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S U M M A R Y  
This note is devoted to the confrontation of intuitive ideas in the field of inverse 
problems, especially in tomographic seismological studies, with the results of a more 
rigorous approach. With the help of a simple example, we show that tests commonly 
used to illustrate the quality of inversion results can be misleading. Based on a 
classical mathematical analysis, we explain the origin of the problems that we have 
seen. Our main conclusion is that, in circumstances not so unrealistic, and in 
contradiction to a generally accepted idea, small-size structures like in the 
‘checker-board test’ can be well retrieved while larger structures are poorly 
retrieved. 
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INTRODUCTION 

In the last few years, tomographic inversion methods have 
become increasingly popular to  provide images of the 
internal structure of the Earth at different scales (e.g. 
Dziewonski & Woodhouse 1987; Spakman 1988; Montagner 
& Tanimoto 1991; Evans & Achauer 1993). A difficulty 
commonly encountered in such methods is the estimation of 
the reliability of the images obtained in this way, or ,  in 
other words, knowing how close the image is to the actual 
structure. Modern inversion methods provide tools to  d o  
this, namely, the a posteriori errors and the resolution 
matrix (Franklin 1970). However, many authors have found 
these tools difficult to apply, or too expensive, and they 
have used a different approach based on the inversion of 
synthetic data. In this approach, the ‘quality’ criterion is the 
similarity between the final model and the arbitrary model 
used to compute the synthetics. 

The aim of this note is to  show that severe 
misinterpretations can occur using this last approach, and 
that the source of the problem is in the arbitrary choice of 
the model used to compute the synthetics. 

A N  ILLUSTRATIVE EXAMPLE 

The example we present here as an illustration is a block 
inversion of amplitude data measured in a 2-D structure in 
order to obtain a model of the variation of attenuation in 
that structure. 

We assume a uniform velocity in the whole medium, so 
that the source-to-receiver paths are straight lines. The 
geometry of sources and receivers and the block sampling is 
shown in Fig. 1. 

The first arbitrary model we use is a regular pattern of 
high and low attenuation zones sized to the elementary 
block size (Fig. 2a), commonly known as the ‘checker-board 
test’. Synthetic data are then computed and inverted using 
the Lanczos’s (1961) method. The inverted model (Fig. 2b) 
is perfectly identical to the ‘true’ model. 

The second model is a single large high attenuation block 
surrounded by a uniform low attenuation zone (Fig. 3a). 
The corresponding inverted model (Fig. 3b) shows a clear 
difference to the ‘true’ model, namely, an overestimation of 
the contrast between the two blocks in the left column and 
an underestimation of the contrast between the two blocks 
in the right column. 

These two results are in contradictions to the generally 
accepted idea (e.g. Fukao et al. 1992) that if an inversion 
scheme can accurately retrieve small-size structures, it is 
able a fortiori to retrieve larger structures. 

ANALYSIS OF THE PROBLEM 

In order to  understand what happens in the example 
presented above, we make a very simple mathematical 
description of the problem. independent of the inverse 
method used to  solve it. 
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Figure 1. Geometry of the experiment: the square area is divided 
into 16 small blocks in which we want to know the attenuation 
values. Waves are emitted at four sources located at  the base of the 
area under study, and amplitude measurements are  made using the 
four sensors at the top of the area. 

We can state the linear direct problem as: 

d = G - m ,  (1) 

where d is the data vector, m is the model vector, and G is 
the linear operator which represents the theory of the 
experiment. 

In a synthetic experiment, we compute the data vector d, 
corresponding to  the arbitrary chosen model m,: 

d, = G - m,. (2)  

We then compute the estimated model by applying an 
inversion operator L to  the synthetic data: 

P = L * d , ,  (3) 

m = L .  G . m , = R .  ms 7 (4) 

which can be rewritten as: 

where R is the resolution operator. 
Now, to understand the paradox described above, we 

have to  consider the following question: what is the 
condition to  obtain an estimated model m equal to  the initial 
model m,? 

