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[1] The cross-correlation of acoustic wave fields at two
receivers yields the exact Green’s function between these
receivers, provided the receivers are surrounded by sources
on a closed surface. In most practical situations the sources
are located on an open surface and as a consequence the
illumination of the receivers is one-sided. In this Letter we
discuss the conditions for accurate Green’s function
retrieval for the situation of one-sided illumination. It
appears that the Green’s function retrieval method benefits
from the fact that the earth is inhomogeneous, without relying
on assumptions about disorder. Citation: Wapenaar, K.

(2006), Green’s function retrieval by cross-correlation in case of

one-sided illumination, Geophys. Res. Lett., 33, L19304,

doi:10.1029/2006GL027747.

1. Introduction

[2] It has been shown by many researchers in geophysics,
ultrasonics and underwater acoustics that the cross-correlation
of acoustic wavefields recorded by two different receivers
yields the response at one of the receiver positions as if there
was a source at the other [Weaver and Lobkis, 2001;
Campillo and Paul, 2003]. Various theories have been
developed to explain this phenomenon, ranging from diffu-
sion theory for enclosures [Weaver and Lobkis, 2001],
multiple scattering theory and stationary-phase theory for
random media [Malcolm et al., 2004; Snieder, 2004] and
reciprocity theory for deterministic and random media
[Wapenaar, 2004; Weaver and Lobkis, 2004; van Manen
et al., 2005]. The principle of recovering an acoustic
response by cross-correlation is often called Green’s func-
tion retrieval; in the geophysical literature it is also known
as seismic interferometry [Schuster et al., 2004; Wapenaar
and Fokkema, 2006; Snieder et al., 2006].
[3] The derivation based on reciprocity theory yields an

exact representation of the Green’s function in an arbitrary
inhomogeneous acoustic or elastic lossless medium. This
representation applies to an open configuration; the two
receivers are assumed to be surrounded by sources on an
arbitrarily shaped closed surface, in general not coinciding
with a physical boundary. When the sources emit one-by-
one transient signals (as for example in exploration seis-
mology), the Green’s function between the two receivers is
obtained by cross-correlating the individual responses and
integrating the result along the sources. On the other hand,
for simultaneously acting uncorrelated noise sources (as in
passive seismology) the Green’s function is obtained from a

single cross-correlation of the noise registrations (in both
cases the end result is actually the Green’s function con-
volved with the autocorrelation of the source signal). The
reconstructed Green’s function does not only contain the
ballistic wave between the two receiver points but also
the coda due to multiple scattering between the inhomoge-
neities of the medium.
[4] The condition of having sources on a closed surface is

seldom fulfilled in practical situations. When the medium is
partly bounded by a free surface, it is sufficient to have
sources on an open, arbitrarily shaped surface that, together
with the free surface, forms again a closed surface surround-
ing the two receivers, see Figure 1a. Since the acoustic
pressure (or in the elastodynamic case the traction vector)
vanishes at the free surface, the integral along the remaining
part of the closed surface is sufficient to retrieve the exact
Green’s function. An alternative, more intuitive explanation
is that the free surface acts as a mirror which obviates the
need of having sources on a closed surface. The configura-
tion of Figure 1a may represent the situation of passive
seismology, in which receivers at or below the earth’s free
surface register the wave field emitted by natural sources in
the subsurface. Hence, for this situation cross-correlation of
passive measurements recovers the Green’s reflection re-
sponse of the subsurface, including the coda [Wapenaar,
2004]. A real data application is discussed by Draganov et
al. [2006].
[5] In many other situations in which the source locations

are restricted to an open surface, there is no free surface to
form a closed surface surrounding the receivers, hence, the
illumination is one-sided, see Figure 1b. This type of
configuration occurs for example in exploration seismology,
where the sources are located at the earth’s surface only. For
this configuration cross-correlation methods have been
developed by Schuster et al. [2004] as a method for seismic
imaging, by Bakulin and Calvert [2004] for Green’s func-
tion retrieval and by Verschuur and Berkhout [2005] for
transforming surface related multiples into primaries. Im-
pressive results have been obtained by these authors for
ballistic waves, but the coda due to internal multiple
scattering was not considered. Snieder et al. [2006] analyze
the cross-correlation method for exploration seismology in
more detail and conclude that artifacts appear in the recon-
structed Green’s function as a result of the fact that the
source locations do not constitute a closed surface.
[6] Figure 1b may alternatively be seen as a plan view of

the configuration for retrieval of the surface wave Green’s
function. For example, Sabra et al. [2005] consider noise
sources along the coast of Southern California. Cross-
correlations between broadband seismic stations on land
yield the surface wave Green’s function between these
stations. Due to the fact that the source locations do not
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form a closed contour surrounding the stations, their corre-
lation results are asymmetric in time, which implies an
incomplete reconstruction of the Green’s function.
[7] In this Letter we briefly review the exact Green’s

function representation for the situation of sources on a
closed surface, discuss the effect of one-sided illumination
and introduce an extinction condition for the missing part of
the integral. We show that under specific conditions the full
Green’s function (including the coda) can be retrieved from
cross-correlations, even when the illumination is one-sided.

