result of a local-
ized, transient failure of the linearized elastic constitutive relation. We define the difference
between the true stress and the modeled stress as the stress glut

S = Tmodel −Ttrue. (2.1)

The equation of motion

ρ
∂2u

∂t2
= ∇ ·Ttrue, (2.2)

can be re-written as

ρ
∂2u

∂t2
= ∇ ·Tmodel + f , (2.3)

where f is the seismic source term and is called the equivalent body force:

f = −∇ · S. (2.4)

It can be shown that the net force and torque of f in V are zero.

The seismic moment tensor of the source is defined as

Mij =

∫
V

fixjdV =

∫
V

SijdV, (2.5)

which is a symmetric tensor. Its diagonal elements correspond to force dipoles and off-
diagonal elements correspond to force couples (Fig. 2.1).
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Figure 2.1: Moment tensor elements and their corresponding force dipoles and couples (from
Aki and Richards [1980]).

The scalar moment of the source is defined using the norm of the tensor:

M0 ≡
1√
2

√
MijMij. (2.6)

The factor
√

2 was introduced for historical compatibility (see below).

2.1.2 Ideal fault

An ideal fault is a surface Σ embedded within V across which there is a tangential slip
discontinuity ∆u. So

∆u · n̂ = 0. (2.7)

It can be shown that the stress glut is zero everywhere except on Σ:

S = mδΣ, (2.8)

where m = C : n̂∆u is the stress-glut density. For an isotropic Earth model:

m = µ∆u(n̂v̂ + v̂n̂), (2.9)
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Figure 2.2: P and T axes of a double couple moment tensor.

which can be shown graphically equivalent to two force couples (double-couple, or DC). The
scalar moment of the source with a fault area of A is

M0 = µ∆uA. (2.10)

A double-couple moment tensor has three eigenvalues: ±M0, 0. The three eigenvectors

T̂ =
1√
2
(n̂ + v̂), (2.11)

P̂ =
1√
2
(n̂− v̂), (2.12)

N̂ = n̂× v̂, (2.13)

are called the tension axis (T -axis, corresponding toM0), the pressure axis (P -axis,corresponding
to −M0), and the null axis (N -axis, corresponding to 0), respectively. Note that the T -axis
is located in the compressional quadrants of the focal sphere and the P -axis is located in the
dilatational quadrants (Fig. 2.2). They are not principal stress axes.

2.1.3 Decompositions of a general moment tensor

A general moment tensor can be decomposed into an isotropic tensor and a deviatoric tensor:

Mij =
1

3
tr(M)δij +M ′

ij =
√

2M0

(
ζIij +

√
1− ζ2Dij

)
, (2.14)

where

Iij =
1√
3
δij, (2.15)

7



is the normalized isotropic tensor and Dij is a normalized deviatoric tensor.

ζ =
tr(M)√

6M0

, (2.16)

is a dimensionless parameter ranging from -1 to 1 that quantifies the relative strength of the
istropoic component.

Next we decompose Dij into double-couple and CLVD components. The CLVD has a
dipole of magnitude 2 in its symmetry axis compensated by two unit dipoles in the orthogonal
directions [Knopoff and Randall, 1970]. Let λ1 be the largest eigenvalue (corresponding to
the T -axis eigenvector T̂) of the deviatoric tensor Dij, λ2 be the intermediate eigenvalue

(corresponding to the null-axis eigenvector N̂), and λ3 the smallest eigenvalue (corresponding
to the P -axis eigenvector P̂), i.e.,

λ1 ≥ λ2 ≥ λ3. (2.17)

Note that all λi’s are dimensionless and satisfy the conditions

λ1 + λ2 + λ3 = 0, (2.18)

λ2
1 + λ2

2 + λ2
3 = 1. (2.19)

Using (2.17)–(2.19), we get

max(λ2) = min(λ1) =
1√
6
, (2.20)

min(λ2) = max(λ3) = − 1√
6
. (2.21)

When λ2 = 0 the deviatoric tensor Dij is a pure double-couple.

As mentioned, the DC-CLVD decomposition is not unique as the CLVD symmetry axis
can be aligned with any of the principal axes [e.g. Jost and Herrmann, 1989, Hudson et al.,
1989]. Here we align the CLVD symmetry axis with the N -axis [e.g. Chapman and Leaney,
2011]:

Dij = λ1TiTj + λ2NiNj + λ3PiPj

=
λ1 − λ3√

2
DDC

ij +

√
3

2
λ2D

CLVD
ij ,

(2.22)

where

DDC
ij =

1√
2
(TiTj − PiPj), (2.23)

DCLVD
ij =

1√
6
(2NiNj − TiTj − PiPj), (2.24)

are normalized DC and CLVD tensors. The above decomposition has the attractive property
that the DC and CLVD basic sources are orthogonal

DDC
ij DCLVD

ij = 0. (2.25)
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The strength of the CLVD component can be quantified by the dimensionless parameter

χ =

√
3

2
λ2. (2.26)

It can be shown from (2.20) and (2.21) that 1
2
≥ χ ≥ −1

2
.

Therefore, one way to parameterize a general moment tensor in terms of the basic
isotropic, double couple, and CLVD sources while preserving the total scalar moment is

Mij =
√

2M0

(
ζIij +

√
1− ζ2

(√
1− χ2DDC

ij + χDCLVD
ij

))
. (2.27)

The relative strength of each part can be measured by the ratio of its scalar moment to the
total moment:

ΛISO = sgn(ζ)ζ2, (2.28)

ΛDC = (1− ζ2)(1− χ2), (2.29)

ΛCLVD = sgn(χ)(1− ζ2)χ2, (2.30)

such that
|ΛISO|+ ΛDC + |ΛCLVD| = 1. (2.31)

Note that in this decomposition the maximum CLVD is 25% (at ζ = 0 and χ = ±1/2)
(Fig. 2.1.3).

2.1.4 DC moment tensor components

With x-axis to the North, y-axis to the East, and z-axis down,

n̂ = (− sin δ sinφ, sin δ cosφ,− cos δ)T , (2.32)

v̂ = (cosλ cosφ+ sinλ cos δ sinφ, cosλ sinφ− sinλ cos δ cosφ,− sinλ sin δ)T , (2.33)

where φ is the fault strike measured from the North, δ is the fault dip measured from the
horizontal, and λ is the slip direction (rake angle) measured CCW from the fault strike
direction. For DC (see A&R, P112):

Mxx = −(sin δ cosλ sin 2φ+ sin 2δ sinλ sin2 φ), (2.34)

Mxy = sin δ cosλ cos 2φ+
1

2
sin 2δ sinλ sin 2φ, (2.35)

Mxz = −(cos δ cosλ cosφ+ cos 2δ sinλ sinφ), (2.36)

Myy = sin δ cosλ sin 2φ− sin 2δ sinλ cos2 φ, (2.37)

Myz = −(cos δ cosλ sinφ− cos 2δ sinλ cosφ), (2.38)

Mzz = sin 2δ sinλ. (2.39)

9



-ΛCLVD

6
ΛISO

DC

75%

50%

u1

e-1

-1
4

1
4

@
@

@
@

@
@

�
�

�
�

�
�

@
@

@
@

�
�

�
�

C
C
C
C
C
C
C
C
C
C
CC

C
C
C
C
C
C
C
C
C
C
CC

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

Figure 2.3: The ISO-DC-CLVD diagram showing permissible values of the ΛISO, ΛCLVD,
and ΛDC percentages as bounded by the outer diamond. The pure explosion and implosion
sources are indicated by the circles. The pure DC source is located at the center. The
contours show DC levels of 75% and 50%.

2.2 Displacements produced by a point source in a

whole-space

2.2.1 A single-force source

The displacement in a uniform whole-space produced by a single force Fp at the origin
(Fig. 2.4) is

ui(r, t) =
3γiγp − δip

4πρr3

∫ r/β

r/α

τFp(t− τ)dτ +
γiγp

4πρα2r
Fp(t−

r

α
) +

δip − γiγp

4πρβ2r
Fp(t−

r

β
), (2.40)

where γi = xi

r
is the i-th component of the unit vector r̂. This is one of the most important

solutions in seismology and was first given by Stokes in 1849. The first term of RHS is called
the near field because it decays with distant rapidly. The other two terms are called the
far-field P and S wave-fields respectively. When the source time function is an impulse, the
far-field P and S waveforms are impulsive but the near-field waveform is a ramp starting at
the P arrival time and ending at the S arrival time (Fig. 2.4).

If we set up a spherical coordinate system (r,θ,φ) with the symmetry axis aligned with the

10



F

θ

θ

r

o

u

0 1 2 3 4

t (s)

tp ts

Near field

Far−field P

Far−field S

Total

Figure 2.4: Displacement u from a single force F in a whole-space. Waveform shapes of the
near field, far-field P , and far-field S are shown on the right.

single force direction (see Fig. 2.4), the directional variations of far-field P and S displacement
amplitudes can be written as

AP = cos θr̂ (2.41)

AS = − sin θθ̂. (2.42)

It is clear that the particle motion of the far-field P is parallel to r̂, i.e., the propagation
direction, as expected. Its amplitude varies with direction as cos θ. The particle motion of
the far-field S is perpendicular to the propagation direction and its amplitude varies with
direction as sin θ. The P - and S-wave source radiation patterns are illustrated in Fig. 2.5.
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Figure 2.5: Radiation patterns and particle motions of far-field P (left) and S from a single
force.

