
R

W

s
a
2
B
t
�
K
e
a

w
t
m
L
p
m

©

GEOPHYSICS, VOL. 72, NO. 5 �SEPTEMBER-OCTOBER 2007�; P. SM213–SM221, 4 FIGS., 2 TABLES.
10.1190/1.2742686
everse time migration with optimal checkpointing

illiam W. Symes1
b
R
a
c
t
m

c
c
c
b
fi
b
r
t
s
t
c
o
c
p

a
p
G
T
m
a
s
b
p
m
t
R
d
p
n
t

t receive
al andA
ABSTRACT

Reverse time migration �RTM� requires that fields com-
puted in forward time be accessed in reverse order. Such
out-of-order access, to recursively computed fields, requires
that some part of the recursion history be stored �check-
pointed�, with the remainder computed by repeating parts of
the forward computation. Optimal checkpointing algorithms
choose checkpoints in such a way that the total storage is min-
imized for a prescribed level of excess computation, or vice
versa. Optimal checkpointing dramatically reduces the stor-
age required by RTM, compared to that needed for nonopti-
mal implementations, at the price of a small increase in com-
putation. This paper describes optimal checkpointing in a
form which applies both to RTM and other applications of the
adjoint state method, such as construction of velocity updates
from prestack wave equation migration.

INTRODUCTION

Reverse time migration �RTM� was introduced in the 1980s �Bay-
al et al., 1983; Whitmore, 1983�, and has recently gained renewed
ttention from the seismic imaging community �Biondi and Shan,
002; Yoon et al., 2003; Mulder and Plessix, 2004; Yoon et al., 2004;
ednar et al., 2006�. Similar reversed computations have been used

o extract velocity updates from wave equation depth migration
Shen et al., 2003; Biondi and Sava, 2004; Albertin et al., 2006;
houry et al., 2006; Soubaras and Gratacos, 2006�, and in many oth-

r subjects to link parameter perturbations to simulations �Munk et
l., 1995; Wang et al., 1998; Akcelik et al., 2003; Talagrand, 2007�.

All of these algorithms are instances of the adjoint state method, a
ay of organizing the computation of a gradient of a cost or objec-

ive function depending on a recursive simulation, with roots in opti-
al control �Bryson and Ho, 1979; Pontryagin, 1987�. Chavent and
emmonier �1974� introduced this concept into the study of geo-
hysical inverse problems, and later applied it in their study of seis-
ic inversion posed as a nonlinear least-squares problem �Bam-

Manuscript received by the Editor November 18, 2006; revised manuscrip
1Rice University, The Rice Inversion Project, Department of Computation
2007 Society of Exploration Geophysicists.All rights reserved.
SM213
erger et al., 1977, 1979, 1982�. Very soon after the introduction of
TM, several authors pointed out that it amounted to a single step of
gradient descent algorithm for output least-squares inversion,

omputed via the adjoint state method �Lailly, 1983, 1984; Taran-
ola, 1984�. Plessix �2006� provides an excellent overview of the

ethod and some of its geophysical applications.
The adjoint state method, in any of its guises, poses an interesting

omputational complexity problem. The core of the algorithm is the
rosscorrelation of two fields at the same �time or depth� level, one
omputed via forward �in time or depth� recursion, the other via
ackward recursion. It is natural to carry out the forward recursion
rst, but then its entire history must be made accessible during the
ackward recursion. For small problems, one simply stores all states
eached during the forward recursion, and reuses them as needed in
he rest of the algorithm. For very large applications of the adjoint
tate method, such as 3D RTM, the required storage is so extensive
hat implementations must use the slowest levels of memory hierar-
hy �i.e., disk i/o on modern platforms which amounts to a definition
f very large�. This need for very large amounts of slow memory
omplicates the logistics of algorithm implementation and degrades
erformance.

This paper �re�introduces the seismic imaging community to an
lgorithm devised by Griewank which largely ameliorates the com-
lexity problem just described �Griewank, 1992; Blanch et al., 1998;
riewank, 2000; Griewank and Walther, 2000; Akcelik et al., 2003�.
his optimal checkpointing algorithm trades floating point arith-
etic for memory. It increases the computational complexity of the

djoint state method by a factor logarithmic in the total number of
teps, while reducing the memory complexity to a number of state
uffers, also logarithmic in the total number of steps. Griewank’s
rescription for this tradeoff is provably optimal. For 2D RTM, opti-
al checkpointing eliminates any need for disk i/o, for a factor of

wo �or so� increase in floating point operations �flops�. For 3D
TM, optimal checkpointing may or may not eliminate the need for
isk i/o, but in any case drastically reduces it, with similar floating
oint penalty. Informal comparisons suggest that with current tech-
ology, the reduction in time required for slow memory access more
han compensates for the extra flops. If floating point throughput

d January 20, 2007; published onlineAugust 23, 2007.
pplied Mathematics, Houston, Texas. E-mail: symes@caam.rice.edu.



a
t

w
s
s
p
o
n
d

t
s
i
t
s
t
d

m
r
fl

i
t
c
i
i

w
o
p
d
s
c
t
s
e

a

T
a
R
t
T
i

t

w
2
o
r
s
�
t
n
d
o
s

1

2

3

i
s

s
i
s

v
f

t
i
l

s
s
e

u
n
�
n
o

1
�
e
b
t
i

SM214 Symes
dvances more quickly than memory bandwidth, as seems likely, op-
imal checkpointing will become even more attractive.

In the next section, I will detail the adjoint state method in a form
hich applies to all of the problems mentioned above. The following

ections describe the checkpointing concept, optimal checkpoint
chedules, a few observations about implementation, and a RTM ap-
lication. The concluding section assesses the implications of the
ptimal checkpointing algorithm for 3D RTM in contemporary and
ear-future computing environments. Appendix A gives a complete
erivation of the adjoint state method, in its general form.