2. Green’s Function Representation

[8] We consider a lossless arbitrary inhomogeneous an-
isotropic solid medium in which we define a domain D

enclosed by an arbitrarily shaped surface @D with outward
pointing normal vector n = (n1, n2, n3). In general the
surface @D does not coincide with a physical boundary.
Inside this domain we define two points xA and xB. In the
frequency domain, the elastodynamic Green’s function
between these two points can be represented as [Wapenaar
and Fokkema, 2006]
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where the asterisk denotes complex conjugation and < that
the real part is taken. The notation convention for the

elastodynamic Green’s function is as follows. The two
coordinate vectors between the brackets represent the ob-
servation point and the source point, respectively. The
superscripts represent the observed quantity and the source
quantity, respectively (v standing for particle velocity, t for
stress, f for force and h for deformation). The subscripts
represent the components of the observed quantity and the
source quantity, respectively. Lowercase Latin subscripts
take on the values 1, 2 and 3; Einstein’s summation
convention applies to repeated subscripts. The circumflex
denotes that these Green’s functions are represented in the
frequency domain; w denotes the angular frequency. Note
that when the observed quantity would be displacement
instead of velocity, then 2< in the left-hand side would be
replaced by 2j= (where j denotes the imaginary unit and =
the imaginary part), and the minus sign in the right-hand
side by jw, corresponding to differentiation in the time
domain.
[9] The products Ĝq,ij

v,h{Ĝp,i
v,f}* etc. in equation (1) corre-

spond to cross-correlations in the time domain. Hence, the
right-hand side can be interpreted as the integral of the
Fourier transform of cross-correlations of observed particle
velocities at xA and xB, respectively, due to impulsive
sources at x on @D; the integration takes place along the
source coordinate x. Since by reciprocity Ĝq,ij

v,h (xB, x, w)nj =
Ĝij,q

t,f (x, xB, w)nj etc., the integrand vanishes at those parts of
@D that coincide with a free surface. The left-hand side of
equation (1) is the Fourier transform of Gq,p

v,f (xB, xA, t) +
Gq,p
v,f (xB, xA, �t), which is the superposition of the observed

particle velocity in the xq-direction at xB due to an impulsive
force in the xp-direction at xA and its time-reversed version.
The Green’s function Gq,p

v,f (xB, xA, t) is obtained by taking
the causal part of this superposition. Note that equation (1)
is exact and applies to any lossless arbitrary inhomogeneous
anisotropic solid medium. In practice data are band-limited,
which implies that xA and xB should be sufficiently far apart
to be outside the diffraction limit [van Manen et al., 2005].
The choice of the integration boundary @D is arbitrary (as
long as it encloses xA and xB) and the medium may be
inhomogeneous inside as well as outside @D. The recon-
structed Green’s function contains, apart from the ballistic
wave between xA and xB, all scattering contributions from
inhomogeneities inside as well as outside @D.
[10] When the medium outside @D is homogeneous and

isotropic, with P- and S-wave propagation velocities cP and
cS, respectively, and mass density r, equation (1) can be
approximated by [Wapenaar and Fokkema, 2006]
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Ĝ
v;f
q;KðxB; x;wÞ

�fĜv;f
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[11] Upper-case Latin subscripts take on the values 0, 1, 2
and 3; the repeated subscript K represents a summation from
0 to 3. In equation (2), cK = cP for K = 0 and cK = cS for K =
1, 2, 3. The Green’s functions in the right-hand side
represent again the observed particle velocities at xA and
xB due to impulsive sources at x on @D. The superscript f
denotes that these sources are P-wave sources for K = 0, and
S-wave sources with different polarizations for K = 1, 2, 3.
Hence, the summation over the repeated subscript K repre-

Figure 1. Exact Green’s function retrieval by cross-
correlation requires sources on a closed surface. (a) When
part of the closed surface (@D0) is a free surface it suffices to
have sources on the remaining part (@D1) of the closed
surface. (b) In case of one-sided illumination (sources on
@D0 only), the contribution of the remaining part of the
closed surface (@D1) is ignored, which generally leads to
artifacts. In this Letter we introduce an extinction condition
for the integral over @D1.

