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[1] In recent years, larger geophysical data sets and novel model parameterizations have
dramatically increased both the data and model space dimensions of many inverse
problems. Because of their relatively low computational expense, trade–off curve corner
estimation for choosing regularized models and “checkerboard” tests for evaluating model
resolution are commonly applied, despite their limitations. We present and demonstrate a
low–cost method for accurately estimating the diagonal elements of the model resolution
matrix and for implementing generalized cross–validation (GCV) for optimal regularization
parameter selection. The ability to estimate the diagonal of the resolution matrix and GCV
function thus facilitates the introduction of additional tools for diagonal resolution analysis
and regularization evaluation, even for very large inverse problems, with storage and
computational costs comparable to those required for obtaining model solutions. We
demonstrate the method using a Tikhonov regularized teleseismic body wave velocity
inversion example with approximately 260,000 model parameters, where we validate
randomly selected Rm diagonal elements against explicitly calculated values and compare
GCV‐estimated regularized model results to those obtained through traditional methods.
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1. Introduction

[2] Recent expansion of seismic data availability and
innovations in model parameterization motivate the need for
computationally tractable, unbiased, and easy to implement
resolution estimators. In seismology, for example, continent‐
scale seismic networks, such as EarthScope USArray
Transportable Array and increasingly large IRIS PASSCAL
and other deployments, along with increasingly large global
inversions are dramatically improving the resolution of
tomographic studies of the crust, mantle, and whole Earth.
Novel innovations in forward modeling and model parame-
terization are also emerging, such as using adaptive grids [Li
et al., 2008], spherical wavelets [Chiao and Kuo, 2001], and
finite‐frequency kernels [Marquering et al., 1999; Dahlen
et al., 2000].
[3] Regularized linear inversions are central to geophysics,

due in part to their favorable statistical characteristics

[Berryman, 2000; Aster et al., 2005], the availability of
efficient iterative solvers for large systems, such as LSQR
[Paige and Saunders, 1982], and the commonly ill–posed
nature of inverse problems. Even as the size and complexity
of linear or linearized inverse problems grows, iterative sol-
vers are able to produce solutions efficiently. Analyzing the
balance between model resolution and regularization, how-
ever, becomes considerably more computationally intensive
than producing solutions.
[4] For linear systems of equations that are sufficiently

small to perform a singular value decomposition (SVD) of
the forward operator matrix, resolution, a fundamental
measure of solution bias, is quantified by the elements of the
model resolution matrix. For larger problems, however, it
can easily become memory and CPU prohibitive to estimate
solution bias in this way. Consequently, it is a common
practice to employ resolution spike, checkerboard, or similar
tests using synthetic data generated from canonical test
models to estimate the effects of imperfect model parameter
resolution. Such tests are efficient in that they only require
equivalent effort to that necessary for inverting real data.
However, they can only recover an approximation to a
single column of the resolution matrix, or a specified linear
combination of such columns, and may thus provide
ambiguous and/or incomplete model resolution character-
izations under some circumstances.
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[5] The choice of regularization parameters affect solution
resolution, which generally degrades as regularization con-
straints, such as solution bounds or smoothness, are added.
An optimal degree of regularization is commonly estimated
through the use of trade–off curves between a model norm
(or seminorm) and the forward modeled misfit with
observed data [Hansen and O’Leary, 1993]. When the sta-
tistical character of the data noise is unknown or only
roughly estimated, as is commonly the case, this choice can
be rather arbitrary. Generalized cross–validation (GCV)
provides a well–characterized method of selecting a regu-
larization parameter that minimizes the predictive data errors
in a least squares solution [Craven and Wahba, 1979; Golub
et al., 1979]. It is a useful selection criterion in cases where
the variance of the data noise is unknown and data errors are
uncorrelated [Wahba, 1990; Golub and vonMatt, 1997], or
when a trade–off curve is poorly defined, either through lack
of smoothness or poor sampling [Hansen and O’Leary,
1993]. However, GCV requires calculating the trace of a
large matrix, which, when approached straightforwardly, is
commonly computationally prohibitive for large inverse
problems.
[6] Recent work by Bekas et al. [2007] on the statistical

estimation of the large matrix diagonals provides a notable
new tool to facilitate both resolution analysis and imple-
mentation of GCV for large geophysical inversions. Here,
we illustrate the application of this stochastic method to
produce unbiased and accurate estimates of the GCV func-
tion and the diagonal elements of the model resolution
matrix, apply this method to a moderately large teleseismic
tomographic inverse problem, and provide associated self‐
contained MATLAB functions (supplementary material).1