2.2.2 A general moment tensor source

The displacement from a general moment tensor source Mpq in a uniform whole-space can be
derived from the displacement solution of a single force [Aki and Richards, 1980, Eq. 4.29]:

ui(r, t) =
1

4πρr4
(15γiγpγq − 3γiδpq − 6γpδiq)

∫ r/β

r/α

τMpq(t− τ)dτ

+
1

4πρα2r2
(6γiγpγq − γiδpq − 2γpδiq)Mpq(t−

r

α
)

− 1

4πρβ2r2
(6γiγpγq − γiδpq − 3γpδiq)Mpq(t−

r

β
)

+
1

4πρα3r
γiγpγqṀpq(t−

r

α
)

+
1

4πρβ3r
(δip − γiγp)γqṀpq(t−

r

β
).

(2.43)

In addition to the near-field term (the first term on RHS) and the far-field terms (the last
two terms on RHS), there are two intermediate-field terms that decay as 1

r2 .

Assuming that Mpq is a pure double couple in the (x1,x3) plane and setting up a spherical
coordinate system (r,θ,φ) with the x3-axis as the symmetry axis (Fig. 2.6), we can express
the directional variation of far-field P and S displacement amplitudes [Aki and Richards,
1980, Eq. 4.33]

AP = sin 2θ cosφr̂ (2.44)

AS = cos 2θ cosφθ̂ − cos θ sinφφ̂. (2.45)

These radiation patterns in the 1-3 plane are illustrated in Fig. 2.7.
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Figure 2.6: Displacement u produced by a double couple in the x1-x3 plane.

Figure 2.7: Radiation patterns and particle motions of far-field P (left) and S from a double
couple.

2.2.3 Examples

Fig. 2.8 shows vertical acceleration recorded by TriNet station TAB from a nearby Mw 4.2
earthquake near the San Andreas fault in California. The earthquake is 11 km deep and
about 3 km from the station. The obtained displacement using double integrations show
significant near-field between the P and S phases and permanent displacement after the S.
They are matched well by the whole-space solution prediction.

Near-field and permanent displacement have also been observed at regional distances
from large deep earthquakes such as the 1994 Bolivia deep earthquake (Fig. 2.9). Vidale
et al. [1995] reported an observation of the near-field of the Bolivia earthquake at stations
in southern California (7,500 km away) (Fig. 2.10).
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Figure 2.8: The bottom trace is the vertical-component acceleration recorded by TriNet
station TAB from a nearby Mw 4.2 earthquake (3 km away and at a depth of 11 km). The
top trace in black is the obtained displacement waveforms using double integration. The
red-colored trace is synthetic displacement using the whole-space solution (multiplied by 2
to account for the free-surface effect).

2.3 Exercises

A sample Matlab program for computing displacement generated by a single force in a whole
space is given below:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% computing displacements genenerated by a single force in a whole

% space.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

addpath /home/lupei/Src/sac_msc

% model parameters of the whole-space

vp = 6.3;

vs = 3.6;

% sampling rate

dt = 0.01;

% force vector

14
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Figure 2.9: Black-colored traces are three-component displacement waveforms recorded at
the BANJO array from the 1994 Mw 8.3 Bolivia deep earthquake (from Zhu [2003]). Red-
colored traces are synthetic displacements using the whole-space solution (multiplied by 2
to account for the free-surface effect).

F = [0; 0; 1];

% receiver location

r = [3; 0; 10];

% compute the amplitudes of the nearfield and far-fields

dist = norm(r);

gamma = r/dist;

gammaDotF = gamma’*F;

AnearField = (3*gammaDotF*gamma-F)/(dist*dist*dist);

AfarP = gamma*(gammaDotF/(vp*vp*dist));

AfarS = (F-gammaDotF*gamma)/(vs*vs*dist);

% construct the time functions of the nearfield and far-fields

tp = dist/vp;

itp = round(tp/dt);

ts = dist/vs;

its = round(ts/dt);

nt = its + 100;

t = (0:nt-1)*dt;
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Figure 2.10: Observation of near field at teleseismic distances from the 1994 Bolivia deep
earthquake (from Vidale et al. [1995]).

nearField = zeros(3,nt);

farP = zeros(3,nt);

farS = zeros(3,nt);

nearField(:,itp:its) = AnearField*t(itp:its);

farP(:,itp) = AfarP/dt;

farS(:,its) = AfarS/dt;

disp = nearField + farP + farS;

subplot(4,1,1),plot(t,nearField(3,:))

subplot(4,1,2),plot(t,farP(3,:))

subplot(4,1,3),plot(t,farS(3,:))

subplot(4,1,4),plot(t,disp(3,:))

% save

compnm = ’xyz’;

hd = newhdr(nt,dt,0.);

for comp=1:3

wtSac([’nf.’ compnm(comp)], hd, nearField(comp,:));

wtSac([’fp.’ compnm(comp)], hd, farP(comp,:));

wtSac([’fs.’ compnm(comp)], hd, farS(comp,:));

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A low-pass filtered version of the waveforms is shown in Fig. 2.4.

1. Write a computer program to calculate displacement field produced by a moment tensor
in a whole-space using (2.43). You should assume that the time history of the source
is a step function.

2. TriNet station TAB recorded a magnitude 4.4 earthquake about 3 km away on Aug.
20, 1998. According to waveform inversion, the event is located at a depth of 11 km
and its moment tensor elements are Mxx=-2.243, Mxy=-0.749, Mxz=-0.383, Myy=-
0.226, Myz= 0.118, Mzz= 2.469, with a scale of 1022 dyne-cm, here the x-axis is
pointing north, y east, and z downward. Use your program to compute and plot the
vertical displacement waveform of each individual field and the total field. Compare
the synthetics with the observation obtained in Exe. 1.3 to find the appropriate Vp, Vs,
and source rupture duration.

3. Use your program to model the displacement waveforms recorded at a BANJO sta-
tion from the 1994 Bolivia deep earthquake (shown in Fig. 2.9). The station’s epi-
central distance is 5.76◦and the azimuth is 181.53◦. The Harvard CMT solution is
Mxx=7.75, Mxy=-2.48, Mxz=-25.3, Myy=-0.16, Myz= 0.42, Mzz=-7.59, with a
scale of 1027 dyne-cm, here the x-axis is pointing south, y east, and z up. The depth
of the event after the Earth-flattening approximation is 682 km.

4. A strike-slip earthquake at 2 km depth ruptured a N-S oriented vertical plane of 6 km
long and 2 km wide with a slip of 1 m. What is the moment magnitude of the
earthquake (assumming that the rigidity is 30 GPa)? Modify your program to compute
and plot horizontal permanent displacement field at the surface within 10 km from the
epicenter. You need to divide the ruptured fault into small subfaults and sum up the
contribution from each point source.
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Chapter 3

Multi-layered Media – Generalized
Ray Theory

3.1 Solution to wave equation in cylindrical coordinate

system

In cylindrical coordinates (r,θ,z) with the z-axis downward, the wave equation in the Laplace
domain is:

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
+
∂2φ

∂z2
− s2

c2
φ = 0. (3.1)

Using the variable separation method, the general solution from a point source at the origin
in a whole-space can be found as

φ(r, θ, z, s) =
∑

n=0,±1,···

e−inθ

∫ ∞

0

An(k)Jn(kr)e−ν|z|dk, (3.2)

where

ν =

√
k2 +

s2

c2
, <ν > 0, (3.3)

and An is to be determined by initial conditions (i.e., the seismic source).

For example, the displacement field from an explosion source with a step source time
function can be derived using (2.43) as

u(r, z, t) = ∇φ =
M0

4πρc2

(
H(t−R/c)

R2
+
Ḣ(t−R/c)

cR

)
R̂, (3.4)

where R =
√
z2 + r2. So

φ(r, z, t) = − M0

4πρc2
H(t−R/c)

R
. (3.5)
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By taking the Laplace transform and using the Somerfield integral,

φ(r, z, s) = − M0

4πρc2
1

s

e−sR/c

R
= − M0

4πρc2
1

s

∫
k

ν
J0(kr)e

−ν|z|dk, (3.6)

i.e, the only non-zero term in (3.2) is n=0:

A0 = − M0

4πρc2
1

s

k

ν
. (3.7)

3.2 A liquid whole-space

Let us consider an explosion source with a step source time function in a liquid whole-space.
To get the time-domain solution for pressure φ(t), one needs to evaluate two integrals: one
for k (without − M0

4πρc2
)

φ(s) =
1

s

∫ ∞

0

k

ν
J0(kr)e

−ν|z|dk, (3.8)

and another for the inverse Laplace transform of φ(s).