The answer is straightforward: 

m = m , a m ,  = R - m,, ( 5 )  

and this last equation implies that m, is an eigenvector of the 
resolution operator R, associated with eigenvalue 1. This 
also means that the key point is the knowledge of R. 

In the example presented above, we used the linear 
inversion model of Lanczos (1961) which takes advantage of 
the singular value decomposition of G t o  build the 
pseudo-inverse of Moore (1920) and Penrose (1955). The 
corresponding resolution operator has 12 eigenvalues equal 
to 1 and four eigenvalues equal to  0. In that case where the 
eigensubspaces are multidimensional, we have to  choose a 

Figure 2. (a) First arbitrary model used for the computation of synthetic data: a pattern of alternate high and low attenuation elementary 
squares. This is the pattern used in the so-called 'checker-board test'. (b) Inverted model obtained from the synthetic data corresponding to the 
model in (a). It is identical with the initial model. 

Figure 3. (a) Second arbitrary model used for the computation of synthetic data: a large zone (2 x 2 elementary blocks) with high attenuation 
(light grey) surrounded by a lower attenuation region (dark grey). (b) Inverted model obtained from the synthetic data corresponding to the 
model in 3(a). It differs from the initial model, showing that, for the same experimental geometry, large structures are not necessarily better 
retrieved than small structures (compare with Fig. 2). The grey scale is common to Figs 2, 3 and 6: lowest and highest attenuations are black 
and white, respectively. 
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basis among the number of possible bases. In Fig. 4 we 
present such a basis, the most natural one in our opinion, 
made from the eigenvectors of Gt . G  which, for the 
Lanczos's inversion operator, are also eigenvectors of R. We 
decomposed the two initial models of our experiment on this 
eigenbasis of R. The reason for the paradox becomes 
apparent: the checker-board model has no component in the 
subspace of R associated with the eigenvalues different from 
1 (Fig. Sa), while the second model, a single large block, 
presents a significant component in the null space of R (Fig. 
5b). 

In this example, the inverted model is the projection of 
the initial (arbitrary) model on to  the subspace spanned by 
the eigenvectors related to the eigenvalue equal to  1. In the 
first case, the projection is equal to  the initial model while in 
the second case, the projection leads to  a real amputation of 
the initial model. This point can be made even more 
apparent by building a model only from null space 
eigenvectors (zero eigenvalue). Such a model is presented in 
Fig. 6(a) together with the corresponding inverted model 
(Fig. 6b). In this case, the two large blocks present in the 
initial model are completely missed in the inversion, and the 
final model is a perfectly uniform pattern. This last example 
clearly demonstrates the failure of the intuitive link between 
the characteristic wavelength of the model heterogeneities 
and their retrievability by a given inversion, namely, that 
large blocks are easier to  retrieve than small blocks. When 
comparing Figs 2, 3 and 6 ,  one could conclude that the 
larger the blocks are, the worse they are retrieved. 

We would like to  emphasize at  this stage of the analysis 
that, whatever the inversion operator L is, the null space of 
R contains a t  least the null space of G.  Indeed, if one has a 
model m such that G .m=O,  then R . m = L . G . m = O  as 
well. Any strategy employed to  enhance the behaviour of 
the inversion operator L will never be able to change this 
fact. O n  the other hand, if the null space of G is restricted t o  
{O}, then a natural inverse of G exists, either G-' if G is 
represented by a square matrix or (G' - G)- '  - G' if G is a 
rectangular matrix. In both cases, the associated resolution 
would be the identity operator. There is, therefore, no need 
to use another inversion operator, except if some noise is 
added to  the data. This situation will be briefly presented at  
the end of the paper. 

Let us also remark that the problem discussed in this note 
is not, strictly speaking, a resolution problem, even if it is 
related to this concept. The resolution matrix is indeed 
exactly the same in the three examples we have presented 
since the geometry is the same in all cases and only the 
values of synthetic data are changed. This resolution, which 
acts as the same filter on the three models, simply traps 
nothing in the first example while it traps a significant part 
of the model in the second example and the whole model in 
the last example. 