2. Resolution and Regularization

[7] Here we define the model resolution matrix for a
Tikhonov regularized linear forward problem of the form

Gm ¼ d; ð1Þ

whereG is the forward operator matrix,m is an n–dimensional
model vector, and d is an m–dimensional data vector. Each
constraint equation in this system is assumed to be weighted
by an estimate of the respective data error standard deviation.
[8] Because many geophysical inverse problems are ill–

conditioned and/or rank deficient, additional constraints are
typically needed for solution stability and uniqueness [e.g.,
Menke, 1989; Parker, 1994; Aster et al., 2005]. We imple-
ment regularization here by incorporating a roughening
matrix, L, and its associated weighting parameter, a, into
the inverse problem corresponding to (1). The resulting
Tikhonov regularized least squares problem is

min
G
�L

� �
m� d

0

� �����
����

����
����
2

: ð2Þ

It can be shown using the normal equations that the least
squares solution to (2) can be expressed by a linear matrix
inverse operator acting on the data vector [Aster et al., 2005]

m� ¼ G]d; ð3Þ

where

G] ¼ GTGþ �2LTL
� ��1

GT : ð4Þ

The model resolution matrix characterizes the linear model
space mapping between a (typically unknown) true model
and that recovered using (3), i.e., for some true model m̂with
noise‐free associated data d̂:

m� ¼ G]d̂ ¼ G]Gm̂ ¼ Rmm̂: ð5Þ

Rm(a) = G]G is an n by n square matrix that characterizes
the model bias inherent in the regularized inversion. Columns
of Rm are resolution kernels corresponding to point spread
(i.e. spike test) functions for each model parameter. Off‐
diagonal entries represent smearing/trade–off between
parameters in the recovered solution, and diagonal entries
characterize the independent resolvability of each param-
eter. The closer Rm is to the identity matrix, the less bias
inherent in the inversion, and the higher the fidelity of the
solution will be to the unknown true model that generated
the observed data.

3. Motivation for and Implementation of
Stochastic Estimation of a Matrix Diagonal

[9] A significant practical difficulty in calculating Rm

directly is that, although G may be sparse (as in a typical
seismic tomography problem), (GTG + a2LTL)−1 in (4) is
typically an n by n dense matrix. For problems with n larger
than a few tens of thousands of parameters, this can require
in excess of many tens of gigabytes of storage and prohib-
itively time consuming calculations.
[10] Because of the central importance of this problem for

large linear or linearized inverse problems, a number of
methods have been proposed to estimate or calculate the full
resolution matrix (5). Approaches include iterative methods
that complement the LSQR algorithm [Zhang and
McMechan, 1995; Yao et al., 1999; Zhang and Thurber,
2007]. These methods, while taking advantage of the com-
putational efficiencies of the LSQR algorithm, produce an
“effective resolution matrix,” that may not fully represent
the model resolution [Deal and Nolet, 1996; Berryman,
2000; Zhang and Thurber, 2007]. Nolet et al. [1999] for-
mulated an explicit expression for an approximation to the
resolution matrix using a one‐step back–projection method.
This method, however, makes special assumptions about the
structure of the forward operator. Finally, a highly compu-
tationally intensive class of methods exploits Choleski fac-
torization and parallel computation to evaluate model
resolution [Boschi, 2003].
[11] Both the least squares solution and the model reso-

lution in (3) and (5) are dependent on the choice of regu-
larization rougheningmatrixL and its weighting parameter,a.
Generalized cross–validation (GCV) selects the regulariza-
tion parameter that minimizes the predictive error for all data

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JB008234.
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points when left out one at a time. This is done by minimizing
the GCV function, V0(a):

