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Linear inversion

In Chapter 12 we saw how the parametrization of a continuous model allows us to

formulate a discrete linear relationship between data d and model m. With unknown

corrections added to the model vector, this linear relationship remains formally the

same if we write the physical model parameters as m1 and the corrections as m2

but combine both in one vector m:

A1m2 + A2m2 = Am = d (12.1) again.

Assuming we have M1 model parameters and M2 corrections, this is a system of

N equations (data) and M = M1 + M2 unknowns. For more than one reason the

solution of the system is not straightforward:

• Even if we do not include multiple measurements along the same path, many of the N

rows will be dependent. Since the data always contain errors, this implies we cannot

solve the system exactly, but have to minimize the misfit between Am and d. For this

misfit we can define different norms, and we face a choice of options.

• Despite the fact that we have (usually) many more data than unknowns (i.e. N � M),

the system is almost certainly ill-posed in the sense that small errors in d can lead to

large errors in m; a parameter mj may be completely undetermined (Aij = 0 for all i)

if it represents a node that is far away from any raypath. We cannot escape making a

subjective choice among an infinite set of equally satisfactory solutions by imposing a

regularization strategy.

• For large M , the numerical computation of the solution has to be done with an iterative

matrix solver which is often halted when a satisfactory fit is obtained. Such efficient

shortcuts interfere with the regularization strategy.

We shall deal with each of these aspects in succession. Appendix D introduces

some concepts of probability theory that are needed in this chapter.
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14.1 Maximum likelihood estimation and least squares

In experimental sciences, the most commonly used misfit criterion is the criterion

of least squares, in which we minimize χ2 (‘chi square’) as a function of the model:

χ2(m) =

N�

i=1

�
|
�M

j=1 Aijmj − di |
2

σ 2
i

�

= min, (14.1)

where σi is the standard deviation in datum i; χ2 is a direct measure of the data

misfit, in which we weigh the misfits inversely with their standard errors σi .

For uncorrelated and normally distributed errors, the principle of maximum like-

lihood leads naturally to the least squares definition of misfit. If there are no sources

of bias, the expected value E(di) of di (the average of infinitely many observations

of the same observable) is equal to the ‘correct’ or error-free value. In practice,

we have only one observation for each datum, but we usually have an educated

guess at the magnitude of the errors. We almost always use a normal distribution

for errors, and assume errors to be uncorrelated, such that the probability density

is given by a Gaussian or ‘normal’ distribution of the form:

P (di) =
1

σi
√

2π
exp

�

−
|di − E(di)|

2

2σ 2
i

�

. (14.2)

The joint probability density for the observation of anN-tuple of data with indepen-

dent errors d = (d1, d2, ..., dN ) is found by multiplying the individual probability

densities for each datum:

P (d) =

N�

i=1

1

σi
√

2π
exp

�

−
|di − E(di)|

2

2σ 2
i

�

. (14.3)

If we replace the expected values in (14.3) with the predicted values from the

model parameters, we obtain again a probability, but now one that is conditional

on the model parameters taking the values mj :

P (d|m) =

N�

i=1

1

σi
√

2π
exp

�

−
|di −

�
j Aijmj |

2

2σ 2
i

�

. (14.4)

We usually assume that there are no extra errors introduced by the modelling

(e.g. we ignore the approximation errors introduced by linearizations, neglect of

anisotropy, or the shortcomings of ray theory etc.). In fact, if such modelling errors

are also uncorrelated, unbiased and normally distributed, we can take them into

account by including them in σi – but this is a big ‘if’.†

† See Tarantola [351] for a much more comprehensive discussion of this issue.
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Clearly, one would like to have a model that is associated with a high probability

for its predicted data vector. This leads to the definition of the likelihood function

L for the model m given the observation of the data d:

L(m|d) = P (d|m) ∝ exp

�

−
1

2
χ2(m)

�

.