A technique call the Cagniard-de Hoop method can be used to evaluate the double
integrations at once. By variable substitution k = −isp and using

J0(−ispr) =
i

π
(K0(spr)−K0(−spr)) , (3.9)

(3.8) becomes

φ(s) = − i

π

∫ i∞

−i∞

p

η
K0(spr)e

−sη|z|dp =
2

π
=
∫ i∞

0

p

η
K0(spr)e

−sη|z|dp, (3.10)

where

η =

√
1

c2
− p2. (3.11)

At large x,

Kn(x) =

√
π

2x
e−x

(
1 +

4n2 − 1

8x
+

(4n2 − 1)(4n2 − 9)

2(8x)2
+ · · ·

)
. (3.12)

So, (3.10) becomes (only the first term is kept for simplicity)

φ(s) =

√
2

πrs
=
∫ i∞

0

√
p

η
e−s(pr+η|z|)dp. (3.13)

It looks very much like a Laplace transform when we introduce

t = pr + η|z|, (3.14)
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Figure 3.1: Cagniard-de Hoop contour.

and require that t be real. The corresponding

p(t) =


rt

R2
−
√
t20 − t2

R2
|z|, t < t0,

rt

R2
+ i

√
t2 − t20
R2

|z|, t > t0,

(3.15)

where R =
√
r2 + z2 and t0 = R

c
. The above contour in the complex p-plane, called the

Cagniard-de Hoop contour, is show in Fig. 3.1. Because the integrant function is analytical
except along the real p axis for p > 1

c
, the integration path [0, i∞] can be changed to along

the Cagniard-de Hoop contour and

J(t) = L−1

{
=
∫ i∞

0

√
p

η
e−s(pr+η|z|)dp

}
= =

{√
p

η

dp

dt

}
. (3.16)

So, the final solution for the pressure

φ(t) =
1

π

√
2

r

1√
t
∗ J(t). (3.17)
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Since

dp

dt
=


η√
t20 − t2

, t < t0,

iη√
t2 − t20

, t > t0,
(3.18)

the largest contribution to J(t) occurs at time t = t0, which is the first arrival time. Using

the asymptotic behavior of
dp

dt
near t0, one can get

J(t) =

√
r

2

H(t− t0)

R
√
t− t0

. (3.19)

So, the first-motion approximation of the solution

φ(t) =
1

πR

1√
t
∗ H(t− t0)√

t− t0
=
H(t− t0)

R
, (3.20)

which is the same as the exact solution.

3.3 Two liquid half-spaces

Figure 3.2: Two liquid half-spaces.
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We now deal with two fluid half-spaces in contact at z = 0 (Fig. 3.2). The solution can
be found using the general solution and the boundary conditions of φ and 1

ρ
∂φ
∂z

continuous,

φ1(r, z, s) =

√
2

πrs
=
∫ i∞

0

√
p

η1

[
e−s(pr+η1|z−z0|) +R12(p)e

−s(pr+η1|z+z0|)
]
dp, (3.21)

φ2(r, z, s) =

√
2

πrs
=
∫ i∞

0

√
p

η1

T12(p)e
−s(pr+η1|z0|+η2z)dp, (3.22)

where

R12(p) =
ρ2η1 − ρ1η2

ρ2η1 + ρ1η2

, (3.23)

T12(p) =
2ρ2η1

ρ2η1 + ρ1η2

, (3.24)

are called the reflection and transmission coefficients of the interface, respectively. We rec-
ognize that the first term of φ1 is the same as in the whole-space case. It represents the
response of the direct wave. The Cagniard contour for the second term is defined by

t = pr + η1|z + z0|. (3.25)

Its first-motion arrival time t0 and p0 are found to be

t0 =
R

c1
, (3.26)

p0 =
r

R

1

c1
, (3.27)

where R =
√
r2 + (z + z0)2. They correspond to the arrival time and ray-parameter of

a geometrical ray that is reflected from the interface. So, the second term represents the
response of the reflected wave.

If c2 > c1, the reflection coefficient can become complex even when p < p0. This means
that J(t) can be non-zero before the arrival time t0 of the geometrical reflection ray (Fig. 3.3).
This non-geometrical arrival time is

tc =
r

c2
+

√
1

c21
− 1

c22
|z + z0|, (3.28)

where is the head-wave arrival time.

Fig. 3.4 shows vertical displacement waveforms in such a two liquid half-space model
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Figure 3.3: Cagniard contour for reflection ray in two liquid half-spaces.

3.4 A sandwiched liquid layer between two liquid half-

spaces

If we add a layer of fluid of thickness d between the two half-spaces, the pressure solution in
the top liquid is

φ1(r, z, s) =

√
2

πrs
=
∫ i∞

0

√
p

η1

[
e−s(pr+η1|z−z0|) + A(p)e−s(pr+η1|z+z0|)

]
dp, (3.29)

where

A(p) =
R12 +R23e

−2sη2d

1 +R12R23e−2sη2d
. (3.30)

We can use its Taylor expansion

A(p) = R12 +
∞∑

n=1

(−1)n+1Rn−1
12 Rn

23(1−R2
12)e

−2nsη2d. (3.31)

So the pressure can be writtern as

φ1 = φdirect + φreflected +
∞∑

n=1

φn, (3.32)
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where

φn =

√
2

πrs
=
∫ i∞

0

T12(−R12)
n−1Rn

23T21

√
p

η1

e−s(pr+η1|z+z0|+2nη2d)dp. (3.33)

It can be recognized that φn corresponds to a geometrical ray with n-time internal reflections
in the liquid layer.

(3.32) means that the full response can be constructed by adding up responses of all
possible “rays” from the source to the receiver. The technique is called generalized ray
theory. It was first introduced by Spencer [1960].

3.5 Double-couple sources in elastic media

For isotropic elastic media, the displacement field u satisfies a second-order differential equa-
tion:

∂2u

∂t2
=

1

α2
∇∇ · u− 1

β2
∇× (∇× u). (3.34)

By using the Helmholtz representation of a vector

u = ∇φ+∇× χẑ− 1

sp
∇× (∇× ψẑ), (3.35)

we obtain three wave equations:

∇2φ =
1

α2

∂2φ

∂t2
, (3.36)

∇2ψ =
1

β2

∂2ψ

∂t2
, (3.37)

∇2χ =
1

β2

∂2χ

∂t2
, (3.38)

where φ is called the P -wave potential, ψ SV potential, and χ SH potential.

For a double-couple source, the non-zero terms in the general solution (3.2) of these
potentials are limited to n ≤ 2:

φ =
M0

4πρ

2∑
n=0

An(θ, λ, δ)
2

π
=
∫ i∞

0

Cn
p

ηα

Kn(spr)e−sηα|z|dp, (3.39)

ψ =
M0

4πρ

2∑
n=0

An(θ, λ, δ)
2

π
=
∫ i∞

0

SVn
p

ηβ

Kn(spr)e−sηβ |z|dp, (3.40)

χ =
M0

4πρ

2∑
n=1

1

n

∂

∂θ
An(θ, λ, δ)

2

π
=
∫ i∞

0

SHn
p

ηβ

Kn(spr)e−sηβ |z|dp. (3.41)
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Table 3.1: Vertical radiation coefficients of explosion and single-force sources.
n Explosion Single force

P P SV SH
0 −1/β2 εηα −p
1 −p −εηβ 1/pβ2

An’s are called horizontal radiation patterns:

A0 =
1

2
sinλ sin 2δ, (3.42)

A1 = cosλ cos δ cos θ − sinλ cos 2δ sin θ, (3.43)

A2 = cosλ sin δ sin 2θ +
1

2
sinλ sin 2δ cos 2θ, (3.44)

where δ is the fault dip, λ is the slip direction (rake, measured on the fault plane from
the strike direction), and θ is the station azimuth measured from the fault strike direction.
Therefore, each individual term in the above potentials without the horizontal radiation
coefficients represents response to three fundamental faultings: 45◦ down-dip slip (n = 0
with δ = 45◦ and λ = −90◦), vertical dip slip (n = 1 with δ = 90◦ and λ = −90◦), and
vertical strike slip (n = 2 with δ = 90◦ and λ = 0◦). Their vertical radiation patterns are

C0 = p2 − 2η2
α SV0 = 3εpηβ, SH0 = 0, (3.45)

C1 = 2εpηα, SV1 = η2
β − p2, SH1 = − ε

β2

ηβ

p
, (3.46)

C2 = −p2, SV2 = −εpηβ, SH2 =
1

β2
, (3.47)

where

ε =

{
+1, z > 0,

−1, z < 0.

The vertical radiation coefficients for explosion and single force sources are give in Tab. 3.1.

To compute displacement from potentials, one needs to take derivatives of potential with
respect to r, θ, and z. In a whole-space (ignoring the near-field terms),

uz =
∂φ

∂z
+ spψ = s(−ηαφ+ pψ), (3.48)

ur =
∂φ

∂r
− 1

sp

∂2ψ

∂r∂z
+

1

r

∂χ

∂θ
= s(−pφ− ηβψ), (3.49)

uθ =
1

r

∂φ

∂θ
− 1

spr

∂2ψ

∂θ∂z
− ∂χ

∂r
= spχ. (3.50)

This means that the displacements can be obtained by multiplying the so-called receiver
functions to the potentials. The receiver functions of whole-space and half-space are listed
in Table 3.2.
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Table 3.2: Whole-space and half-space receiver functions.
Whole-space Half-space
P SV SH P SV SH

uz −ηα p −2ηα(η2
β − p2)/D 4pηαηβ/D

ur −p -ηβ −4pηαηβ/D −2ηβ(η2
β − p2)/D

uθ p 2p

D =
(
(η2

β − p2)2 + 4p2ηαηβ

)
β2 is called the Rayleigh denominator.