DISCUSSION 

In the example described above, the resolution operator has 
quite a simple structure, with only two different eigenvalues, 
1 and 0, and two associated subspaces of dimension 12 and 
four, respectively. 

For other inverse operators, the situation could be slightly 
more complicated: there would be at least as many zero 

eigenvalues for R as for G ,  due to  the inclusion of the null 
spaces explained above, but the non-zero eigenvalues could 
depart from 1. We detail hereafter some remarks about the 
basic cases to  consider when defining the initial model. If 
the 1 = 1 eigenvalue exists, we can choose m, equal to  an 
eigenvector associated with this eigenvalue. In this case, as 
for the checker-board model of our experiment, we find: 

m = R em, = 1 - m, = m,, (6) 

and we perfectly retrieve the initial model. 

1 # 0,1 eigenvalue, we find: 

m = R . mb = I .  m,, 

meaning that we perfectly retrieve the shape of the initial 
model, but there is a global scaling factor equal to  the 
eigenvalue 1. 

If we choose ms equal to  an eigenvector associated with 
the I = 0 eigenvalue, we find: 

If we choose m, equal to  an eigenvector associated with a 

(7) 

m = R - m, = 0 - m,. (8) 

An illustration of this situation has been presented already 
in Figs 6(a) and (b), where the final model is a flat zero. 

If we then choose a model m, which has no component in 
the null space of R, but has components on subspaces 
associated with different non-zero eigenvalues, we find: 

P = R - m, = 2 ~ , p ,  m,, (9) 

where 1; is a non-zero eigenvalue, m, is the associated 
eigenvector and pi is the projection of m, on that component 
mi. Model m is to  be compared with m, = C pi m,. Since the 
A, are different from 1, there is a difference between m and 
m, which depends on how much l i p i  differs from pi. Note, 
however, that most inversion operators are (at least 
partially) subject to a condition of minimization of R - l ,  
leading to  non-zero eigenvalues of R as close to  1 as 
possible. 

A model general enough to  really provide information 
about the resolution would have components in every 
eigen-subspace. We then have a situation similar to  the 
previous case, but with the addition of a component in the 
null space which is filtered out in the inverted model, thus 
increasing the difference between the initial and final 
models. 

An alternative approach for assessing the resolution of the 
inversion would be to show several models that are perfectly 
retrievable, and several other models which are perfectly 
unretrievable. But even such a detailed presentation is still 
incomplete and could lead to  the wrong conclusions. 

Let us note that building such models requires the 
knowledge of the eigenvectors of R. They can be  computed 
by standard singular value decomposition algorithms, 
provided computing facilities compatible with the model 
space dimension are available. However the very first 
condition is to  know explicitly this resolution operator, 
namely the matrix representing it. Fortunately, even for 
iterative linear inversion algorithms, it is possible to  
compute this matrix. Indeed, the ith column of R can be 
obtained by applying the inversion algorithm to the ith 
column of G (Trampert & L&v&que 1990). The knowledge 
of R is thus only a matter of computer time. 
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Figure 4. Eigenvectors of the resolution operator associated with the experimental geometry shown in Fig. 1 and with the Lanczos's inversion 
operator. The first 12 eigenvectors correspond to the degenerate eigenvalue equal to 1. The last four eigenvectors correspond to the degenerate 
zero eigenvalue. The grey scale is common to the 16 normalized eigenvectors; minimum and maximum values of their components correspond 
to black and white, respectively. 
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Figure 5. (a) Decomposition of the model shown in Fig. 2(a) on  the 
basis of eigenvectors: The checker-board model has no component 
in the subspace spanned by eigenvectors related to zero eigenvalues 
(horizontal axis: index of the eigenvector as numbered in Fig. 4; 
vertical axis: value of the projection of the model on the 
corresponding eigenvector of Fig. 4). (b) Decomposition of the 
model shown in Fig. 3(a) on the basis of eigenvectors; the 'large 
block' model has a significant component in the subspace spanned 
by eigenvectors related to zero eigenvalues. 