Thus, maximizing the likelihood for a model involves minimizing χ2. Since this

involves minimizing the sum of squares of data misfit, the method is more generally

known as the method of least squares. The strong point of the method of least

squares is that it leads to very efficientmethods of solving (12.1). Itsmajorweakness

is the reliance on a normal distribution of the errors, which may not always be the

case. Because of the quadratic dependence on the misfit, outliers – misfits of

several standard deviations – have an influence on the solution that may be out

of proportion, which means that errors may dominate in the solution. For a truly

normal distribution, large errors have such a low probability of occurrence that we

would not worry about this. In practice however, many data do suffer from outliers.

For picked arrival times Jeffreys [146] has already observed that the data have a

tail-like distribution that deviates from the Gaussian for large deviations from the

mean tm, mainly because a later arrival is misidentified as P or S:

P (t) =
1 − �

σ
√

2π
e−(t−tm)2/2σ 2

+ �g(t),

where the probability density g(t) varies slowly and where � � 1. A simple method

to bring the data distribution close to normal is to reject outliers with a delay that

exceeds the largest delay time to be expected from reasonable effects of lateral

heterogeneity. This decision can be made after a first trial inversion: for example,

one may reject all data that leave a residual in excess of 3σ after a first inversion

attempt.

If we divide all data – and the corresponding row of A – by their standard

deviations, we end upwith a data vector that is univariant, i.e. all standard deviations

are equal to 1. Thus, without loss of generality, we may assume that the data are

univariant, in which case we see from (14.1) that χ2 is simply the squared length

of the residual vector |r| = |d − Am|. From Figure 14.1 we see that r is then

perpendicular to the subspace spanned by all vectors Ay (the ‘range’ R(A) of A).

For if it was not, we could add a δm to m such that Aδm reduces the length of r .

Thus, for all y the dot product between r and Ay must be zero:

r · Ay = AT r · y = AT (d − Am) · y = 0,
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r = d − Amd

R(A)

Fig. 14.1. If the data vector d does not lie in the range of A, the best we can do
is to minimize the length of the residual vector r . This implies that r must be
perpendicular to any possible vector Ay.

where AT is the transpose of A (i.e. AT
ij = Aji). Since this dot product is 0 for all

y, clearly AT (d − Am) = 0, or:

AT Am = AT d, (14.5)

which is known as the set of ‘normal equations’ to solve the least-squares problem.

Chi square is an essential statistical measure of the goodness of fit. In the

hypothetical case that we satisfy every datum with a misfit of one standard deviation

we findχ2 = N ; clearly valuesmuch higher thanN are unwanted because themisfit

is higher than could be expected from the knowledge of data errors, and values

much lower than N indicate that the model is trying to fit the data errors rather

than the general trend in the data. For example, if two very close rays have travel

time anomalies differing by only 0.5 s and the standard deviation is estimated to be

0.7 s, we should accept that a smooth model predicts the same anomaly for each,

rather than introducing a steep velocity gradient in the 3D model to try to satisfy

the difference. Because we want χ2 ≈ N , it is often convenient to work with the

reduced χ2 or χ2
red, which is defined as χ2/N , so that the optimum solution is found

for χ2
red ≈ 1.

But how close should χ2 be to N? Statistical theory shows that χ2 itself has a

variance of 2N , or a standard deviation of
√

2N . Thus, for 1 000 000 data the true

model would with 67% confidence be found in the intervalχ2 = 1 000 000 ± 1414.

Such theoretical bounds are almost certainly too narrow because our estimates of

the standard deviations σi are themselves uncertain. For example, if the true σi

are equal to 0.9 but we used 1.0 to compute χ2, our computed χ2 itself is in

error (i.e. too low) by almost 20%, and a model satisfying this level of misfit is

probably not good enough. It is therefore important to obtain accurate estimates

of the standard errors, e.g. using (6.2) or (6.12). Provided one is confident that the

estimated standard errors are unbiased, one should still aim for a model that brings

χ2 very close to N , say to within 20 or 30%.

An additional help in deciding how close one wishes to be to a model that fits

at a level given by χ2 = N is to plot the tradeoff between the model norm and χ2
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Fig. 14.2. The L- or tradeoff curve between χ2 and model norm |m|2.