The Rayleigh denominator D in the half-space receiver functions is interesting. It has a
root at p ≈ 1.1β−1 on the real p axis (called the Rayleigh pole). When the source is shallow,
the Cagniard contour is close to the real p axis so that J(t) has large amplitudes at times
when the contour is close to the Rayleigh pole. It gives large-amplitude Rayleigh surface
waves on the z and r components, with an apparent velocity of 0.9β. An example is shown
in Fig. 3.5

The generalized reflection and transmission coefficients across solid-solid and solid-liquid
interfaces can be found in Helmberger [1968].
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Figure 3.5: Vertical displacements from a strike-slip fault at 5 km depth in a uniform half-
space (Vp 6.3 km/s, Vs 3.6 km/s, and ρ 2.7 g/cm3).
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3.6 Exercises

A sample Matlab program for computing the Cagniard-de Hoop coutour and pressure pro-
duced by an explosion in a liquid wholespace is given below:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% computing pressure generated by an explosion in fluid using

% the Cagniard-de Hoop method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear

addpath /home/lupei/Src/sac_msc

% model: a fluid whole space

c=5.0; rho=1.0;

% source depth

h=5;

% receiver location

r=10;

nx = length(r);

z=h;

% time window

dt = 0.01;

n = 700;

nbefore = 100;

scale = -1/(4*pi*rho*c^2);

a = 2*sqrt((0:n-1)/dt); % 2*sqrt(t)

eps = 1.e-8; % small positive imaginary part

for ix=1:nx

R = sqrt(r(ix)*r(ix)+h^2);

t0 = R/c;

t = t0 + dt*(-nbefore:n-nbefore-1)’ + 0.5*dt;

p = (r(ix)/R^2)*t - (z/R^2)*sign(t0-t).*sqrt(t0^2-t.^2)+eps*i;

eta = sqrt(1/c^2-p.^2);

% j(t)

dpdt = sign(t0-t).*eta./sqrt(t0^2-t.^2);

jt = imag((sqrt(p)./eta).*dpdt);

% convolve with sqrt(t) and take a derviative

phi = (scale*sqrt(2./r(ix))/pi)*diff(conv(a,jt));

hd = newhdr(n-2,dt,t(2));

hd(51) = r(ix);

wtSac([’phi.’ num2str(r(ix))],hd,phi);

end

% plotting
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subplot(3,1,1);

plot(p,’+’);

subplot(3,1,2);

plot(t,jt);

subplot(3,1,3);

plot(t(2:n-1),phi(1:n-2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1. Write a Matlab program to plot vertical radiation patterns (3.45)-(3.47) as a function
of take-off angle.

2. Modify the sample Matlab code above to compute vertical displacements of reflected
waves from an explosion source in two liquid half-spaces. Note that the whole space
receiver function for uz is −sηα. The source and stations are 5 km above the interface
in the top half-space with a P velocity of 5 km/s. The P velocity in the bottom half
space is 7.5 km/s. Plot waveform profile from 10 to 100 km in epicentral distances.

3. Use the GRT program aser to repeat the above computation and compare the results.
Note that the GRT outputs are impulse responses and need to be integrated to get the
step responses in order to compare with the Matlab results. A sample GRT input is
given below:

n # debug

n # Q individual rays

3 # number of terms for the Bessel function expansion

0.01 800 # dt and nt

2 # sample rate of the Cagniard contour, 0=FM

3 # number of layers in the model

5.0 6.3 3.6 2.786 1000 500 # the 1st layer

5.0 6.3 3.6 2.786 1000 500 # the 2nd layer

0.0 8.0 4.5 3.000 1000 500 # the bottom halfspace

2 1 # The source type (0=EX, 1=SF; 2=DC) and source layer (at its top)

rays.file # The name of the ray file

4 # number of distance rangesi, followed by distance t0 name (2f10.3,1x,a80)

1.000 0.500 grt/01.grn.

5.000 1.000 grt/05.grn.

10.000 1.500 grt/10.grn.

50.000 7.500 grt/50.grn.

#

# The ray file looks like this:

1 # number of rays

p 2 1p 1p 0.00

# wave type (p/s/t), number of seg., ray seg specification, ..., shift
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Chapter 4

Multi-layered Media –
Frequency-Wavenumber Integration
Method

4.1 Displacement-stress vector in a source-free homo-

geneous medium

We set up a cylindrical coordinate system (er, eθ, ez), with ez pointing upward. The displace-
ment in a vertically heterogeneous medium can be expanded in terms of three orthogonal
vectors [e.g. Takeuchi and Saito, 1972]:

u(r, θ, z, t) =
1

2π

∑
m=0,±1,···

∫
e−i ω t dω

∫ ∞

0

k dk
(
UzR

k
m + UrS

k
m + UθT

k
m

)
, (4.1)

Rk
m,S

k
m,T

k
m are called the surface vector harmonics:

Rm = −Ymẑ, (4.2)

Sm =
1

k
∇Ym =

1

k

∂Ym

∂r
r̂ +

1

kr

∂Ym

∂θ
θ̂, (4.3)

Tm = Sm × ẑ =
1

kr

∂Ym

∂θ
r̂− 1

k

∂Ym

∂r
θ̂, (4.4)

where
Ym(r, θ) = Jm(kr)eimθ. (4.5)

Similar expansion can be done to the traction on the horizontal plane

σ(r, θ, z, t) =
1

2π

∑
m=0,±1,···

∫
e−i ω t dω

∫ ∞

0

k2 dk
(
TzR

k
m + TrS

k
m + TθT

k
m

)
. (4.6)
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Note that a factor k is drawn from the Tz, Tr and Tθ to simplify the later derived matrices.
Eq. (4.1) and (4.6) separate the z-variation of the displacement and stress from the (r, θ)
variations. Under this expansion, the second-order differential equation of motion

(λ+ 2µ)∇ (∇ · u)− µ∇×∇× u + ρω2u = 0, (4.7)

is reduced to a set of first-order ordinary differential equations

d

dz


Ur

Uz

Tz

Tr

Uθ

Tθ

 = k



0 −1 0 1
µ

0 0

1− 2 ξ 0 ξ
µ

0 0 0

0 −ρ
(

ω
k

)2
0 1 0 0

4µ ξ1 − ρ
(

ω
k

)2
0 2 ξ − 1 0 0 0

0 0 0 0 0 1
µ

0 0 0 0 µ− ρ
(

ω
k

)2
0




Ur

Uz

Tz

Tr

Uθ

Tθ

 , (4.8)

or, in the vector-matrix form:
db(z)

dz
= Mb(z). (4.9)

Here, ρ is the density; ξ = µ/(λ+ 2µ); ξ1 = 1− ξ; λ, µ are the Lame constants. The vector
b is often called the displacement-stress vector. Note that M can be partitioned into a 4×4
submatrix describing the motion in the (z, r) plane and a 2×2 submatrix for the motion in
the θ-direction. They are often referred to as the P -SV system and the SH system. We will
concentrate on the P -SV problem. The corresponding solution for the SH problem can be
find in Appendix A.

For a homogeneous medium, M is constant. In this case, the general solution of (4.9) is

b(z) = ez M b0. (4.10)

To calculate the matrix exponential, we use the Jordan decomposition of M [e.g. Turnbull
and Aitken, 1952, Gantmatcher, 1960]:

M = EJE−1, (4.11)

where E is a similarity matrix and J is the Jordan canonical form of M. Using (4.11) and
the definition of matrix exponential, we have

ez M = E ez J E−1. (4.12)

From (4.10) and (4.12), the displacement-stress at any z can be expressed as

b(z) = EΛ(z)w, (4.13)

where
Λ(z) = ez J, (4.14)

and w is a constant vector that is to be determined by boundary conditions.
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If the matrix M has a complete set of independent eigenvectors, the Jordan decompo-
sition is reduced to the eigenvalue decomposition. J is simply a diagonal matrix with the
eigenvalues as the diagonal elements and the columns of E are the eigenvectors. This is the
case for the elasto-dynamic problem with ω 6= 0. For the P -SV system, the 4×4 M has 4
eigenvalues and

J =


−να 0 0 0
0 −νβ 0 0
0 0 να 0
0 0 0 νβ

 , (4.15)

where να =
√
k2 −

(
ω
α

)2
and νβ =

√
k2 −

(
ω
β

)2

. Here, α, β are the compressional and shear

velocities of the medium. Correspondingly,

E =


−1 −νβ

k
1

νβ

k
να

k
1 να

k
1

−2µ γ1 −2µ
νβ

k
2µ γ1 2µ

νβ

k

2µ να

k
2µ γ1 2µ να

k
2µ γ1

 , (4.16)

Λ(z) =


e−να z 0 0 0

0 e−νβ z 0 0
0 0 eνα z 0
0 0 0 eνβ z

 , (4.17)

E−1 =
γ

2


−1 −γ1

k
να

1
2 µ

k
2 µ να

γ1
k
νβ

1 − k
2 µ νβ

− 1
2 µ

1 −γ1
k
να

− 1
2 µ

k
2 µ να

−γ1
k
νβ

1 k
2 µ νβ

− 1
2 µ

 , (4.18)

where γ = 2 k2 β2/ω2, γ1 = 1− 1/γ.