ADJOINT STATE METHOD

I will use the notation u to denote the state vector of a discrete
ime- �or depth-� dependent system. For leapfrog �three-level� time
tepping of a second-order wave equation for the displacement field
n elasticity or the pressure in acoustics, u represents two successive
ime levels of the discrete displacement or pressure field. For a
tress-velocity scheme, u holds one time level each of pressure and
he velocity components. For depth extrapolation, u is simply a
epth slice of the reflected wavefield.

The evolution operator of the system depends on a vector c of
odel or control parameters. For most seismic problems, this vector

epresents the velocity model, and perhaps other parameters that in-
uence the predicted seismic response.
Adiscrete linear evolution with N time steps takes the form

un+1 = Hn�c�un + fn,n = 0,1, . . . ,N − 1 �1�

n which the evolution operator Hn may depend on the step n as does
he inhomogeneous or source term fn, and certainly depends on the
ontrol c. For example, in a time stepping scheme for seismic model-
ng, Hn encodes the finite difference stencil. For depth extrapolation,
t is the depth step operator.

The adjoint state computation associated to equation 1 is a back-
ards �i.e., backwards in step index� evolution for an adjoint state w,
f the same type as the system state u. Input to the adjoint state com-
utation is a datum rn of the same type �data structure� as the output
ata of the simulation. The latter is usually related to the state un by a
ampling operator Sn �for example, extracting time samples at re-
eiver points�. The adjoint state computation computes two addi-
ional dynamical fields: wn,n = N + 1, . . . ,1, of the same type as the
tate un, and gn,n = N, . . . ,0, of the same type as the control �or mod-
l� vector c. The algorithm steps wn backwards in index n:

wN + 1 = 0; wn = �Hn�c��Twn + 1 + �Sn�Tr, n = N, . . . ,1,

�2�

nd increments gn by

gn = gn + 1 + An�c,un�Twn + 1, n = N − 1, . . . ,0. �3�

The output of the adjoint state computation is the final value g0.
his field is the gradient of a function of the output data, interpreted
s a function of the control c, as is explained in Appendix A. For
TM, the output of the adjoint state computation is also an image of

he subsurface, in the sense explained by Lailly �1983, 1984� and
arantola �1984�. For wave equation migration velocity analysis, it

s a velocity update vector �Shen et al., 2003�.
Appendix A also explains the relation between the imaging opera-

or A and the dynamical operator H.
Typical implementations use only one time �or depth� level of
orking storage for w, g and implement the expressions in equations
and 3 as assignments, i.e., the right-hand side is evaluated then

verwritten onto the left-hand side. In particular, the last expression
epeatedly updates the output vector g. It is not so easy to reduce the
torage required for the state u, however. The imaging condition
equation 3� implies that the fields un and wn+1 must be available at
he same time in an implementation of this algorithm. This is not a
atural result of the pair of evolutions 1 and 2, as they run the step in-
ex in opposite directions. To make un available during the nth step
f the backward evolution of wn, several possibilities suggest them-
elves, differing in balance between memory and computation:

� compute un from step n = 0, for each n = N − 1, . . . 0. This in-
volves O�N2� evolution steps in total, an unacceptable compu-
tational burden for problems of any significant size.

� store the entire time history of the state, �un,n = 0, . . . ,N − 1�,
and access as needed. This option needs only the O�N� steps of
the basic evolution, but much larger amounts of storage.

� store only every kth step, k�1 of the time history, and interpo-
late the rest in some way. This appears to be the approach taken
by a number of commercial RTM implementations.This ap-
proach has the computation cost advantage of approach 2 with a
k-fold reduction in memory use, but produces only an uncali-
brated approximation to g0.

In the discussion to come, I will refer to these three approaches to
mplementation of the adjoint state system �equations 2 and 3� as
trategies 1, 2, and 3, respectively.

CHECKPOINTING

This section outlines an alternative to the three implementation
trategies for the adjoint state method �equations 2 and 3�, described
n the last section. For details, see Griewank and Walther �2000�. I
hall give only a brief overview.

Select checkpoints �ni: i = 0, . . . ,NC� between 0 and N, and pro-
ide buffers �b j: j = 1, . . . ,NB� to which states can be stored and
rom which states can be initialized. Typically NB�NC�N.

During the forward loop �i.e., solution of equation 1�, store an ini-
ial selection of states un at checkpoint steps �n = nij

: j = 1, . . . ,NB�
n the buffers. An essential constraint is that the last checkpoint se-
ected must be the last checkpoint niNB

= max�ni:i = 0, . . . ,NC�.
During the backwards loop �i.e., solution of equation 2�, adopt

trategy 1 from the last section, but compute un repeatedly, using the
tate value stored in the corresponding buffer biNB

to initialize the
volution in equation 1.

When the backwards step reaches the last checkpoint: n = niNB
,

se the buffer bn containing the corresponding state value to store a
ew state value, at one of the previously unrecorded checkpoints.
Remember there are more checkpoints than buffers!� Compute this
ew value by initializing the evolution in equation 1 at the last previ-
usly recorded checkpoint before the chosen one.