(sometimes called the L-curve), shown schematically in Figure 14.2. If the tradeoff

curve shows that one could significantly reduce the norm of the model while paying

only a small price in terms of an increase in χ2 (point A in Figure 14.2), this is

an indication that the standard errors in the data have been underestimated. For

common data errors do not correlate between nearby stations, but the true delays

should correlate – even if the Earth’s properties vary erratically (because of the

overlap in finite-frequency sensitivity). The badly correlating data can only be fit

by significantly increasing the norm and complexity of the model, which is what

we see happening on the horizontal part of the tradeoff curve. Conversely, if we

notice that a significant decrease in χ2 can be obtained at the cost of only a minor

increase in model norm (point B), this indicates an overestimate of data errors and

tells us we may wish to accept a model with χ2 < N . If the deviations required are

unexpectedly large, this is an indication that the error estimation for the data may

need to be revisited.

Depending on where on the L-curve we find that χ2 = N , we find that we do

or do not have a strong constraint on the norm of the model. If the optimal data fit

is obtained close to point B where the L-curve is steep, even large changes in χ2

have little effect on the model norm. On the other hand, near point A even large

changes in the model give only a small improvement of the data fit. Both A and

B represent unwanted situations, since at A we are trying to fit data errors, which

leads to erratic features in the model, whereas at B we are damping too strongly.

In a well designed tomography experiment, χ2 ≈ N near the bend in the L-curve.

We used the term ‘model norm’ here in a very general sense – one may wish

to inspect the Euclidean |m|2 as well as more complicated norms that we shall

encounter in Section 14.5.

In many cases one inverts different data groups that have uncorrelated errors. For

example Montelli et al. [215] combine travel times from the ISC catalogues with

cross-correlation travel times from broadband seismometers. The ISC set, with

about 106 data was an order of magnitude larger than the second data set (105), and

a brute force least-squares inversion would give preference to the short period ISC

data in cases where there are systematic incompatibilities. This is easily diagnosed
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by computing χ2 for the individual data groups. One would wish to weigh the

data sets such that each group individually satisfies the optimal χ2 criterion, i.e.

if χ2
i designates the misfit for data set i with Ni data, one imposes χ2

i ≈ Ni for

each data set. This may be accomplished by giving each data set equal weight and

minimizing a weighted penalty function:

P =
�

i

1

Ni

χ2
i .

Note that this gives a solution that deviates from the maximum likelihood solution,

and we should only resort to weighting if we suspect that important conditions

are violated, especially those of zero mean, uncorrelated and normally distributed

errors. More often, an imbalance for individual χ2
i simply reflects an over- or

underestimation of the standard deviations for one particular group of data, and

may prompt us to revisit our estimates for prior data errors.

Early tomographic studies often ignored a formal statistical appraisal of the

goodness of fit, and merely quoted how much better a 3D tomographic model satis-

fies the data when compared to a 1D (layered or spherically symmetric) background

or ‘starting’ model, using a quantity named ‘variance reduction’, essentially the

reduction in the Euclidean norm of the misfit vector. This reduction is as much

a function of the fit of the 1D starting model as of the data fit itself – i.e. the

same 3D model can have different variance reductions depending on the starting

model – and is therefore useless as a statistical measure of quality for the tomo-

graphic model.

Exercises

Exercise 14.1 Derive the normal equations by differentiating the expression for χ2 with

respect to mk for k = 1, ...,M . Assume univariant data (σi = 1).

Exercise 14.2 Why can we not conclude from (14.5) that Am ≡ d?

14.2 Alternatives to least squares

In the parlance of mathematics, the squared Euclidean norm
�

i |ri |
2 is one of a

class of Lebesgue norms defined by the power p used in the sum: (
�

i |ri |
p)1/p.

Thus, the Euclidean norm is also known as the ‘L2’ norm becausep = 2. Of special

interest are the L1 norm (p = 1) and the case p → ∞ which leads to minimizing

the maximum among all |ri |.