For the dynamic SH problem,

J =

[
νβ 0
0 −νβ

]
, (4.19)

E =

[
−1 1
µ

νβ

k
µ

νβ

k

]
, (4.20)

Λ(z) =

[
e−νβ z 0

0 eνβ z

]
, (4.21)

E−1 =
1

2

[
−1 k

µ νβ

1 k
µ νβ

]
. (4.22)
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Figure 4.1: A layered half-space consists of N layers over a half-space at the bottom. The
source is located at a depth of h between layer m and m+1 with identical elastic properties.

4.2 Surface displacement of layered half-space from an

embedded point source

The general description of model is shown in Figure 4.1. It consists of a stack of layers on
top of half space, with source embedded somewhere in the middle. The solution to the wave
equation within each layer is represented by the wave-vector wn. The boundary conditions
are:

1. Continuity of displacement and stress across all interfaces except at the source interface.

2. Vanishing of up-going waves in the half space.

3. Vanishing of stress at the free surface.
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From (4.13) the stress-displacement vectors at top and bottom of layer n are:

bn−1 = EnΛn(zn−1)wn, (4.23)

bn = EnΛn(zn)wn, (4.24)

which lets us to “propagate” the stress-displacement vector from the top to the bottom:

bn = anbn−1, (4.25)

where
an = EnΛn(zn − zn−1)E

−1
n = EnΛn(dn)E−1

n . (4.26)

The a matrix is often called Thompson-Haskell propagation matrix [Haskell, 1964, Wang
and Herrmann, 1980]:

For the P -SV system

an = γ


Cα − γ1Cβ γ1 Yα −Xβ

Cβ−Cα

2 µ

Xβ−Yα

2 µ

γ1 Yβ −Xα Cβ − γ1Cα
Xα−Yβ

2 µ

Cα−Cβ

2 µ

2µ γ1 (Cα − Cβ) 2µ (γ1
2 Yα −Xβ) Cβ − γ1Cα Xβ − γ1 Yα

2µ (γ1
2 Yβ −Xα) 2µ γ1 (Cβ − Cα) Xα − γ1 Yβ Cα − γ1Cβ

 , (4.27)

where Cα = cosh(να d), Xα = να sinh(να d)/k, and Yα = k sinh(να d)/να, and similarly for
Cβ, Xβ, and Yβ. d = zn−1 − zn is the thickness of the layer. Our an is different from
the original one given by Haskell [1964] for the traction related terms. This stems from
the difference of our definition of the displacement-stress vector from the Haskell’s in which
he multiplied the traction by ω2. As shown later, the Haskell’s definition introduces the
apparent ω-dependence of source terms and causes difficulty to unify the elasto-dynamic
solution and the elasto-static solution.

For the SH problem, the Thomson-Haskell propagator matrix is

a =

[
Cβ −Yβ

µ

−µXβ Cβ

]
. (4.28)

At the interface where the source is located, b is discontinuous due to the presence of
the source:

b−
m = b+

m − s. (4.29)

Since b is continuous at all other interfaces, we can connect the wave-vector in half space
with the stress-displacement vector at the surface

ΛN+1(zN)wN+1 = Xb−
m = X (b+

m − s) = Rb0 −Xs, (4.30)

where

X = E−1
N+1aN · · · am+1, (4.31)

R = E−1
N+1aN · · · a1. (4.32)
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The stress-free surface boundary condition means that for b0:

Tz = Tr = Tθ = 0. (4.33)

In the bottom half-space, the components of wN+1 associated with up-going waves e−να,βz

should vanish:
wN+1(1) = wN+1(2) = wN+1(5) = 0. (4.34)

We then get:R11 R12 0
R21 R22 0
0 0 R55

Ur

Uz

Uθ

−
X11 X12 X13 X14 0 0
X21 X22 X23 X24 0 0
0 0 0 0 X55 X56

 s =

0
0
0

 . (4.35)

Solving above linear equations, we can obtain the displacement at the surface:(
Ur

Uz

)
=

1

FR

(
R22 −R12

−R21 R11

)(
X1isi

X2isi

)
, (4.36)

Uθ =
X5isi

FL

, (4.37)

where

FR = R11R22 −R21R12, (4.38)

FL = R55, (4.39)

are often called Rayleigh denominator and Love denominator.

As an example, consider a half space,

R = E−1, (4.40)

The Rayleigh denominator

FR = R11R22 −R21R12 =
1

k2

(
(1− γ)2k2 − γ2νανβ

)
, (4.41)

Figure 4.2 plots FR as a function of k.

For a layer over half space,
R = E−1

2 a1, (4.42)

The Love denominator:

FL = R55 = −1

2

(
cosh νβ1d−

ρ1νβ1β
2
1

ρ2νβ2β
2
2

sinh νβ1d

)
, (4.43)

which is shown in Figure 4.3.
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Figure 4.2: Raleigh denominator (ω = 1 Hz) and locations of branch points and Rayleigh
pole for a half space (α=6.3 km/s, β=3.5 km/s). Note that the Rayleigh pole is on the right
of kβ which means that Rayleigh velocity is slower than the shear velocity of the half space.
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Figure 4.3: Love denominator as function of wavenumber (we set ω = 3 Hz) for a one layer
over half space model. Note that there are multiple poles corresponding to fundamental and
higher modes and all the poles are located between kβ1 and kβ2 .
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4.3 Source terms and horizontal radiation pattern

The displacement-stress discontinuities to represent the source can be found by expanding
the solution of the whole-space problem with the cylindrical spherical harmonics (4.1 and
4.6) [Haskell, 1953, Takeuchi and Saito, 1972]. Takeuchi and Saito [1972] have listed the
displacement-stress discontinuities produced by various sources. Since our definition of s
is slightly different from theirs, we will give below the non-zero terms for several types of
sources often encountered in seismology.

4.3.1 Explosion source

Only m = 0 term exists for the isotropic source

s0 = (0, ξ/µ, 0, 2ξ, 0, 0)T . (4.44)

4.3.2 Single force

None-zero terms exist for m = 0, ±1. We use the symmetry between m = −1 and m = 1
terms and factor out the common source geometry independent term. This reduces the
number of source vectors s from 3 to 2:

s0 =
1

k
(0, 0, −1, 0, 0, 0)T , (4.45)

s1 =
1

k
(0, 0, 0, −1, 0, 1)T . (4.46)

They will produce five components of ground displacement, u0
z, u

0
r, u

1
z, u

1
r, u

1
θ (u0

θ is always
zero). The actual displacement is obtained by adding the force orientation when summing
over azimuthal modes m. By re-arranging terms, the summation can be expressed as

uz = cosφ cos δ u1
z − sin δ u0

z, (4.47)

ur = cosφ cos δ u1
r − sin δ u0

r, (4.48)

uθ = − sinφ cos δ u1
θ, (4.49)

where δ is the dip angle of the force, measured from the horizontal plane; φ is the azimuth
of the station, measured clockwise from the direction of the force. It can be seen that u0

is produced by an unit vertical force (upward) and u1 is produced by a horizontal force of
magnitude

√
2 at azimuth 45◦ CCW from the force direction.
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4.3.3 Double-couple without torque

Similar to the single force, the five none-zero source vectors (m = 0, ±1, ±2) can be reduced
to three:

s0 = (0, 2 ξ/µ, 0, 4 ξ − 3, 0, 0)T , (4.50)

s1 = (1/µ, 0, 0, 0, −1/µ, 0)T , (4.51)

s2 = (0, 0, 0, 1, 0, −1)T . (4.52)

The displacement for arbitrary double-couple is

uz =
1

2
sin 2 δ sinλu0

z

− (sinφ cos 2δ sinλ− cosφ cos δ cosλ)u1
z

− (sin 2φ sin δ cosλ+
1

2
cos 2φ sin 2δ sinλ)u2

z, (4.53)

ur =
1

2
sin 2 δ sinλu0

r

− (sinφ cos 2δ sinλ− cosφ cos δ cosλ)u1
r

− (sin 2φ sin δ cosλ+
1

2
cos 2φ sin 2δ sinλ)u2

r, (4.54)

uθ = −(sinφ cos δ cosλ+ cosφ cos 2δ sinλ)u1
θ

+ (
1

2
sin 2φ sin 2δ sinλ− cos 2φ sin δ cosλ)u2

θ, (4.55)

where δ is the dip angle of the fault plane; λ is the slip direction measured counterclockwise
from the strike of the fault; φ is the azimuth of the station, measured clockwise from the
strike of the fault. The above coefficients are often called the horizontal radiation patterns
and were given by different authors [e.g. Aki and Richards, 1980, Wang and Herrmann, 1980,
Helmberger, 1983]. The results show that u0 is produced by a 45◦ down-dip slip (magnitude
-2) at azimuth 45◦ from the fault strike, u1 is produced by a vertical dip slip (magnitude
-
√

2) at azimuth 45◦, and u2 is produced by a vertical strike slip (magnitude -
√

2) at azimuth
22.5◦.

4.4 Frequency-wavenumber integration

Calculation of Green’s function involves following double integration:∫ ∞

0

eiωtdω

∫ ∞

0

U(ω, k)Jn(kr) dk, (4.56)

which can be done in different ways (GRT, slowness method, etc). The frequency-wavenumber
(F-K) integration method that we are going to discuss below does the k-integration first by
some numerical integration scheme. The ω-integration is then easily implemented by the
inverse fast Fourier transform (IFFT).
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Figure 4.4: Location of branch points and poles in complex k-plane.