It is interesting to  have a look at  the resolution operator 
(Fig. 7) corresponding t o  our  experiment. The diagonal 
terms are largely dominant and this feature is commonly 
interpreted as evidence for a high-quality inversion, 
meaning that the inverted model is close to  the actual 
model. It is clear from the above examples that this intuitive 
short-cut can be wrong. The reason is that off-diagonal 
terms viewed as 'small' on the resolution picture, can 
sometimes build a strong contribution which biases the 
inverted model. This means that to  understand the 
significance of the resolution operator, one must be aware 
that the output of a filter depends not only on the 
characteristics of the filter, but also on its input, as 
explained in the previous paragraphs. 

Another aspect of the problem is the case when some 
noise is added to the synthetic data before inversion. This 
new problem can be written as: 

d, = G * m, + n, (10) 

(1 1) 

leading to: 

P = R m, + L . n. 

In this case, the inverted model suffers not only from 
blurring, as described above but also from contamination 
due to the propagation of the data noise through the 
inversion operator. Generally, the inverse operator L is 
designed so that, in addition to other constraints, it 
minimizes this contamination by keeping the singular values 
of L small, in order to obtain values of L - n  small as 
compared with R-m,. However, obtaining a final model 
identical to  the initial one is very unlikely when noise is 
added. 

CONCLUSIONS 

Inversion of synthetic data can be an appealing way to  show 
how well an inversion scheme works, but, in not uncommon 
situations, false conclusions may be derived from such 
experiments. In this note, we have shown by an illustrative 
example what happens if the model used for the 
computation of synthetics has the wrong characteristics. We 
demonstrate that 'wrong characteristics' actually means 
'components only in the subspace associated with 1 = 1 
eigenvalues of the resolution operator'. 

In our opinion, the only way to avoid such possible 
misinterpretations is to  make sure that there is a significant 
component of the model outside this subspace, and in 
particuiar in the null space of the resolution operator R, 
which always exists and is never smaller than the null space 
of the theory operator G.  The evaluation of this component 
is always possible in theory. However, this is generally an 
expensive and sometimes even unfeasible computation, ,due 
to  the size of the matrix involved. 

In our examples, we used the Lanczos's inversion method, 
but the conclusions are established for any linear inversion 
method. The only differences follow from the change of 
non-zero eigenvalues and eigenvectors of R when changing 
the inversion operator L. As suggested by a reviewer (W. 
Menke), it is possible to  gain a more significant change in 
the resolution operator by trying to shrink its null space. 

Figure 6. Same as Fig. 2 but for a model which is entirely in the null space of R (zero eigenvalues). The inverted model is a flat zero. 
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Figure 7. Resolution matrix for the experimental geometry shown in Fig. 1. The elementary blocks of Fig. 1 have been numbered sequentially 
first from left to right then from top to bottom (block 1 is upper left and block 16 is lower right). 

One way to d o  that is to  improve L with respect to  this, but 
the ultimate limitation will come from the size of the G null 
space. This limitation can be overcome only by changing G 
itself. In our example, this could be achieved by using a 
different grid, with a different orientation or a coarser 
spacing, or by changing the distribution of sources and 
receivers. A more drastic alternative would be to  escape 
from the linear inversion frame, but this is clearly not within 
the scope of this note. 

The experimental geometry we have chosen to  illustrate 
our point is very simple, but it is representative of a number 
of real experiments in seismology, such as lithospheric 
tomography from teleseismic waves and cross-hole tomog- 
raphy, even if real experiments have, generally, a much 
lower degree of symmetry. 

Finally, remember that, in real situations, seismologists 
know only the second column of Figs 2, 3 and 6 and have to  
guess the first column, ‘which is known only by the gods’ 
(Tarantola 1987, p. 199). 
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