Instead of simply rejecting outliers, which always requires the choice of a hard

bound for acceptance, we may downweight data that show a large misfit in a
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Fig. 14.3. (a) The original matrix system Am = d. (b) The eigenvalue problem
for the least-squares matrix AT A.

previous inversion attempt, and repeat the process until it converges. In 1898, the

Belgian mathematician Charles Lagrange proposed such an ‘iteratively weighted’

least-squares solution, by iteratively solving:

|Wp Am − Wpd|2 = min ,

where Wp is a diagonal matrix with elements |ri |
p−2 and 0 ≤ p < 2, which are

determined from the misfits ri in datum i after the previous iteration. We can start

with an unweighted inversion to find the first r . The choice p = 1 leads to the

minimization of the L1 norm if it converges. The elements of the residual vector ri
vary with each iteration, and convergence is not assured, but the advantage is that

the inversion makes use of the very efficient numerical tools available for linear

least-squares problems. The method was introduced in geophysics by Scales et al.

[304].

14.3 Singular value decomposition

Though the least squares formalism handles the incompatibility problem of data

in an overdetermined system, we usually find that AT A has a determinant equal

to zero, i.e. eigenvalues equal to zero, and its inverse does not exist. Even though

in tomographic applications AT A is often too large to be diagonalized, we shall

analyse the inverse problem using singular values (‘eigenvalues’ of a non-square

matrix), since this formalism gives considerable insight.

Let vi be an eigenvector of AT A with eigenvalue λ2
i , so that AT Av = λ2

i v. We

may use squared eigenvalues because AT A is symmetric and has only non-negative,

real eigenvalues. Its eigenvectors are orthogonal. The choice of λ2 instead of λ as

eigenvalue is for convenience: the notation λ2
i avoids the occurrence of

√
λi later

in the development. We can arrange all M eigenvectors as columns in an M × M

matrix V and write (see Figure 14.3):

AT AV = V�2 . (14.6)

The eigenvectors are normalized such that V T V = V V T = I .
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With (14.6) we can study the underdetermined nature of the problem Am = d,

of which the least-squares solution is given by the system AT Am = AT d. The

eigenvectors vi span the M-dimensional model space so m can be written as a

linear combination of eigenvectors: m = V y. Since V is orthonormal, |m| = |y|

and we can work with y instead of m if we wish to restrict the norm of the model.

Using this:

AT AV y = V�2 y = AT d ,

or, multiplying both on the left with V T and using the orthogonality of V :

�2 y = V T AT d .

Since � is diagonal, this gives yi (and with that m = V y) simply by dividing

the i-th component of the vector on the right by λ2
i . But clearly, any yi which is

multiplied by a zero eigenvalue can take any value without affecting the data fit! We

find the minimum norm solution, the solution with the smallest |y|2, by setting such

components of y to 0. If we rank the eigenvalues λ2
1 ≥ λ2

2 ≥ ...λ2
K > 0, 0, ..., 0,

then the last M−K columns of V belong to the nullspace of AT A. We truncate

the matrices V and � to an M × K matrix VK and a K × K diagonal matrix � to

obtain the minimum norm estimate:

m̂min norm = VK�−2
K V T

K AT d . (14.7)

Note that the inverse of �K exists because we have removed the zero eigenval-

ues. The orthogonality of the eigenvectors still guarantees V T
K VK = IK , but now

VKV T
K �= IM .

To see how errors in the data propagate into the model, we use the fact that

(14.7) represents a linear transformation of data with a covariance matrix Cd . The

posteriori covariance of transformed data T d is equal to T CdTT (see Equation

14.39 in Appendix D). In our case we have scaled the data such that Cd = I so

that the posteriori model covariance is:

Cm̂ = VK�−2
K V T

K AT I AVK�−2
K V T

K

= VK�−2
K �2

K�−2
K V T

K

= VK�−2
K V T

K . (14.8)

Thus the posteriori variance of the estimate for parameter mi is given by:†

σ 2
mi

=

K�

j=1

V 2
ij

λ2
j

. (14.9)

† To distinguish data uncertainty from model uncertainty we denote the model standard deviation as σmi
and the

data standard deviation as σi .
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Fig. 14.4. Mappings between the model space (left) and the data space (right).
The range of A is indicated by the grey area within the data space. The range of
the backprojection AT is indicated by the grey area in the model space.