4.4.1 Wavenumber integration

The k-integration over the real k-axis from 0 to ∞ is complicated by several issues. First,
the branch points kα, kβ, and also the Rayleigh poles and Love poles, are all located on
the real axis (Figure 4.4). This makes the numerical computation of U(ω, k) very unstable.
Fortunately for anelastic medium, the velocities are complex and frequency-dependent:

v = vr(1 +
1

πQ
log f +

i

2Q
), (4.57)

where vr is the reference velocity at 1 Hz. Since

kα =
ω

α
, kβ =

ω

β
, (4.58)

all the branch points and poles are moved below the real k axis. As shown in Figure 4.5,
introducing attenuation in the velocity model helps to smooth the kernel and stabilize the
calculation.

Another way to stabilize the computation of U(ω, k) along real k-axis is to introduce a
small negative imaginary part in ω, while will also move branch points below the real k axis.
Instead of calculating U(ω, k), we now calculate U(ω − σi, k). Because

IFFT [f(ω − σi)] = e−σtf(t) +
∑
n6=0

f(t+ nT )e−σ(t+nT ), (4.59)

where T = 2π
dω

, this small imaginary part helps to damp the time sequence and reduce
wrap-around (time aliasing).

Integration using trapezoidal rule

A simple integration scheme is to use trapezoidal rule:∫ k1+dk

k1

g(k) dk =
dk

2
(g(k1) + g(k1 + dk)), (4.60)
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Figure 4.5: Vertical displacement kernel as function of k for different Qβ and σ value (we
set ω = 0.47 Hz). The velocity model is a one-layer over half-space, with α1 = 6.3, β1 =
3.5, α2 = 8.1, β2 = 4.5.

where g(k) = U(k)Jn(kr). So the integration from k = 0 to kmax can be approximated by
(assuming g(0) = g(kmax) = 0, which is usually the case):∫ kmax

0

g(k) dk = dk(g1 + g2 + · · ·+ gn). (4.61)

Usually the integrand g(k) is highly oscillatory, especially at large r (Figure 4.6). Gener-
ally the trapezoidal rule is not a good scheme for this kind of integration. However, from a
physical point of view, replacing continuous k-integral with summation of discrete horizon-
tal wavenumbers is equivalent to summing all contributions from infinite number of point
sources uniformly distributed in horizontal plane [Bouchon, 1981], with separation distance:

L =
2π

dk
, (4.62)

(Figure 4.7). So, as long as this separation satisfies:

L > 2r, (4.63)√
(L− r)2 + h2 > vmaxt, (4.64)

the wavefield obtained at (r, t) will not be disturbed by the closest neighbor source.
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Figure 4.6: F-K integrand U(ω, k)J0(kx) at distance ranges of 100 km (above) and 1000 km
(below).
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Figure 4.7: Discrete summation in wavenumber is equivalent to summing infinite number of
point sources (open circles) uniformly distributed in r direction.
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Filon scheme

Another method often used for integrating oscillatory functions is the Filon scheme [e.g.
Saikia, 1994]. It tries to separate the kernel U(k) from the more oscillatory Bessel function
Jn(kr) through integration by parts.

First we express Bessel function in terms of Hankel functions:

Jn(kr) =
H

(1)
n (kr) +H

(2)
n (kr)

2
. (4.65)

As kr � 1, we have:

H(1)
n ∼

√
2

πkr
eikr, (4.66)

H(2)
n ∼

√
2

πkr
e−ikr. (4.67)

Dropping the H
(1)
n term which represents inward propagating waves, and integrating by

parts: ∫ k1+dk

k1

U(k)e−ikr dk = − 1

ir
(Ue−ikr)|k1+dk

k1
+

1

ir

∫ k1+dk

k1

U ′e−ikr dk. (4.68)

Assuming U(k) is linear between k1 and k1 + dk, RHS can be written as:

− 1

ir
(g(k1 + dk)− g(k1)) +

U(k1 + dk)− U(k1)

irdk

∫ k1+dk

k1

e−ikr dk

=− 1

ir
(g(k1 + dk)− g(k1)) +

U(k1 + dk)− U(k1)

r2dk
(e−ir(k1+dk) − e−irk1),

(4.69)
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finally, we have: ∫ k1+dk

k1

U(k)e−ikr dk = dk(c g(k1) + c̃ g(k1 + dk)), (4.70)

where

c =
1− cos ε+ i(sin ε− ε)

ε2
, (4.71)

ε = rdk. (4.72)

So, the integration can be approximated by:∫ kmax

0

g(k) dk = 2
1− cos ε

ε2
dk(g1 + g2 + · · ·+ gn). (4.73)

Note that above formula differs from (4.61) only by a coefficient. So the two schemes should
give same waveform shapes with different amplitudes. Numerical test shows that the Filon
scheme gives poor amplitude prediction. The reason is that the assumption it made about
kernel’s linear behavior between any two sampling points is not proper in our case.

4.4.2 Compound matrix

Haskell propagator matrix elements contain exponential function like e±νd. Multiplication
of propagator matrices of several layers usually causes severe loss of significant digits and
leads to large numerical errors. A solution is to use the so-called compound matrix instead
of the Haskell matrix itself. The compound matrix of A is formed by its subdeterminants:

A|ijkl = AikAjl − AilAjk. (4.74)

By factoring R into two parts
R = XZ, (4.75)

where
Z = am . . . a1, (4.76)

is the propagator matrix from the surface to above the source, the displacement kernels in
Eq. (4.36) can be expressed as:(

Ur

Uz

)
=

1

R|1212

(
siX|12ij Zj2

−siX|12ij Zj1

)
, (4.77)

where

X|12ij = (E−1
N+1)|

12
mnaN |mn

op . . . am+1|stij , (4.78)

R|1212 = (E−1
N+1)|

12
mnaN |mn

op . . . a1|st12. (4.79)

Note that the 4×4 matrix X|12ij can also be viewed as a 1×6 row vector

g = (X|1212,X|1213,X|1214,X|1223,X|1224,X|1234), (4.80)

which is to be propagated upward by the 6×6 compound matrix, see Wang and Herrmann
[1980] for details.
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4.4.3 Other boundary conditions

If the top interface is not a free surface but the bottom of an elastic half-space, the stress-free
boundary condition is replaced by the vanishing of down-going waves in the top half-space.
The equation takes the same form of Eq. (4.30) except the matrix R is multiplied from the
right by matrix E0 of the top half-space.

If the bottom interface is a free boundary, the LHS of Eq. (4.30) is replaced by the
displacement-stress vector at the bottom with rows 3 and 4 vanished. By multiplying both
sides by

H =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (4.81)

we swap rows 1–2 with 3–4 thus obtain the same format solution of Eq. (4.36), except that
E−1

N is replaced by H in L and R. Similar technique can be used to handle rigid bottom
boundary condition by using an unit matrix for H, see Herrmann [2007].

4.4.4 Buried receivers

For obtaining displacement kernels for buried receivers beneath the surface but above the
source level, one might attempt to obtain the surface displacement vector first and then use
the Haskell matrix to propagate it down to the receiver depth:

Ur

Uz

Tz

Tr

 =
Y

R|1212


siX|12ij Zj2

−siX|12ij Zj1

0
0

 , (4.82)

where Y is the propagator matrix from the surface to the receiver. This approach is, however,
not numerically stable at high frequencies due to the exponential functions in the Haskell
matrix. Herrmann [2007] used the compound matrix by replacing the Z matrix above with

Z = VY, (4.83)

where V is the propagator matrix from the receiver to the source. The displacement-stress
vector at the buried receiver becomes

Ur

Uz

Tz

Tr

 =
1

R|1212


siX|12ij VjkY|1k

12

siX|12ij VjkY|2k
12

siX|12ij VjkY|3k
12

siX|12ij VjkY|4k
12

 . (4.84)

If the receiver is below the source, one can flip the model to carry out the same com-
putations and correct the vertical displacement polarity when done. In the process, source
vectors s0 of single force and s1 of double couple need to be reversed.
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4.4.5 Partitioning of up-going and down-going wavefields

Partitioning of total wavefield into up-going and down-going wavefields is done by separating
the source displacement-stress jump vector s into the up-going and down-going parts:

s = s+ + s− = (D+ + D−)s. (4.85)

For the P -SV system,

D+ = E


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

E−1

=
1

2



1 γ

(
γ1
k

να

− νβ

k

)
0

γ

2µ

(
νβ

k
− k

να

)
γ

(
γ1
k

νβ

− να

k

)
1

γ

2µ

(
να

k
− k

νβ

)
0

0 2µγ

(
γ2

1

k

να

− νβ

k

)
1 γ

(
νβ

k
− γ1

k

να

)
2µγ

(
γ2

1

k

νβ

− να

k

)
0 γ

(
να

k
− γ1

k

νβ

)
1


,

(4.86)

and for the SH system,

D+ =
1

2

 1
k

µνβ
µνβ

k
1

 . (4.87)

4.4.6 Some practical aspects in the F-K integration

I have written a Fortran code to implement the propagator matrix algorithm to compute the
displacement kernels. This code closely follows the notations of Zhu and Rivera [2002]. The
structure of the Fortran program to calculate F-K integration can be illustrated as following:

for frequency = ωmin to ωmax step dω
for wavenumber = kmin to kmax step dk

for layer = bottom to top
calculating propagation matrix

end of layer loop
calculating kernel U(k, ω)
summing J(kx)U(k, ω)

end of wavenumber loop
end of frequency loop
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inverse Fourier transformation

There are essentially three loops in the computation, i.e., layer-propagation, k-loop, and
ω-loop. For each k and ω, the code starts at the bottom half space, initializing the g with
the (E−1

N+1)|12ij . Then it propagates this 1×6 vector upward using the compound matrix of
each layer. When crossing the source interface, it initializes the 1×4 vector zj = siX|12ij

and then propagates it upward using the Haskell matrix a until reaching the surface. The
total time will be proportional to the number of layers in the model, k-samplings rate,
and ω-samplings rate. Because displacement kernels are independent of distance range x,
calculating for multiple distance ranges only slightly increases computation time.