L19304 WAPENAAR: GREEN’S FUNCTION RETRIEVAL L19304

2 of 6



sents a summation over P- and S-wave sources. For the
acoustic situation K takes on the value 0 only (hence cK = cP)
and the summation can be skipped. Since equation (2)
contains only one correlation product, it is better suited for
application in seismic interferometry than equation (1). In
case of uncorrelated stationary noise sources equally distrib-
uted over @D, whose spectra satisfy hN̂K (x, w)N̂*L (x

0, w)i =
2

rcKdKLd(x� x0)Ŝ(w) (where Ŝ(w) is the power spectrum of the
noise), the right-hand side reduces to a direct cross-correla-
tion of the observations at xA and xB, without the integral
over @D.
[12] For vertically propagating plane waves in a 1-D

inhomogeneous medium, equation (2) simplifies to

2< Ĝ zB; zA;wð Þ
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� �

*

þ Ĝ zB; z1;wð Þ Ĝ zA; z1;wð Þ
� �

*; ð3Þ

where z denotes depth. The two source positions z0 and z1
(with z0 < z1) enclose the 1-D inhomogeneous medium; the
receiver positions zA and zB are situated somewhere between
z0 and z1. The plane wave Green’s functions Ĝ in equation (3)
are flux-normalized, which explains the absence of the
normalization factor 2/rcK. Since for the considered situation
no wave conversion can take place, subscripts and super-
scripts have been omitted and equation (3) applies indepen-
dently for P-waves as well as for S-waves.

3. Effect of One-Sided Illumination

[13] Evaluation of either equations (1) or (2) requires that
sources are available on a closed surface @D around the
observation points xA and xB. In this section we analyze the
effect of one-sided illumination, as pictured in Figure 1b.
Hence, we assume that the closed surface @D consists of a part
@D0 containing sources and a part @D1 without sources. The
integrals in equations (1) and (2) can now only be evaluated
over @D0. We assume that @D0 is not a free surface, otherwise
there would be no integral left to be evaluated.
[14] First we consider the application in exploration

seismology. We consider responses from sources at the
acquisition surface @D0, from which the free surface effects
have been eliminated [Verschuur et al., 1992]. Assuming
the responses of these sources are measured by receivers at
xA and xB in the subsurface (for example in a vertical
seismic profile (VSP), a vertical array, a horizontal well,
or at the ocean bottom), cross-correlation and integration
along the sources on @D0 yields a non-exact reconstruction
of the Green’s function Ĝq,p

v,f (xB, xA, w). Let us have a closer
look at the neglected integral over @D1. Let @D1 be a half-
sphere with radius r. If we take r ! 1 and assume that the
medium is homogeneous and isotropic outside a half-sphere
with a fixed finite radius, then the P- and S-wave contribu-
tions of the Green’s functions under the integral are O(1/r)
and each of the products is O(1/r2). Suppose we would
consider the right-hand side of equation (1) without the
complex conjugation signs and with the plus-sign replaced
by a minus-sign, as in the well-known Rayleigh-Betti
integral. In that case all terms of O(1/r2) would cancel each
other, making the integrand O(1/r3) [Pao and Varatharajulu,
1976]. However, in equation (1) in its present form this
cancellation does not take place, which means that the
integrand is O(1/r2). Since the surface area of the integra-

tion boundary @D1 increases with r
2, the integral over @D1 in

equation (1) (and also in equation (2)) is O(1). In other
words, the boundary integral over @D1 does not vanish when
r ! 1. Since the integral in equation (1) is independent of
the shape of @D (as long as it encloses xA and xB), the
contribution of @D1 also does not vanish when r is finite.
[15] Next consider the situation for retrieval of the

surface wave Green’s function. Let @D1 in Figure 1b (which
is now a plan view) be a cylindrical strip directly below the
surface with radius r ! 1. Assuming again that the
medium is homogeneous and isotropic beyond some finite
radius, the surface wave contributions of the Green’s
functions under the integral are O(1/

ffiffi
r

p
) and each of the

products is O(1/r). No cancellation of the terms of O(1/r)
takes place, hence, since the perimeter of @D1 increases
linearly with r, the neglected integral over @D1 in equations
(1) and (2) is again O(1).
[16] Finally consider the retrieval of the plane wave