V0 �ð Þ � m Gm� � dj jj j22
Tr I�GG]
� �2 ; ð6Þ

where Tr denotes the matrix trace and m is the data space
dimension [Craven and Wahba, 1979]. Implicit in (6) is the
approximation that matrix diagonals (GG])k,k ≈ Tr(GG])/m,
which is shown by Golub et al. [1979] to be reasonable for
large m. It is favorable to use GCV to choose ma because,
making certain assumptions about the smoothness and noise
of the true model, m̂, it can be shown that E [km̂ −mak2] goes
to 0 as m goes to infinity, for an ma chosen through GCV
[Craven and Wahba, 1979; Wahba, 1990]. Golub and
vonMatt [1997] applied a stochastic trace estimator to esti-
mate (6), but did so by calculating upper and lower bounds

through amore complexmethod than that presented here. The
stochastic matrix diagonal estimator presented here is inde-
pendent of the number of iterations used to find the model
solution and makes no assumptions of the structure of the
forward operator.
[12] The following stochastic algorithm comes largely

from Bekas et al. [2007], who initially applied it to atomic
density functional theory and noted its broad relevance, and
is in turn based upon work by Hutchinson [1990] and
Girard [1987]. Here, we apply the matrix diagonal estimator
to the resolution matrix (5) and the calculation of the GCV
function (6).
[13] Consider a sequence of s n‐length random vectors,

v1, …, vs, with independent elements drawn from a standard
normal distribution. The sth estimate for the diagonal of an n
by n square matrix A is then

Ds ¼
Xs

k¼1

vk � Avk

" #
�

Xs

k¼1

vk � vk

" #
; ð7Þ

where � signifies element‐wise vector multiplication and �
signifies element‐wise vector division. The algorithm cor-
responding to (7) is the following:
[14] Stochastic matrix diagonal estimator

1. t0, q0 = 0
2. for k = 1…s

(i) Generate a random vector realization vk
(ii) tk = tk−1 + (Avk � vk)
(iii) qk = qk−1 + (vk � vk)
(iv) Dk = tk � qk

3. end
[15] In practice, the choice of s will depend on the

desired accuracy of the diagonal determination, which can
be assessed by statistically examining repeated estimates
generated with independent random vectors and by the con-
vergence of the estimates Ds. Equation (7) contains the
matrix‐vector product Avk, which cannot be evaluated
directly if A is incalculable. When A is the resolution matrix,
Rm, this product can be computed by noting that a product y =
Rmvk can be rewritten in terms of the knownmatricesG andL
by combining (5) and (4) as

y ¼ GTGþ �2LTL
� ��1

GTGvk ; ð8Þ

which is the normal equations solution for

min
G
�L

� �
y� Gvk

0

� �����
����

����
����
2

: ð9Þ

[16] In estimating the GCV function (6), let A be GG].
We first evaluate the product y = G]vk as

y ¼ GTGþ �2LTL
� ��1

GTvk ; ð10Þ

which is the normal equations solution for

min
G
�L

� �
y� vk

0

� �����
����

����
����
2

: ð11Þ

Figure 1. (a) Map of stations used in the CREST experi-
ment over elevation. CREST stations are triangles, and
USArray stations are circles. (b) Distribution of teleseismic
earthquake sources (black circles). The center of the CREST
network is noted by a star.
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[17] The least squares solution to (11) is subsequently
left–multiplied by G to obtain the desired matrix–vector
product GG]vk in (7). Once the diagonal of GG], and hence
its trace, are estimated, calculating (6) is trivial. Both (9) and
(11) can be readily solved with an iterative solver such as
LSQR.
[18] The computational cost of using this algorithm to

minimize the GCV function in terms of the number of
LSQR calls required, is s · p, where p is the number of
regularization weighting parameters tested. Estimating the
resolution matrix diagonal requires only s calls to LSQR.

4. An Example From Teleseismic Tomography

[19] We apply the method to select the regularization
parameter and estimate the resolution matrix diagonal for a
moderately large seismic tomographic inversion. The
CREST (Colorado Rockies Experiment and Seismic
Transects) [Aster et al., 2009; MacCarthy, 2010] teleseismic
inversion data subset examined here consists of 19,608
mean‐removed teleseismic P wave travel time residuals and
estimated data errors, measured at 167 broadband seismic
stations in the region [MacCarthy, 2010] (Figure 1). The
model space is parameterized by 267,520 constant slowness
blocks, each 0.25° by 0.25° by 25 km in size. The forward
problem matrix was constructed via infinite frequency ray
tracing through a one–dimensional reference velocity model
(ak135) [Kennett et al., 1995] with crustal corrections, and
solutions are expressed as percent velocity or slowness
variation from this model.
[20] Forward problem constraint equations were scaled by