The backwards loop proceeds by repeated application of strategy
, always from the last recorded checkpoint before the current index
thus over-index intervals are possibly much shorter than �0,N��. As
ach checkpoint ni is reached, the state stored in its corresponding
uffer bni

is used in the application of the imaging condition �equa-
ion 3�, and then another previously unrecorded checkpoint is stored
n the buffer.At the end of the algorithm, a subset of the buffers store



c
m
f

m
t
T
�
f
t
c
b
i
s
�
r
s
u
s
8
p
p
i
d
e
a
s
i

e
r
t
i
t
g
q

i
g
u
w
b
t
t

�
G

•

•

O
t
f
l
t
t
i

p
t
c
l
s

a
=
f
s
g
a

T
e

T
N
a
3
f
t
p
s
s
o
f
t

T
t
fi

B

R

RTM with optimal checkpointing SM215
onsecutive state vectors starting at i = 0, corresponding to the re-
aining summands in equation 3. Then an application of strategy 2

rom the last section finishes the computation.
Table 1 illustrates a typical use of this algorithm. It shows how one
ight step backwards through N = 15 forward steps, accumulating

he gradient along the way using the imaging condition �equation 3�.
his computation used NB = 3 buffers and NC = 6 checkpoints

steps 0, 1, 3, 6, 8, and 11�. During the forward loop, the state vectors
or steps 0, 6, and 11 are stored in the three buffers. The first step of
he backwards loop requires combining w15 with u14, per the imaging
ondition �equation 3�. The required state for step 14 has however
een overwritten in the last step of the forward loop �equation 1�. So
t is recomputed via application of strategy 1 starting from the last
tored checkpoint, namely 11 in this case. The next backwards step
index 13� requires u13, which has also been overwritten so must be
ecomputed. So it goes, until step 11. The checkpointed state u11,
tored in buffer 3, is exactly what is needed to complete the gradient
pdate for this step. After the update, but before the next backwards
tep, buffer 3 is reused: strategy 1 is used to compute the state for step
which is the checkpointed, i.e., stored in buffer 3. The algorithm

roceeds in this way until backwards step 8, in which the check-
ointed state is used to perform the update, but no new checkpoint-
ng is done. The next backwards step recomputes the state for that in-
ex, starting with the checkpointed step 6 stored in buffer 2. Step 5
mploys strategy 1 starting with checkpoint 0, storing checkpoints 1
nd 3 in buffers 2 and 3. At the end of the algorithm, in the last two
teps, all required states are stored in buffers, and the algorithm fin-
shes by employment of strategy 2.

able 1. Tabular representation of checkpointing scheme for
= 15, NB = 3 buffers. A total of six checkpoints are stored

t various times in the three buffers (NC = 6, steps n = 0, 1,
, 6, 8, and 11). In each row of the table, the step index is
ollowed by the indices of the state vectors stored in the
hree buffers during that step, and by a list of step indices of
reviously computed state vectors recomputed during that
tep. The index of the state vector combined with the adjoint
tate (to increment the gradient) is italicized, and the index
f the state vector used as the initial data in strategy 1 (i.e.,
or recomputation) is bold-faced. For more explanation, see
ext.

Step Buffer 1 Buffer 2 Buffer 3 Recomputed

14 0 6 11 12,13,14

13 0 6 11 12, 13

12 0 6 11 12

11 0 6 11 7, 8

10 0 6 8 9, 10

9 0 6 8 9

8 0 6 8 -

7 0 6 8 7

6 0 6 8 -

5 0 1 3 1, 2, 3, 4, 5

4 0 1 3 4

3 0 1 3 -

2 0 1 3 2 -

1 0 1 3 -

0 0 1 3 -
Note that several steps in the forward loop �equation 1� are repeat-
d in the course of this algorithm. A convenient way to measure the
esulting increase in computational cost �over the cost of the simula-
ion, i.e., the forward loop in equation 1� is the recomputation ratio,
.e., the ratio of the total number of steps of the forward loop taken in
he algorithm divided by N. For the instance of the checkpointing al-
orithm described in Table 1, 19 additional forward steps were re-
uired, so the recomputation ratio is 34/15�2.3.

The question remains: how should the checkpoints be chosen and
n what order should they be used in the backward loop? The strate-
ies 1 and 2 introduced above are obviously end members: strategy 2
ses NC = N checkpoints, strategy 1 uses none �NC = 0�. The reader
ill easily see that �N evenly spaced checkpoints and �N buffers can
e used to produce g0 in O�N 3 � 2� evolution steps, for a recomputa-
ion ratio of �N, a big improvement over the N/2 of strategy 1. As it
urns out, it is possible to do much better than this.

OPTIMAL CHOICE OF CHECKPOINTS

In a beautiful piece of combinatorial mathematics, Griewank
1992� completely determined the optimal choice of checkpoints.
riewank’s prescription is optimal in the sense that:

For given numbers of time steps and buffers, the recomputation
ratio is minimum amongst all possible checkpointing schedules
For a given number of time steps and a prescribed maximum re-
computation ratio, the number of buffers required is minimum
amongst all possible checkpointing schedules.

For a forward loop of length N, the number of buffers required is
�log N�, and the recomputation ratio is also O�log N�. If either of

hese two numbers is given, the other is determined. In other words,
or given recomputation ratio, the maximum length N of the forward
oop grows exponentially with the number of buffers used. Contrast
his behavior with strategy 3 described above, in which N is linear in
he number of buffers, the ratio being determined by the quality of
nterpolation �hence by bandwidth or some similar signal attribute�.

Other accounts of this algorithm, with some improvements, ap-
ear in Griewank �2000� and Griewank and Walther �2000�. The au-
hor and his collaborators used optimal checkpointing in a viscoa-
oustic least-squares inversion scheme �Blanch et al., 1998�. Akce-
ik et al. �2003� have also used the algorithm in the context of least-
quares inversion of basin structure from earthquake data.

Table 2 illustrates the trade-off between computation and memory
chieved by optimal checkpointing, for a forward loop with N
10,000 steps. This number of steps is more or less a median value

or finite difference time-domain simulation of a typical reflection
eismic survey. For velocity analysis via wave equation depth mi-
ration �i.e., Shen et al., 2003�, N = 1000 would be more appropri-
te.