The efficiency and success of calculating full time response using F-K double integration
depends on correct chose of several parameters. For k-integration, we need to decide the k
sampling interval, dk, and maximum wavenumber, kmax. Both are model dependent. kmax

is determined by the lowest velocity in the model.

kmax >
ω

vmin

, (4.88)

and dk has to satisfy the Bouchon criteria:

dk <
π

xmax

. (4.89)

For ω-integration, ωmax and dω are determined by the sampling rate, dt, and duration of
the signal, T , we desire to calculate:

ωmax =
π

dt
, (4.90)

dω =
2π

T
. (4.91)

If the actual duration of signal is longer than T , time-aliasing (wrap-around) will occur.
This, as we shown before, can be mitigated by introducing a small imaginary part σ in the
frequency. It also help to smooth the displacement kernels to avoid space-aliasing. But too
large σ can introduce long-period noise in the result. Usually we select σ in such a way that
the end of signal is damped by factor of 2-3 with respect to the beginning of the signal. This
means that.

σ =
2 ∼ 3

T
. (4.92)

Some examples are given in Figures 4.9 to 4.12. A sample of input for the fk code is given
below
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t (s)

Figure 4.9: Components of Greens’ function at distance of 1 km for a double couple source
in half space (Vp=6.3 km/s, Vs=3.5 km/s, source depth 10 km). The components are, from
the bottom to top, ZDD, RDD, TDD, ZDS, RDS, TDS, ZSS, RSS, and TSS. The near field
between P and S arrivals and permanent displacements after S are best displayed on ZDD.

48



15 20 25 30 35 40

t (s)

Figure 4.10: Comparison of Greens functions calculated by FK method (heavy lines) with
those by GRT (red lines). The velocity model is a 30-km-thick layer (Vp=6.3 km/s and
Vs=3.6 km/s) over a half space (Vp=8.1 km/s and Vs=4.5 km/s). The source is at 10 km
depth and the distance range is 100 km. The components are, from the bottom to top, ZDD,
RDD, TDD, ZDS, RDS, TDS, ZSS, RSS, and TSS. Total of 14 primary rays are used in GRT
calculation which takes about 0.1 sec on a SUN-Ultra. FK takes about 1.4 sec.
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Figure 4.11: Greens’ function at distance of 600 km for previous model. Wavenumber
sampling interval dk is set to 0.005 km−1.
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Figure 4.12: Same velocity model and distance range as in Figure 4.11, but shows the problem
of space-aliasing in waveforms when dk is not small enough (dk = 0.01 km−1).
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4.5 Differential seismograms

4.5.1 Analytical derivatives of propagator matrices and source
terms

4.5.2 Analytical solution

4.5.3 Implementation and tests

4.5.4 Application to waveform inversion
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4.6 Exercises

1. Download the Frequency-Wavenumber synthetic seismogram package from
http://www.eas.slu.edu/People/LZhu/home.html and compile the program fk. Use it
to compute the Green’s functions shown in Fig. 4.9. Do the same using the GRT
program aser. Plot the waveforms to compare the results from the two methods.

2. Use fk and aser to compute the Green’s functions shown in Fig. 4.10. Plot the wave-
forms to compare the results from the two methods.
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Chapter 5

Regional Distance Seismic Waveforms

5.1 Local distances

5.2 Regional distances
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Figure 5.1: Comparison of synthetics with strong-motion record of station IVC of an earth-
quake at Brawley, CA, in Nov. 1976. From Helmberger [1983].
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Figure 5.2: Map of eastern Tibet showing major tectonic boundaries and the station locations
(triangles) of the 1991-1992 Tibet PASSCAL experiment. Shading indicates elevation above
3 km. Darkly shaded focal spheres are for sub-crustal events analyzed in this study. Lightly
shaded focal spheres are from Molnar and Chen [1983] and the Harvard CMT solution (for
event on 1/10/86). All of them are located at intermediate depths.
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Figure 5.3: SH displacements of event 355. Note the sharp onsets of S waves beyond 300 km.
Crustal multiples up to the 4th order are indicated by the evenly separated dashed lines.
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Figure 5.4: SH components of the Green’s functions of a strike-slip source at different depths
(numbers in km left of the trace). The velocity model is T93 with the Moho at 65 km depth.
The Distance range is 350 km. Also shown in the figure are observed SH displacements of
Events 355 and 095 recorded at station LHSA at the same distances.
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Figure 5.5: Comparison of the vertical and radial displacements from Event 355 at station
LHSA with synthetics from a source above (60 km) and below (70 km) the Moho. The syn-
thetics are constructed using the source mechanisms obtained from the waveform inversion
at the corresponding depth.
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Figure 5.6: Vertical components of motion as a function of number of generalized ray
summed. The epicentral distance is 1000 km. From Helmberger [1983].
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Figure 5.7: Profile of vertical displacements for the three fundamental faults. The Green’s
functions have been convolved with a 1.5 s trapezoid source time function. From Helmberger
[1983].
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Figure 5.8: Profile of vertical displacement for the three fundamental faults. The Green’s
functions have been convolved with a 3 s trapezoid source time function and a WWSSN
long-period instrument response. From Helmberger [1983].
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Figure 5.9: The vertical Pnl waveforms of the 1966 Truckee earthquake. The strike-slip focal
mechanism (strike 43◦N, dip 76◦SE, and rake -11◦) of the event has two nodal planes which
project through station TUC and BOZ. From Helmberger [1983].
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Figure 5.10: Filtered data and synthetics from the Oroville earthquake. At all stations except
GOL both the vertical (the first trace pair) and radial components are shown. The focal
mechanism (strike 204◦, dip 66◦, rake 275◦) generates positive first-motions at all station in
regional distances as opposed to those observed teleseismically. From Helmberger [1983].
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Figure 5.11: Filtered data and synthetics for both the vertical and radial components from
an earthquake in Turkey (strike 131◦, dip 68◦, rake 272◦). From Helmberger [1983].
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Chapter 6

Upper-mantle Distance Waveforms

6.1 Earth flattening transformation

The Earth flattening transformation (EFT) transforms a sphere with constant velocity V0

to a half-space with variable velocity V (z) through

z = a ln
a

r
, (6.1)

V (z) =
a

r
V0 = V0e

z/a. (6.2)

It can be shown that the above transformation gives the same travel-time at the same
epicentral distance for the half-space as for the sphere (kinematically equivalent).

It can be further shown that if we transform the density according

ρ(z) =
(r
a

)5

ρ0, (6.3)

the SH-waveform for the half-space is the same as for the sphere (dynamically equivalent)
[Biswas and Knopoff, 1970]. For the P -SV system, there is no exact transformation [e.g.
Chapman, 1973, Bhattacharya, 1996].

For a sphere with radially varying velocity and density, we can divide the sphere into
many thin shells and do EFT to each shell, using

dz =
a

r
dr. (6.4)

Fig. 6.1 shows IASPEI91 upper-mantle seismic velocity model before and after the Earth
flattening transformation.
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Figure 6.1: IASPEI91 upper-mantle seismic velocity model before the Earth flattening trans-
formation (red lines) and after (black lines).
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Figure 6.2: Direct, reflected and head waves for a two liquid half-space model.
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Figure 6.3: P (left) and SH (right) triplicated waveforms due to the 410 discontinuity.
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Figure 6.4: Triplicated P (left) and SH (right) waveforms for the IASPEI91 velocity model.
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Figure 6.5: Vertical component seismograms going from Pnl domination at regional distances
to P and long-period at intermediate distances, a) strike-slip and b) dip-slip.
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Figure 6.6: Comparison of synthetics with data of 9/12/1966 Truckee earthquake (strike 48◦,
dip 80◦, and rake 0◦) at regional and upper-mantle distances. From Helmberger [1983].
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6.2 Velocity discontinuity and triplication

6.3 Upper-mantle structure from modeling triplicated

waveforms

See Brudzinski and Chen [2003]
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Chapter 7

Teleseismic Waveforms

7.1 Computing teleseismic synthetics

7.1.1 Full waveforms using normal-mode summation, DSM, and
FK

7.1.2 Construction of teleseismic P -wave with GRT

uz =
M0Rpz(p0)

4πρR

3∑
j=1

Aj

[
Cj(p0)δ(t) + Cj(p0)Rpp(p0)δ(t−∆t1) + SVj(p0)

ηα

ηβ

Rsp(p0)δ(t−∆t2)

]
.

(7.1)

7.2 Determining earthquake moment tensors and focal

depth

7.3 Determine upper mantle structure

See Tan and Helmberger [2006].