respective standard deviations estimated from ensemble P
arrival waveform cross correlation (using approximately one
principal period of the first arrival) across the network
[VanDecar and Crossen, 1990]. Analysis of data errors
suggested that the cross‐correlation methodology under-
estimates the true measurement errors. We note that other
authors have reached similar conclusions, suggesting that a
factor of 2–10 typically brings cross‐correlation–derived

error estimates in teleseismic inversion data sets closer to
those estimated by data analysts [Waite et al., 2006; Pavlis
and Vernon, 2010]. As error amplification factor increases,
error values that are divided into rows of G and d will
reduce the weight of the data equations relative to the reg-
ularization equations for a given a (Equation 2), thus pro-
ducing smoother solutions. At the same time, the value of
kGm − dk decreases with increasing error amplification for
the same a, thus bring both branches of the regularization l‐
curve (Figure 2a) toward zero while maintaining shape and
relative data variance reduction. We find that scaling cross‐
correlation–determined error estimates by a factor of 4,
producing a root mean square estimated error of 0.148,
brings the model seminorm versus residual trade–off curve
corner and GCV minimum into consistency with the noise
level, per the discrepancy principle describing statistically
expected data fit [Hansen and O’Leary, 1993; Aster et al.,
2005] and have adopted this scaling factor in further work
with this data set.
[21] Like most geophysical tomographic inversions, this

example is rank–deficient. We thus regularize the inver-
sion using superimposed zeroth–order and second–order
(Laplacian) smoothing in equal proportion, scaled by the
regularization parameter a, and by a constant level of edge–
damping [MacCarthy, 2010]. Second–order smoothing is
used in order to discourage spurious features in the resulting
models, and zeroth–order damping is employed to minimize
model amplitudes and to aid in convergence. We examine the
selection of the regularization parameter using trade–off
curves and via GCV, and use the different recovered models
to demonstrate the use of the diagonal resolution estimation
algorithm in solution bias characterization.
[22] In trade–off curve analysis, a was selected visually

from the corner vicinity of the plot of data residual versus
model seminorm (Figure 2a). The corner provides a heu-
ristic for estimating an optimal degree of regularization, but
its character will be influenced by the plotting range and
scale (e.g., linear, linear‐log, or log‐log plotting are vari-
ously used in practice). It is common for preferred models in

Figure 2. (a) Example trade–off curve between model seminorm versus data residual 2‐norms as a func-
tion of regularization weighting parameter, a (2) for regularization as described in the text. (b) Generalized
cross–validation (GCV) curve, showing regularization parameter (a) versus GCV function value (6).

MACCARTHY ET AL.: STOCHASTIC ESTIMATION OF MODEL RESOLUTION B10304B10304

4 of 8



such studies to be somewhat over–regularized relative to the
mathematically “best” solution in the interest of producing
stable, conservative, or geologically reasonable models. We
show a model that is slightly toward the smoother side of a
linear‐linear trade–off curve, corresponding to a = 0.7
(Figures 3a–3c). This particular model has maximum am-
plitudes of ±4.5% in Vp and corresponds to a data variance
reduction of 78.7% (a root–mean–square data fit of 89%)
compared to ak135.
[23] We next determined a to minimize the GCV function

(6). The GCV–optimal a for the CREST inversion, selected
from its broad minimum, is near 0.1 (Figures 2b and 3d–3f).
While structurally similar to the model with a = 0.7, max-
imum amplitudes in this model are ±6.8%, with a data

variance reduction of 91.7%. Note that these high amplitude
P wave variations are believed to be petrologically infeasi-
ble, and the high roughness (large seminorm) of the GCV–
optimal model likely indicates that this particular solution is
unduly rough. This is likely due in part to the flat and broad
minimum region in the GCV curve, and/or the presence of
correlated data errors [Wahba, 1990; Hansen and O’Leary,
1993]. Insights into the inverse problem obtained through
GCV, such as these, may not otherwise be obtained through
traditional regularization methods.
[24] We show both a checkerboard resolution test and

estimated model resolution diagonals for the two example
regularized solutions discussed above to illustrate the effect
of regularization weighting on resolution and to highlight