Even for only three buffers, the recomputation ratio is under 28.
his seems large, but should be compared to the ratio of 5000 to be
xpected for a straightforward implementation of strategy 1. The ra-

able 2. Number of buffers and corresponding recomputa-
ion ratio for Griewank’s optimal checkpointing scheme. All
gures for N = 10,000 steps.

uffers 3 5 10 15 20 25 30 35 40 60

atio 27.9 11.3 5.8 4.5 3.8 3.6 3.4 3.1 2.9 2.8



t
w
a
b
a
p
a

m
c
t
=
o
s
r
o
e

c
s

s
t
F
a
W
t
s
t
T

o
t
d
v
o
f
2
t
t
c
a
a

t
c
t
h
t
c
m
p

R

�
o
i
s
a
t

a

H
t

s
e
s
r

e

I
L
s
s
h
o
w
s
h
s
t
�
s
s
f
p

d
t
a
g

T
p
fi
t
t
a
d

t
2
w

SM216 Symes
io drops rapidly as buffers are added, up to around 15 buffers, after
hich the incremental gain by adding each buffer becomes small.At

bout 36 buffers, the recomputation ratio is roughly 3. Because the
ackwards loop involves the same steps as the forwards loop, plus
pplication of the imaging operator, the cost of the adjoint state com-
utation using optimal checkpointing and 36 buffers is somewhat
bove four times the cost of a simulation.

A straightforward implementation of strategy 2, i.e., maximal
emory and minimal computation, would by the same reasoning

ost somewhat more than twice the cost of a simulation. Thus the op-
imal checkpointing approach with 36 buffers completes the N

10,000 adjoint state loop in less than twice the computational cost
f strategy 2. This comparison seriously understates the total cost of
trategy 2. However, for modern NUMA architectures, it typically
equires large amounts of slow �disk� memory access for problems
f even modest size. The time devoted to slow memory access can
asily shift the comparison in favor of optimal checkpointing.

For a small-scale example of Griewank’s optimal schedule of
heckpoints, the reader need only return to Table 1, which was con-
tructed using Griewank’s algorithm.

IMPLEMENTATION

The algorithm determining optimal checkpoint schedules de-
cribed by Griewank �1992� is fairly complex. Fortunately, the au-
hor has provided full public domain implementations in both C and
ortran 77 �Griewank and Walther, 2000�, along with an excellent
rticle covering the topic. The algorithm presented in Griewank and
alther �2000� offers several improvements over that presented in

he earlier reference �Griewank, 1992�. The code package contains
everal useful utilities, one of which computes the recomputation ra-
io from the numbers of steps and buffers. I used this utility to create
able 2.
The attentive reader will note that, up to this point, my discussion

f simulation and the adjoint state method has not specified any par-
icular physical system or numerical method. In fact, the framework
escribed up to this point is entirely abstract, posed only in terms of
ector calculus concepts. I have implemented the adjoint state meth-
d with optimal checkpointing within an object-oriented framework
or simulation-driven optimization �Symes et al., 2005; Symes,
007�, which permits the expression of abstract algorithms such as
hese. Creation of a full-blown simulation package for a specific sys-
em, including adjoint state, requires only the implementation of
oncrete classes defining the specific choices of the step operator H
nd its partial derivatives and their adjoints �one of which is the im-
ging operator A�, and the sampling operator S.

The object-oriented framework described in Symes �2007� uses
he code provided by Griewank and Walther �2000� to compute the
heckpointing schedule. I believe that the object-oriented approach
o expression of high-level algorithms, such as those described here,
as much to recommend it. However, it is relatively straightforward
o use the codes from Griewank and Walther �2000� to add optimal
heckpointing to a procedural implementation of the adjoint state
ethod for a particular system, such as acoustic RTM, see for exam-

le Blanch et al. �1998�.

EXAMPLE: RTM

This section describes the realization of a particular approach to
TM, namely centered difference time marching for a scalar field
pressure�, which will serve as an existence proof and an illustration
f the computational efficiency achievable by optimal checkpoint-
ng. Both second- and higher-order �in time� schemes can be repre-
ented this way. RTM based on the pressure-velocity formulation of
coustics �for example so-called staggered grid schemes� also fit into
he framework discussed in this paper, as do elastic RTM schemes.

Centered difference time marching for the constant-density
coustic wave equation can be written as

pn + 1 = 2pn − pn − 1 + �t2v2Lpn + �t2f n. �4�

ere pn approximates the pressure at time n, and L is a spatial opera-
or approximating the Laplacian. For regular grid finite differences,

pijk
n , i = 0, . . . ,nx, j = 0, . . . ,ny, k = 0, . . . ,nz approximates the pres-
ure at t = n�t, x = i�x, y = j�y, z = k�z, and L is a finite differ-
nce Laplacian approximation. The inhomogeneous term fn repre-
ents the system excitation via a body force density. The control pa-
ameters in this model are the velocity grid values, represented by v.

The scheme described in equation 4 fits into the form given by
quation 1 if we define

un = 	 pn

pn−1 
, c = �v� , �5�

Hn�c�un = 	2pn − pn − 1 + �t2v2Lpn + �t2f n

pn 
 .

n the example presented below, we have used the fourth-order
aplace approximation by centered differences, which results in the
o-called �2, 4� displacement scheme, even though it computes pres-
ure �Levander, 1989�. The sampling operator S extracts estimates of
ydrophone output, typically point samples, at the time-sample rate
f the output data traces. Many codes apparently accomplish this
ith nearest-neighbor interpolation, or assume that the receiver �and

ource� locations lie on gridpoints. The implementation reported
ere does not assume any relation between the computation grid and
ource/receiver locations, or between the simulation time step and
he sample rate of the output traces. S is implemented using bilinear
space� and cubic spline �time� interpolation to allow for arbitrary
ource and receiver locations and sample rates. Sources f are repre-
ented as linear combinations of points sources with �possibly� dif-
erent wavelets. Source fields are adjoint-interpolated onto the com-
utational grid.