7.4 Teleseismic receiver functions

.
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Figure 7.1: Vertical component record section of the 1994 Bolivia deep earthquake.

75



0

5000

10000

15000

Z
 (

km
)

0 10 20 30 40 50 60 70 80 90 100 110 120

V (km/s)

Figure 7.2: IASPEI91 velocity model after EFT.

7.4.1 Computing receiver functions

The vertical and radial components of teleseismic P wave:

Z(t) = S(t)⊗ EZ(t), (7.2)

R(t) = S(t)⊗ ER(t), (7.3)

where S(t) is the time history of the incident P wave, which contains the earthquake source
time function and the propagation effect through the mantle. E(t)’s are the responses of
structure beneath the seismic station. The above equations suggest that the local struc-
ture responses can be isolated from three-component teleseismic recordings using spectrum
division

R(ω)

Z(ω)
=
ER(ω)

EZ(ω)
. (7.4)
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Figure 7.3: Vertical (left) and transverse (right) components of DSM (red) and FK (black)
synthetics for the IASPEI91 model. A 20-sec-low-pass filter is applied.
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Figure 7.4: Vertical (left) and transverse (right) components of normal-mode (red) and DSM
(black) synthetics for the IASPEI91 model. A 20-sec-low-pass filter is applied.
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The corresponding time sequence is called the receiver function [Langston, 1977].

r(t) =

∫
R(ω)

Z(ω)
ei ω tdω. (7.5)

Fig. 7.9 shows the vertical and radial responses of a simple crustal model and the correspond-
ing receiver function for a incident teleseismic P wave with a ray parameter of 0.06 km/s.
Receiver functions are dominated by P -to-S converted phases at various velocity interfaces
(e.g. Moho) and their multiples.

Computing receiver functions can be done in the frequency domain (spectrum division)
or time domain (Wiener filtering). Both methods pre-whiten the signal to suppress spectrum
“holes” to make the computation stable, see the usage of program decon for details. Kikuchi
and Kanamori [1982] introduced an iterative time-domain deconvolution method that works
well for noisy data. It has been implemented in program iter decn.

Some real examples of receiver functions at station PAS are shown in Fig. 7.10

7.4.2 Inversion for 1-D velocity structure

Receiver functions calculated from broadband seismic records contain many P -to-S con-
verted phases produced by the crustal structure under the station. We can utilize a time
domain inversion technique [Owens et al., 1984, Ammon et al., 1990], which inverts the
receiver function for a one-dimensional velocity structure beneath the station. By using a
matrix formalism for propagation of elastic waves in stratified medium, theoretical receiver
functions and their partial differentials with respect to elastic parameters mi in each layer
can be calculated [Kennett, 1983, Randall, 1989]. A set of linearized equations can then be
constructed from a Taylor expansion,

∂r(t)

∂mi

∆mi = robs(t)− rcal(t), (7.6)

which can be solved iteratively to get the one-dimensional velocity structure when the the-
oretical receiver functions match the observations. Fig. 7.11 shows an example using a
temporary station deployed on the Tibetan plateau [Zhu et al., 1993]. In general, such inver-
sion results are very non-unique because receiver function waveforms are more sensitive to
velocity changes across discontinuities at different depths than to the velocities themselves.

7.4.3 Estimate crustal thickness and Vp/Vs ratio

Since Moho is usually the largest velocity discontinuity in the crust, the most prominent
phase in the first 10 s of a radial receiver function is the Moho P -to-S conversion Ps. If we
simplify the crust as one layer with a P velocity of Vp and an S velocity of Vs, The time
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separation between Ps and P can be used to estimate crustal thickness,

H =
tPs√

1
V 2

s
− p2 −

√
1

V 2
p
− p2

, (7.7)

where p is the ray parameter of the incident wave. An advantage of this method is that
because the P -to-S conversion point is close to the station (usually within 10 km laterally),
the estimation is less affected by lateral velocity variations and thus provides a good point
measurement. One problem is the trade-off between the thickness and crustal velocities.
However, since tPs represents the differential travel time of S with respect to P wave in the
crust, the dependence of H on Vp is not as strong as on Vs (or more precisely, on the Vp/Vs

ratio κ).

For example, using a Vp of 6.3 km/s and Vp/Vs ratio of 1.732 for a 30-km-thick crust, one
gets

∆H =
∂H

∂Vp

∆Vp = 4.3∆Vp (km),

which means that the uncertainty of H is less than 0.5 km for a 0.1 km/s uncertainty in Vp.
However, the thickness is highly dependent on the Vp/Vs, as shown by

∆H =
∂H

∂κ
∆κ = −40.2∆κ (km),

i.e., a 0.1 change in κ can lead to about 4 km change in the crustal thickness. This ambiguity
can be reduced by using the later phases which provide additional constraints

H =
tPpPs√

1
V 2

s
− p2 +

√
1

V 2
p
− p2

, (7.8)

H =
tPpSs+PsPs

2
√

1
V 2

s
− p2

, (7.9)

so that both κ and H can be estimated [Zhu, 1993, Zandt et al., 1995, Zandt and Ammon,
1995].

In real situations, identifying the Moho Ps and the multiples and measuring their ar-
rival times on a single receiver function trace can be very difficult due to background noise,
scatterings from crustal heterogeneities, and P -to-S conversions from other velocity discon-
tinuities. To increase the signal/noise ratio (SNR), one can use multiple events to stack
their receiver functions. Such stacking is usually done in the time domain for a cluster of
events [e.g., Owens et al., 1984]. Zhu and Kanamori [2000] proposed a straightforward H-κ
domain stacking defined as

s(H, κ) = w1r(t1) + w2r(t2)− w3r(t3), (7.10)

where r(t) is the radial receiver function, t1, t2 and t3 are the predicted Ps, PpPs, and
PpSs+PsPs arrival times corresponding to crustal thickness H and Vp/Vs ratio κ, as given
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in (7.7)–(7.9). The wi are weighting factors, and
∑
wi = 1. The s(H, κ) reaches a maxi-

mum when all three phases are stacked coherently with the correct H and κ (Figure 7.12).
Advantages of this algorithm are that (1) large amounts of teleseismic waveforms can be
conveniently processed; (2) there is no need to pick arrival times of different conversion
phases; (3) by stacking receiver functions from different distances and directions, effects of
lateral structure variation are suppressed and an average crustal model is obtained; and (4)
uncertainties can be estimated from the flatness of s(H, κ) at the maximum.

7.4.4 CCP stacking and imaging

Zhu [2000] developed a stacking and imaging technique called Common Conversion Point
(CCP) stacking technique to image crustal structure when multiple stations are deployed
close to each other so that the teleseismic rays to them crisscross in the crust. First the
ray-path of the receiver function is calculated using a background velocity model. Then
the amplitude at each point on the receiver function, after corrected for the incidence angle
effect, is assigned to the corresponding location on the ray-path where the P -to-S conversion
occurred, using its time delay with respect to the direct P . This amplitude represents the
velocity change, or more precisely the impedance change, of the medium at the conversion
point. The crustal volume is divided into certain size bins and all amplitudes in each bin are
summed to obtain the average amplitude and variance. Fig. 7.13 shows a CCP image along
a 140-km-long profile across the San Andreas Fault in southern California from stacking 941
short-period receiver functions.

7.5 Core phases
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7.6 Exercises

1. Download the receiver function package from www.eas.slu.edu/People/LZhu/home.html
and compile the deconvolution programs decon and iter decon. Use them to compute
receiver functions of station KUL. A three-component teleseismic recording is provided
with the package. Compare your results from the frequency-domain deconvolution de-
con and the time-domain deconvolution iter decon. Identify and measure the delay of
the Moho P -to-S converted phase.

2. Compile the theoretical receiver function program rcvFn and use it to compute the
receiver function for a standard crustal velocity model assuming that the ray parameter
of the incident teleseismic P wave is 0.06 s/km. Adjust your crustal model to best-fit
the observed receiver function of KUL.
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Figure 7.5: Teleseismic P -wave synthetics. The source time functions are (0.5, 1.0, 0.5) secs
for high stress-drop, (1.0, 3.0, 1.0) secs for medium stress-drop, and (2.0, 6.0, 2.0) for low
stress-drop. From Helmberger [1983].
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Figure 7.6: Observed (top) and synthetic (bottom) long-period P waveforms at 14 WWSSN
stations from the Borrego Mtn. earthquake. From Helmberger [1983].
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Figure 7.7: Observed (top) and synthetic (bottom) long-period P waveforms from the
Oroville earthquake on Aug. 1, 1975 (strike 180◦, dip 65◦, rake -70◦). From Helmberger
[1983].
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Figure 7.8: Observed (top) and synthetic (bottom) vertical long-period WWSSN P wave-
forms from the Bermuda earthquake on March 24, 1978. From Helmberger [1983].
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Figure 7.9: Receiver functions of a one-layer crustal model. The ray parameter of the incident
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87



0 10 20 30

t (s)
0 10 20 30

t (s)

Figure 7.10: Teleseismic receiver functions (right) computed from 10 teleseismic events
recorded at station PAS (left).
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Figure 7.11: Inversion results using receiver functions of WNDO from SE. (a) Initial (dashed
line) and final (solid line) shear velocity models. (b) the fit of final synthetic receiver function
(dashed line) to both the mean receiver function (solid line) and the bounds (c).
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