Figure 3. CREST regional model slices and resolution analysis of example P wave regularized inver-
sions with (a–d) a = 0.7 and (e–h) a = 0.1. Figures 3a and 3e show depth slice of velocity model at
90 km depth (top). Seismic stations are small black triangles, and the dashed line AA′ is the location
of the paired cross section (bottom). Depths at 150 km and 440 km are shown as dashed lines in cross
section. Velocities are percent of Vp relative to the ak135 reference model. Figures 3b and 3f show check-
erboard recovery at same depth and latitude as previous. Input perturbations were ±2% P velocity relative
to background across sets of 33 model blocks. Figures 3c and 3g show stochastic estimate of diagonal
elements of Rm. Figures 3d and 3h show total ray length for all used P rays through each model param-
eter. Figures 3d and 3h are identical, repeated to aid visual comparison.
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how the two methods of resolution analysis offer different
insights. Alternating 33‐block clusters of ±2% Vp were used
to generate synthetic travel time data using the CREST
forward problem, and the data were contaminated with noise
at the same level as that estimated for the CREST data. The
synthetic data were then inverted using the same a = 0.1 and
0.7 inversions as previously discussed. The resulting
checkerboard recovery models are a rough approximation of
a spatial distribution of superimposed respective resolution
kernels within the model space (Figures 3b and 3f). The
tests highlight regions with high shape and amplitude
recovery, versus poorly constrained regions dominated by
smearing. A significant shortcoming of this approach,
however, is that interpreting amplitude recovery for a given
parameter is complicated by smearing/superposition from
adjacent parameters. For example, maximum amplitude

recovery for the a = 0.1 and 0.7 solutions is greater than the
input amplitude for both checkerboard inversions. Because
of this effect, the recovered models for both inversions look
very similar and quantitative distinctions of amplitude
recovery between different inversions are difficult. The
model resolution matrix diagonal is a more quantitative
measure of amplitude recovery that is independent of the
geometry of synthetic input models.
[25] The stochastic method of section 3 was used to

estimate the model resolution matrix diagonal for the two
regularized inversions, using s = 256 random vectors. Stable
values were obtained by running N = 20 realizations of the
diagonal estimation and calculating median values. A ran-
dom subset of 100 elements were validated against explic-
itly calculated elements for each of the N estimations.
Figures 4a and 4c compare median stochastic estimates of

Figure 4. (a) Stochastic estimates of the resolution matrix diagonal (y axis), versus true values (x axis)
for 100 randomly selected values parameter values, a = 0.7 case. Points are the median values of N = 20
realizations using s = 256 random vectors each. Bars are the symmetric sample standard deviations for
each parameter. (b) Histogram of residuals between median estimated and true Rm diagonal values for
the same 100 parameters. (c and d) Same as previous plots, but for a = 0.1 case. The same 100 parameters
are investigated.
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Rm diagonal elements versus their true values, for a = 0.7
and a = 0.1, respectively. Symmetric sample standard de-
viations for N = 20 realizations are shown as error bars. In
all cases, true values are within the one standard deviation of
the median estimated value. Figures 4b and 4d depict the
frequency of absolute errors in median estimated Rm diag-
onal elements. The mean and maximum absolute errors of
the median estimates was 0.005 and 0.024 for the a = 0.1
inversion, and 0.002 and 0.011 for the a = 0.7 inversion.
[26] To further illustrate the accuracy of the stochastic

method, the diagonal elements of the resolution matrix for a
synthetic tomographic problem were estimated and com-
pared to the explicitly calculated values. The problem con-
sisted of an 8 × 8 × 8 = 512 element Cartesian block model
of known slowness, through which straight rays were traced.
The problem was regularized using smoothing and damping
in equal proportion, with a = 0.5 (Equation 2). Resolution
matrix diagonal elements were estimated using the sto-
chastic method, with N = 20 and s = 256, and median values
were compared to those from the formal resolution matrix,
Rm(a) = G]G (Figure 5). As in the larger example, median
values are within one sample standard deviation from the
true value. Mean and maximum absolute errors are 0.0003
and 0.022, respectively.
[27] Selection of appropriate values for s and N will vary

from problem to problem. Estimated elements across N
realizations are derived from independently generated
pseudorandom numbers. Estimated elements also appear to
be approximately normally distributed, with a mean about
the true value. Thus, under the assumptions of independence
and normality, the mean value of the N estimates converges
to the true value at a rate proportional to

ffiffiffiffi
N

p
, or O(1/

ffiffiffiffi
N

p
).