The adjoint state field wn = �qn,qn+1�T has the same structure as
oes the acoustic field u. The imaging operator �An�T in equation 3 is
he partial derivative in c of the RHS of the evolution in equation 1,
ccording to the derivation given in Appendix A. For the choices
iven in equations 4 and 5, imaging operator acts as

An�c,un�Twn + 1 = 2�t2vLpnqn + 1. �6�

hat is, equation 3 represents, in this case, accumulation of the ex-
ected crosscorrelation between p �source field� and q �receiver
eld�. The various other factors,such as the Laplacian, are necessary

o ensure that this crosscorrelation actually computes the output of
he adjoint operator to the Born seismic modeling operator. Simpler
d-hoc crosscorrelations may be adequate for imaging purposes, but
o not �necessarily� accurately compute the adjoint action.

The code uses perfectly matched layer absorbing boundary condi-
ions to simulate unbounded domain wave propagation �Cohen,
001�, which actually augments the systems of equations 4 and 5
ith additional fields and evolution laws which absorb energy near



t
i
p

o
n
m
t
W
l
p
p
a
u
c
o
v

i
c
t
t
c
d
t

p
l
a
M
s
t
i
s
o
s
p
T
w
p
a
p

s
t
t
r
w
f
d
o

t
p
p
e
i

s
b
t
i

km
/s

F
m

km
/s

F
l

RTM with optimal checkpointing SM217
he boundary. On those parts of the boundary not subject to absorb-
ng boundary conditions, the code employs a method-of-images im-
lementation of the Dirichlet �pressure-release� condition.

I have implemented a 2D version of this algorithm in the object-
riented framework described in the preceding section. All of the fi-
ite difference code is written in Fortran 77, partly to use the auto-
atic differentiation package TAMC �Giering and Kaminski, 1998�

o generate code for the partial derivatives of H and their adjoints.
ith complicated absorbing boundary condition and numerous sub-

oops, these computations are difficult �though always in principle
ossible� to carry out by hand. The code has elementary tuning ap-
lied �for example, none of the absorbing boundary computations
re done away from the boundary�, but no explicit source-level loop
nrolling, blocking, or tiling. Tests show that at least 99% of the cy-
les in a simulation of even modest size occur in the Fortran portion
f the code, even though in terms of line count Fortran occupies a
ery small part.

For 2D applications of any reasonable size, each simulation hand-
ly fits �with plenty of room to spare� on an individual workstation or
luster node. I built parallelization over subsimulations �shots, in
his case� into the structure of the object-oriented framework men-
ioned earlier �Symes, 2007�.A3D simulation and associated adjoint
omputations are likely to require loop-level parallelism �domain
ecomposition� at the level of the finite-difference code, for use with
ypical contemporary cluster platforms.

The Marmousi 2D synthetic model �Versteeg and Grau, 1991�
rovides a reasonable test case. Marmousi involves a complex ve-
ocity model, lots of reflectivity, geologic plausibility, 240 shots, and
2.5 km cable. I simulated true Born data by smoothing the original
armousi velocity model, subtracting a somewhat less stringent

moothing from the original to create a short wavelength perturba-
ion �reflectivity�, and computing a synthetic data set with the linear-
zed �Born� simulation code built according to the principles de-
cribed here. I used the Rice University Cray XD1 cluster, consisting
f 336 AMD Opteron 275 dual-core nodes, and the gcc4 compiler
uite. On 120 CPUs �cores�, the linearized simulation required ap-
roximately 39 minutes �wall clock–total CPU time was 78 hours�.
his is slightly more than twice the cost of a nonlinear simulation
hich ran in a bit over 18 minutes on the same platform. For com-
leteness, Figures 1 and 2 show the velocity and reflectivity models,
nd Figure 3 shows a typical shot gather probing the middle �com-
lex� part of the model.

Figure 4 displays the result of RTM applied to the output of this
imulation, using the same �reference� velocity. I used 32 buffers in
his computation, which for the approximately 8000 time steps in
his simulation gave a recomputation ratio of approximately 3. This
esult required 90 minutes wall clock, also on 120 CPUs, consistent
ith the analysis given above, which suggests a cost in this case of

our to five times the cost of a simulation. No disk i/o was performed
uring the migration, except for reading in data traces and writing
ut the final result.

DISCUSSION

Direct comparison of optimal checkpointing performance with al-
ernatives is difficult, because of the wide variety of techniques em-
loyed to optimize these other strategies. Notably, commercial im-
lementations of strategy 3 described earlier in this paper appear to
mploy aggressive decimation of the state history, various types of
nterpolation, reduced word length, and other devices �citable de-
criptions seem difficult to come by�. Of course the seek speed and
andwidth of the disk subsystem also has a dominating influence on
he performance of such algorithms. As control of all such factors is
mpossible, I have restricted myself to pointing out the performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ep

th
 (

km
)

Horizontal location (km)

1

2

3

4

5

6

0 2 4 6 8

igure 1. Marmousi velocity model, smoothed by a 160 m tapered
oving average.

Horizontal location (km)
0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ep

th
 (

km
)

– 2.0

– 1.5

– 1.0

– 0.5

0.0

0.5

1.0

1.5

igure 2. Velocity perturbation model derived from Marmousi ve-
ocity model, by subtracting a 40 m tapered moving average.



o
a
n
a
t
p

e
w
2
a
s
s
p
a
d
w
i
3
m
2
b
n
t
o
c
f
e
c
q
t

i
3
m

s
s
n
b
f
d
b
t
e
t
p
q
3
t
t
l
v
p
i
�
s
r
u
d

F
l
i
s
l
fi F

SM218 Symes
f checkpointing in units of simulations, with examples, rather than
ttempt a comparison with a straw man implementation of an alter-
ative strategy. It does seem reasonable to suppose, however, that
voidance of the slowest level of the memory hierarchy might more
han compensate for the increase in floating point complexity im-
licit in checkpointing.