Green’s function in a 1-D inhomogeneous medium, as
formulated by equation (3). In case of one-sided illumina-
tion by a plane wave source at z0, the second term on the
right-hand side of equation (3) cannot be evaluated. If we
move z1 away from the inhomogeneous medium, then the
plane wave Green’s functions are O(1). Since no integration
takes place, the neglected second term in equation (3),
containing the product of Green’s functions, is O(1) as well.
[17] Summarizing, in case of one-sided illumination

(sources at @D0 only, or in the 1-D case at z0 only), the
Green’s function retrieved by cross-correlation contains a
non-vanishing error. In general this implies that not only the
amplitudes of the ballistic wave may be erroneously recon-
structed, but also that multiply scattered events in the coda
are incorrectly handled and that spurious events may occur.
The occurrence of spurious events is discussed for the 3-D
situation by Snieder et al. [2006]. Here we illustrate it with a
simple plane-wave experiment for a 1-D inhomogeneous
medium.
[18] Consider a horizontally layered medium, consisting

of 25 layers with a thickness of 20 m each, with random
P-wave velocities around an average velocity of 2000 m/s
(Figure 2a). Avertically downward travelling planeP-wave is
incident to this configuration at z0 = 0 m. We consider
receivers at zA = 100 m and zB = 300 m (as in a vertical
seismic profile). The responses at zA and zB are shown in
Figures 2b and 2c. We use the first term in the right-hand side
of equation (3) to approximate the Green’s function between
zA and zB. In the time domain this comes to

G zB; zA;�tð Þ þ G zB; zA; tð Þ 

Z 1

�1
G zB; z0; t þ t0ð ÞG zA; z0; t

0ð Þdt0:

ð4Þ

[19] The correlation result is shown in Figure 2d, the
exact result in Figure 2e and a comparison between the two
in Figure 2f. Note the asymmetry and the occurrence of
spurious events around t = 0 in the correlation result due to
the fact that no source was present at z1.

4. Extinction Condition for the Missing Integral

[20] Consider again the situation of one-sided illumina-
tion, as pictured in Figure 1b, with sources on @D0 only. In
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the previous section we argued that the integral over @D1

does not vanish when r ! 1. The decay of the integrand
when r increases is precisely counterbalanced by the growth
of the surface area of @D1. In the analysis we assumed that
the medium is homogeneous and isotropic outside a half-
sphere (or semi-circle) with a fixed finite radius, which is a
quite common assumption in the analysis of integrals in
unbounded configurations.
[21] Next we consider the situation in which the medium

is inhomogeneous throughout the half-space bounded by
@D0. A wave propagating through an inhomogeneous me-
dium undergoes ‘scattering loss’ (which is not a real loss;
the energy is just redistributed over the forward and
backward scattered waves). Intuitively one might expect
that the aforementioned balance would be disturbed due to
the scattering loss. However, as already remarked in the
discussion below equation (1), the result of the integral is
independent of the choice of the integration boundary, even
when the medium is inhomogeneous inside as well as
outside this boundary. In order to analyze the effect of
scattering losses on the integral over @D1, we follow a
different approach. Let @D1 again be a half-sphere (or a

cylindrical strip for the surface wave analysis) with radius r.
We consider the artificial situation, in which the medium is
inhomogeneous throughout D (i.e., the domain enclosed by
@D0 [ @D1), whereas it is homogeneous and isotropic
outside D. When r increases, the inhomogeneous domain
increases as well, unlike in the analysis in the previous
section, where the inhomogeneous domain was fixed. Due
to internal scattering the decay of the integrand for increas-
ing r is not fully compensated by the growth of the surface
area of @D1. The integral over @D1 for large r is O(f(r)),
where f(r) is a decaying function accounting for the scat-
tering losses. The behavior of f(r) depends largely on the
type and distribution of the inhomogeneities, which will not
be discussed here. What matters is that it can become
arbitrary small for large enough r and ‘sufficient inhomo-
geneity’ of the medium enclosed by @D0 [ @D1.
[22] Hence, for the situation of one-sided illumination,