Under these assumptions, one can select N such that any
estimated parameter’s standard error is below some thresh-
old, d. First, choose a small number of realizations, N1,
compute the sample standard deviation for each diagonal

element, sN, and find the maximum value, sN
max. One can

now select a larger number realizations, N2, such that sN
max/ffiffiffiffiffiffi

N2
p

< d. The mean of each estimated diagonal element over
N2 realizations will then be less than d from the true value.
Selection of the number of random vectors, s, is more
complicated, as a mathematical description of estimate
convergence with increasing s is not well characterized. In
their application of the stochastic trace estimator, Bekas et al.
[2007] noted the very few vectors are required to produce
somewhat accurate estimates, with steady but slow conver-
gence thereafter. Due to the speed of the calculation, how-
ever, we recommend that an s of 256–512will be adequate for
many large geophysical inversions.
[28] While the pattern of well‐resolved regions is similar

between the two CREST inversions, the amplitude bias due
to regularization is notably different (Figures 3c and 3g).
The resolution diagonal in the a = 0.7 model is nearly half
that of the a = 0.1 model, with maximum Rm diagonal
values of 0.375 and 0.618 respectively. This implies a much
larger degree of smoothing inherent in the a = 0.7 inversion
that is not apparent through the corresponding traditional
multiblock checkerboard analysis. A drawback of looking
only at the Rm diagonal, of course, is not being able to
visualize smearing bias in the inversion.
[29] It has been suggested that ray–sampling density is a

low–cost qualitative tool to evaluate spatial model resolution
in tomographic inversions [e.g., Zhang and Thurber, 2007],
as more highly sampled parameters tend to exhibit higher
resolution. This formulation, however, does not take into
account the angular sampling of rays as they traverse model
parameters or the regularization employed in the inversion,
both of which contribute to parameter resolution. In natural–
source studies, such as in teleseismic tomography, the dis-
tribution of sources and stations commonly results in similar
raypaths sampled multiple times, with little angular diversity
across model parameters. Consequently, parameters may

Figure 5. (a) Stochastic estimates of the resolution matrix diagonal (y axis) versus true values (x axis)
for all 512 parameters in a synthetic 3D tomography example, using a = 0.5. Points are the median values
ofN = 20 realizations using s = 256 random vectors each. Bars are the symmetric sample standard deviations
for each parameter. (b) Histogram of residuals between median estimated and true Rm diagonal values.
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have both high ray–density and relatively low resolution.
Conversely, in many active–source studies, model elements
may be traversed by fewer rays with higher angular diversity,
resulting in parameters with relatively low ray density but
high resolution.
[30] We compare ray–sampling to estimated model reso-

lution diagonals to further illustrate the utility of the latter in
quantitative resolution analysis. Figure 3d (and 3h) shows
log total ray length across the model volume for the sources
and stations shown in Figure 1. The large number of events
with northwest back azimuths result in total ray length
>500 km along northwest–directed rays, to ∼400 km depth
beneath the CREST network. From this metric, one may
infer a corresponding co–located region of moderately well–
resolved model parameters. However, equivalent plots of
estimated resolution diagonal for the a = 0.7 inversion show
a region of approximately equal (diagonal) resolution of 0.1–
0.2 along northwest–directed rays to depths of 500–600 km
(Figure 3c). The a = 0.1 inversion, because it employs less
smoothing and damping, has ubiquitous higher resolution
and shows diagonal resolution >0.4 to depths exceeding
600 km along northwest–directed rays (Figure 3g). Because
there is not a strict correlation between ray sampling and
(diagonal) resolution, particularly in the presence of regu-
larization, estimates of diagonal resolution may be a favor-
able low–cost alternative to ray–sampling density for
resolution analysis.

5. Conclusions

[31] We present a general low–cost stochastic matrix
diagonal method to estimate the model resolution matrix
diagonal and the generalized cross–validation (GCV) func-
tion. The method is demonstrated using a moderately large
teleseismic P velocity linear inversion example, and the
results are compared against those from trade–off curves,
checkerboard resolution tests, and ray–sampling density.
The method presented here relies on LSQR and is compa-
rable in computational demand to the effort necessary for
obtaining model solutions. The method thus provides easily
implemented estimation and assessment of the complete
resolution matrix diagonal as well as wider usage of GCV–
determined regularization parameter estimation, and is
scalable to very large inverse problems.
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