For problems of modest size, the checkpointing approach clearly
liminates altogether any need for disk i/o, assuming typical modern
orkstation or cluster node resources. This is certainly the case for
D RTM, and for the single-frequency unit of migration velocity
nalysis by 3D depth extrapolation �which is effectively a 2D adjoint
tate computation� �Shen et al., 2003�. Even when disk i/o is neces-
ary �as may be the case for 3D RTM, for example�, optimal check-
ointing requires much less than any alternative approach. Consider
typical 3D RTM involving nx = ny = nz �1000 gridpoints in each
irection, so that a state �two time levels� requires storage of 2�109

ords. For a straightforward implementation of strategy 2 �taking
nto account that only half of each state need be stored� with a typical
–4 s simulation time and typical bandwidth and sampling require-
ents leading to N�104, one estimates 1013 words of storage, or

0 TB assuming that all floating point numbers are stored as two-
yte integers. This is a large, but not unreasonable, amount of fast or
ear disk for a large contemporary facility. Strategy 3 with a decima-
ion factor of 10 reduces the storage requirement to 2 TB, an amount
f disk easily available on a single chassis, and within reach as semi-
onductor memory on reasonably sized clusters. The effect on per-
ormance of reading O�109� words from disk at every time step, or
ven every tenth time step, is likely to be considerable. The optimal
heckpointing strategy with NB = 36 buffers, on the other hand, re-
uires that only 72 GW be stored, or 144 GB with compression to
wo bytes per word. This is a reduction of over an order of magnitude

0.0

0.5

1.0

1.5

2.0

T
im

e 
(s

)

– 2.5 – 2.0 – 1.5 – 1.0 – 0.5

Offset (km)

igure 3. Linearized �Born� simulation of shot gather at 7.5 km from
eft edge of model. Source depth is 8 m, receiver depth 12 m, group
nterval 25 m, near offset −200 m, 96 traces per shot, 240 shots were
imulated at 25-m intervals, the left-most shot sited 3 km from the
eft edge of the model. Source is point radiator, zero phase band-pass
lter 5-13-40-55 Hz.
n both storage and reads/writes, and brings the memory required for
D RTM within the range of core memory available in large shared
emory machines or subclusters of larger clusters.
The main point, however, is not so much whether the required

tates can be stored in core or must be farmed out to disk for one
trategy or another. These choices depend on rapidly changing tech-
ology. The statements made in the preceding paragraph would have
een wildly unrealistic 10 years ago, and will appear quaint 10 years
rom now. The point is that optimal checkpointing significantly re-
uces the memory intensity of RTM, and this reduction is likely to
ecome more, rather than less, important in view of foreseeable
echnology trends. For example, if disk i/o is to be avoided altogeth-
r, then any reduction in memory complexity increases the portion of
he computation that can be carried out on a single CPU or multicore
rocessor, and therefore reduces both the number of subdomains re-
uired in a domain decomposition strategy �a practical necessity for
D for some time to come� and the attendant number of messages
hat must be passed. That is, optimal checkpointing permits 3D RTM
o be carried out in core in a distributed computing environment with
ess communication complexity than any other approach. Moreover,
arious technologies appear poised to dramatically increase floating
oint throughput available to applications like those discussed here,
n the next few years. For example, the IBM Cell Broadband Engine
IBM, 2004� and field programmable gate arrays appear to promise
ignificant speed over contemporary CPUs. If these gains are indeed
ealized, they will very likely far outstrip the improvements in non-
niform memory access bandwidth, especially at the slow end, i.e.,
isk i/o.

0.0
0 2 4 6 8

0.5

1.0

1.5

2.0

2.5

3.0

D
ep

th
 (

km
)

Horizontal location (km)

igure 4. RTM of data described in Figure 3.



p
t
m
fi
e
o
t
i

fl
p
c
a

t
a
R
a
t
u
s

s
o

s
s
d
d
c
d
c

a

t
=
e

p
c

c
t
e

F
m
m
t
fl

i
o
f

T
s
t

w
r

h
N
s

S
e

w

t
�
�

RTM with optimal checkpointing SM219
CONCLUSION

I have described a checkpointing algorithm due to Griewank for
ractical implementation of the adjoint state method, and its applica-
ion to RTM. A straightforward implementation of the adjoint state

ethod stores the entire history of the reference state �source wave-
eld for RTM�. The checkpointing method trades floating point op-
rations for some, or even most, of this storage. With optimal choice
f checkpoints, the increase in computation time is logarithmic in
he number of steps, and the memory complexity is also logarithmic
n the number of steps.

Optimal checkpointing’s judicious trade-off of modest increase in
oating point complexity for dramatically reduced memory com-
lexity would therefore appear to offer an attractive alternative to
ontemporary practice for RTM and similar adjoint computations in
pplied seismology.

ACKNOWLEDGMENT

This work was supported in part by a Major Research Infrastruc-
ure grant from the National Science Foundation �CNS-0421109�
nd partnerships with AMD and Cray, and by the sponsors of The
ice Inversion Project. I am grateful to associate editor J. B. Bednar
nd to several anonymous reviewers for helpful remarks and sugges-
ions which enabled me to materially improve the exposition. My
nderstanding of optimal checkpointing owes a great deal to discus-
ions withAndreas Griewank and Joakim Blanch.

APPENDIX A

DERIVATION OF GENERAL
ADJOINT STATE METHOD

In this appendix, I derive the discrete-in-time form of the adjoint
tate method. For an analogous account of the method for continu-
us time, see Plessix �2006�.