the Green’s function Ĝq,p
v,f (xB, xA, w) can be retrieved with

arbitrary accuracy from the integral in equation (1) with
closed surface @D replaced by open surface @D0 (see
Figure 1b), by considering a large enough, sufficient inho-
mogeneous domainD (and equation (2) gives a good approx-
imation for the same situation). Similarly, in equation (3)
the second term on the right-hand side is also O(f(r)) for
large r = z1 � z0 when the medium is inhomogeneous in
the entire region between z0 and z1 (assuming z0 fixed
and z1 variable). Here f(r) is again some decaying
function which can become arbitrary small. Hence, for
one-sided illumination the plane wave Green’s function
Ĝ(zB, zA, w) can be obtained with arbitrary accuracy from
the first term only in the right-hand side of equation (3),
assuming large enough r = z1 � z0 and sufficient
inhomogeneity in the region between z0 and z1.
[23] In both cases we see that the inhomogeneity of the

medium helps to improve the Green’s function retrieval
when the illumination is one-sided. In some of the refer-
ences mentioned in the introduction, the retrieval of the
Green’s function depends on the diffusivity of the wave
field caused for example by multiple scattering in a random
medium. In contrast, the extinction condition discussed
above applies to a fully deterministic medium. The intuitive
explanation why in this situation one-sided illumination
suffices, is that the inhomogeneous medium acts as a ‘mirror’
(with a very complex phase behavior) for the sources at @D0

(Figure 1b), similar as the free surface acts as a mirror for the
sources at @D1 in the case of passive seismology (Figure 1a).
Since we assumed from the beginning that the medium is
lossless, all energy emitted by the sources at @D0 is eventu-
ally reflected by this complex mirror, which compensates for
the missing sources at @D1 in Figure 1b. We illustrate this
theory with a plane wave experiment.
[24] We extend the horizontally layered medium of the

previous example to a total of 250 layers with a thickness of
20 m each (Figure 3a). Again a vertically downward
travelling plane P-wave is incident to this configuration at
z0 = 0 m. Figure 3b shows the transmission response as a
function of r (for a given r this is the response of the
medium of Figure 3a between z0 and z0 + r, embedded
between homogeneous half-spaces). Figure 3c shows the
total energy f(r) of each trace of Figure 3b; note that this
function decays monotonically. The responses at zA = 100 m
and zB = 300 m of the entire medium of Figure 3a are shown

Figure 2. (a) Velocity profile (25 layers of 20 m each).
(b) Plane wave response at zA = 100 m. (c) Plane wave
response at zB = 300 m. (d) Cross-correlation result (the
asterisk denotes convolution). (e) Directly modelled Green’s
function. (f) Comparison of Figures 2d (solid) and 2e (+).
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in Figures 3d and 3e. The main difference with the
responses in Figures 2b and 2c is the longer coda. The
cross-correlation result (equation (4)) is shown in Figure 3f,
the exact result in Figure 3g and a comparison between the
two in Figure 3h. Note that the correlation result is perfectly
symmetric and that the spurious events around t = 0 have
disappeared. Apparently the cross-correlation of the long

codas has contributed to the improved reconstruction of the
Green’s function and to the suppression of spurious events
at early times.

5. Concluding Remarks

[25] From the theory discussed in this Letter as well as
from the numerical examples it follows that Green’s func-
tion retrieval in case of one-sided illumination (Figure 1b)
benefits from the fact that the earth is inhomogeneous.
Errors that would occur in the reconstructed Green’s func-
tion when the response of only a few scatterers would be
available are suppressed by cross-correlating the full re-
sponse of the inhomogeneous medium. The reconstruction
of the Green’s function is the result of a complex interfer-
ence of cross-correlated primaries and multiply scattered
events, present in the coda of the response. It has been
observed before that coda waves are surprisingly stable
[Fink, 1997; Snieder and Scales, 1998], hence, we expect
that this is not a limiting factor for practical applications.
Note that, despite the complexity of the coda, this recon-
struction process is fully deterministic and thus does not
rely on diffusivity assumptions, unlike some of the refer-
ences mentioned in the introduction.
[26] The theory discussed in this Letter applies to the

situation of sources emitting transient signals one-by-one
(as in exploration seismology), as well as for simultaneously
acting uncorrelated noise sources (as for example in passive
surface wave seismology). Aspects that may limit the
accuracy of the retrieved Green’s function in practice are
anelastic losses, a finite source surface @D0, finite registra-
tion times and, for the situation of natural noise sources,
mutual correlation and irregular source distribution. Inves-
tigations by Slob et al. [2006] for electromagnetic data
indicate that when the losses are small, the cross-correlation
method yields Green’s functions with correct traveltimes
and approximate amplitudes. It remains to be investigated
how anelastic losses and other practical limitations will
degrade the Green’s function reconstruction for the situation
of one-sided illumination.
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