In addition to the evolution in equation 1, modeling involves a
ampling step, which extracts a data prediction from the system
tate. I assume that the sampling operator Sn is linear and indepen-
ent of control parameters, while possibly depending on the step in-
ex. For example, seismic time traces are recorded at specific physi-
al locations, depth imaging extracts the zero-offset section at each
epth, and so on. If you write the entire time history of the state as a
olumn vector of length N + 1� number of time samples

u = �
u0

u1

�
uN


nd define S to be the row vector of sampling operators

S = �S0S1 . . . SN� ,

hen the predicted data for control c, denoted F�c�, is give by F�c�
Su. F is the prediction operator and is generally nonlinear in c,

ven for linear evolutions.
The adjoint state method, described in equations 2 and 3, com-

utes the adjoint action of the linearized prediction operator, via a re-
ursion similar to the evolution defining the state. The need for this
omputation arises in computing the gradient of an objective func-
ion of the control J�c�, which is actually a function E of the predict-
d data

J�c� = E�F�c�� .

or output least-squares �waveform� inversion, E computes the
ean square difference between predicted and observed data. For
igration velocity analysis, E computes the semblance or differen-

ial semblance or some other function of the depth extrapolated re-
ected field.

The chain rule and the definition of gradient give

�J�c�T�c = DJ�c��c = ��E�F�c���TDF�c��c

= �DF�c�T �E�F�c���T�c ,

n which D denotes the derivative, i.e. DF�c� is the Jacobian matrix
f F at c. Because this relation must hold for every perturbation �c, it
ollows that

�J�c� = DF�c�T �E�F�c�� .

he gradient of the error function E tends to be very easy to compute,
o the issue posed by the preceding formula is the application of the
ranspose Jacobian DF�c�T.

From its definition,

DF�c��c = S�u �A-1�

here the perturbation �Born� field �u has its own evolution law, de-
ived from that for u:

�
�u0

�u1

�
�uN

 = �
0 0 0

H0�c� 0 0

�

0 HN−1�c� 0
�

�u0

�u1

�
�uN


+ �

0

DH�c�u0

�

DH�c�uN−1
�c . �A-2�

Denote by H the first �N�N� matrix of operators on the right-
and side of the preceding equation, and by K the second �N�1�.
ote that H is lower triangular, and so defines a forward evolution in

tep index �representing time or depth or…�.
The preceding equation may be abbreviated as

�u = H�u + K�c .

olving this equation for �u and inserting in equation A-1 yields an
xpression for the Jacobian operator DF�c�:

DF�c� = S�I − H�−1K ,

hen a similar expression follows for its transpose:

DF�c�T = KT�I − HT�−1ST. �A-3�

The adjoint state method consists in unwinding the equation A-3
o reveal a recursion for the action of the transposed Jacobian on a
data-like� vector r �which, for the gradient calculation, will be
E�F�c���. The algorithm proceeds as follows:



S

S

S

I
t
A

d
t

u
h
r
o
d
m
p
s
e
t

o
a
t
e

i
r
e

A

A

B

B

—

B

B

B

B

B

B

C

C

G

G

—

G

I

K

L

—

L

M

M

P

P
S

S

S

SM220 Symes
tep 1: Apply the adjoint sampling operator:

r � STr = �
�S0�T

�S1�T

�
�SN�T

r .

Because Sn extracts the data from a state at time step n, its
adjoint inserts the data into the state at time step n.

tep 2 �backpropagation�: Solve the adjoint state system

�I − HT�w = STr

for the adjoint state vector w = �w0, . . . ,wN�T. Because HT is
upper triangular, solution of this system unfolds into a recur-
sion backwards in the step index. A simple way to take into
account the beginning of this backsubstitution process is to
extend the adjoint state by one step, and initialize the addi-
tional adjoint state step to zero:

wN+1 = 0; wn = �Hn�c��Twn+1 + �Sn�Tr,

n = N, . . . ,1 �A-4�

tep 3 �imaging�: Apply the operator KT to w, which amounts to
computing

�
n = 0

N−1

�DHn�c�un�Twn+1. �A-5�

t is natural to accumulate the sum in equation A-5 term-by-term as
he factors wn are produced in the backpropagation loop �equation
-4�. With the notation

An�c,un� � DHn�c�un

efining the imaging operator An, the representation given in equa-
ions 2 and 3 of the adjoint computation is established.

The definition of an operator adjoint depends on the inner prod-
cts used in domain and range spaces. The computation outlined
ere assumes the unscaled Euclidean norm in both domain and
ange. If scaled norms are used in domain or range of the modeling
perator, these scale factors must also be taken into account in the
efinition of the adjoint. For example, the Euclidean inner product
ight be scaled to create a quadrature rule for the integral or L2 inner

roduct of functions. This sort of scaling makes the inner products of
ampled grid functions essentially independent of grid size. Howev-
r, the cell volumes used to scale the Euclidean inner product must
hen be included in the definition of the adjoint.

To verify the proper inclusion of scale factors and realization of
ther facets of the calculation, the author strongly recommends that
ny adjoint state implementation be subjected to the obvious null
est: for random choices of control and data perturbations �c and �d,
nsure that

�DF�c��c,�d�R � ��c,DF�c�T�d�D

n which �· , · �D and �· , · �R are domain and range �of F� inner products
espectively. The difference between the two sides should be a mod-
st multiple of machine precision.
REFERENCES

kcelik, V., J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez, O. Ghattas,
E. Kim, J. Lopez, D. O’Hallaron, T. Tu, and J. Urbanic, 2003, High resolu-
tion forward and inverse earthquake modeling on terascale computers:
Conference on Supercomputing, Association for Computing Machinery/
Institute of Electrical and Electronics Engineers, Inc., 52.

lbertin, U., P. Sava, J. Etgen, and M. Maharramov, 2006, Adjoint wave
equation velocity analysis: 76th Annual International Meeting, SEG, Ex-
pandedAbstracts, 3345–3349.

amberger, A., G. Chavent, C. Hemon, and P. Lailly, 1982, Inversion of nor-
mal incidence seismograms: Geophysics, 47, 757–770.

amberger, A., G. Chavent, and P. Lailly, 1977, Etude mathématique et
numérique d’un problem inverse pour l’Équation des ondes à une dimen-
sion: Rapport Interne 14, Centre de Mathématiques Appliqués, École
Polytechnique, Paris.
—–, 1979, About the stability of the inverse problem in 1-D wave equation
— Application to the interpretation of seismic profiles: Applied Mathe-
matics and Optimization, 5, 1–47.

aysal, E., D. D. Kosloff, and J. W. C. Sherwood, 1983, Reverse time migra-
tion: Geophysics, 48, 1514–1524.

ednar, J. B., C. J. Bednar, and C. S. Shin, 2006, Two-way vs. one-way: A
case study style comparision: 76th Annual International Meeting, SEG
ExpandedAbstracts, 2343–2347.

iondi, B., and P. Sava, 2004, Wave-equation migration velocity analysis - I:
Theory, and II: Subsalt imaging examples: Geophysics, 52, 593–623.

iondi, B., and G. Shan, 2002, Prestack imaging of overturned reflections by
reverse time migration: 72nd Annual International Meeting, SEG, Ex-
pandedAbstracts, 1284–1287.

lanch, J., W. Symes, and R. Versteeg, 1998, A numerical study of linear in-
version in layered viscoacoustic media, in R. Keys and D. Foster, eds.,
Comparision of seismic inversion methods on a single real dataset: SEG,
13–44.

ryson, A., and Y.-C. Ho, 1979,Applied optimal control: John Wiley & Sons,
Inc.

havent, G., and P. Lemmonier, 1974, Identification de la non-linéarité d’une
équation parabolique quasilinéaire: Applied Mathematics and Optimiza-
tion, 1, 121–162.

ohen, G. C., 2001, Higher order numerical methods for transient wave
equations: Springer.

iering, R., and T. Kaminski, 1998, Recipes for adjoint code construction:
ACM Transactions on Mathematical Software, 24, 437–474.

riewank, A., 1992, Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation: Optimization Methods
and Software, 1, 35–54.
—–, 2000, Evaluating derivatives: Principles and techniques of algorith-
mic differentiation: SIAM.

riewank, A., and A. Walther, 2000, Algorithm 799: An implementation of
checkpointing for the reverse or adjoint mode of computational differenti-
ation: ACM Transactions on Mathematical Software, 26, 19–45.

BM, 2004, The Cell project at IBM Research: http://www.research.ibm-
.com/cell/, accessed October 10, 2006.

houry, A., W. W. Symes, P. Williamson, and P. Shen, 2006, DSR migration
velocity analysis by differential semblance optimization: 76th Annual In-
ternational Meeting, SEG, ExpandedAbstracts, 2450–2454.

ailly, P., 1983, The seismic inverse problem as a sequence of before-stack
migrations, in J. Bednar, ed., Conference on inverse scattering: Theory and
Applications: SIAM, 206–220.
—–, 1984, Migration methods: partial but efficient solutions to the seismic
inverse problem, in F. Santosa, ed., Inverse problems of acoustic and elas-
tic waves: SIAM.

evander, A., 1989, Finite difference forward modeling in seismology, in D.
E. James, ed., The encyclopedia of solid Earth geophysics: Springer,
410–431.
ulder, W., and R.-E. Plessix, 2004, A comparison between one-way and
two-way wave equation migration: Geophysics, 69, 1491–1504.
unk, W., P. Worcester, and C. Wunsch, 1995, Ocean acoustic tomography:
Cambridge University Press.

lessix, R.-E., 2006, A review of the adjoint-state method for computing the
gradient of a functional with geophysical applications: Geophysical Jour-
nal International, 167, 495–503.

ontryagin, L., 1987, Mathematical theory of optimal process: CRC Press.
hen, P., W. Symes, and C. Stolk, 2003, Differential semblance velocity anal-
ysis by wave-equation migration: 73rd Annual International Meeting,
SEG, ExpandedAbstracts, 2135–2139.

oubaras, R., and B. Gratacos, 2006, Velocity model building by semblance
maximization of modulated-shot gathers: 76thAnnual International Meet-
ing, SEG, ExpandedAbstracts, 3046–3050.

ymes, W. W., 2007, Atime-stepping library for simulation-driven optimiza-
tion: Technical Report: 07-04: Department of Computational and Applied
Mathematics, Rice University.



S

T

T

V

W

W

Y

Y

RTM with optimal checkpointing SM221
ymes, W. W., A. D. Padula, and S. D. Scott, 2005, Asoftware framework for
the abstract expression of coordinate-free linear algebra and optimization
algorithms: Technical Report 05-12: Department of Computational and
Applied Mathematics, Rice University.

alagrand, O., 2007, Data assimilation in meterology and oceanography:Ac-
ademic Press Inc.

arantola, A., 1984, Inversion of seismic reflection data in the acoustic ap-
proximation: Geophysics, 49, 1259–1266.

ersteeg, R., and G. Grau, eds. 1991, The Marmousi experience: Proceed-
ings of the European Association Exploration Geophysics workshop on
practical aspects of seismic data inversion.

ang, D. Z. K. K. Droegemeier, and L. White, 1998, The adjoint Newton al-
gorithm for large-scale unconstrained optimization in meterology applica-
tions: Computational Optimization andApplications, 10, 281–318.
hitmore, N. D., 1983, Iterative depth migration by backwards time propa-
gation: 53rd Annual International Meeting, SEG, Expanded Abstracts,
382–385.

oon, K., K. Marfurt, and E. W. Starr, 2004, Challenges in reverse time mi-
gration: 74th Annual International Meeting, SEG, Expanded Abstracts,
1057–1060.

oon, K., C. Shin, S. Suh, L. Lines, and S. Hong, 2003, 3D reverse-time mi-
gration using the acoustic wave equation: An experience with the SEG/
EAGE data set: The Leading Edge, 22, 38–41.