This equation makes it clear that removing zero singular values is not sufficient,

since the errors blow up as λ−2
j , rendering the incorporation of small λj very

dangerous. Dealing with small eigenvalues is known as regularization of the prob-

lem. Before we discuss this in more detail, we need to show the connection between

the development given here and the theory of singular value decomposition which

is more commonly found in the literature.

One way of looking at the system Am = d is to see the components mi as

weights in a summation of the columns of A to fit the data vector d. The columns

make up the range of A in the data space (Figure 14.4). Similarly, the rows of

A – the columns of AT – make up the range of the backprojection AT in the

model space. The rest of the model space is the nullspace: if m is in the nullspace,

Am = 0. Components in the nullspace do not contribute to the data fit, but add to

the norm of m. We find the minimum norm solution by avoiding any components

in the nullspace, in other words by selecting a model in the range of AT :

m̂ = AT y

and find y by solving for:

AAT y = d .

The determinant of AAT is likely to be zero, so just as in the case of least squares

we shall wish to eliminate zero eigenvalues. Let the eigenvectors of AAT be ui

with eigenvalues λ̃2
i :

AAT U = U�̃2 . (14.10)

Since AAT is symmetric, the eigenvectors are orthogonal and we can scale them

to be orthonormal, such that UT U = UUT = I . Multiplying (14.10) on the left by
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Fig. 14.5. (a) The full eigenvalue problem for AAT leads to a matrix with small
or zero eigenvalues on the diagonal. (b) removing zero eigenvalues has no effect
on A.

AT and grouping AT U we see that AT U is an eigenvector of AT A:

AT A(AT U) = (AT U)�̃2

and comparison with (14.6) shows that AT ui must be a constant×vi , and λ̃i = λi .

We choose the constant to be λi , so that

AT U = V�. (14.11)

Multiplying this on the left by A we obtain:

AAT U = U�2 = AV� ,

or, dividing on the right by λi for all λi �= 0, and defining uiλi = Avi with a

nullspace eigenvector vi in case λi = 0:

AV = U� . (14.12)

In the same way, by multiplying (14.12) on the right by V T we find:

A = U�V T (14.13)

which is the singular value decomposition of A. Note that in this development we

have carefully avoided using the inverse of �, so there is no need to truncate it to

exclude zero singular values. However, because the tail of the diagonal matrix �

contains only zeroes, (14.13) is equivalent to the truncated version (Figure 14.5):

A = U�V T = UK�KV T
K . (14.14)

Exercises

Exercise 14.3 Show that the choice (14.11) indeed implies that UT U = I . Hint: use

(14.12).

Exercise 14.4 Show that m̂ = VK�−1
K UT

K d is equivalent to m̂min norm.
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14.4 Tikhonov regularization

The truncation to include only nonzero singular values is an example of regular-

ization of the inverse problem. Removing zero λi is not sufficient however, since

small singular values may give rise to large modelling errors, as shown by (14.9).

This equation tells us that small errors in the data vector may cause very large

excursions in model space in the direction of vk if λk � 1. It thus seems wise to

truncate V in (14.13) even further, and exclude eigenvectors belonging to small

singular values. The price we pay is a small increase in χ2, but we are rewarded by

a significant reduction in the modelling error. We could apply a sharp cut-off by

choosing K at some nonzero threshold level for the singular values. Less critical

to the choice of threshold is a tapered cut-off. We show that the latter approach

is equivalent to adding M equations of the form �nmi = 0, with �n small, to the

tomographic system. Such equations act as artificial ‘data’ that bias the model

parameters towards zero:

�
A

�n I

�

m =

�
d

0

�

. (14.15)

If the j -th column of A – associated with parameter mj – has large elements, the

addition of one additional constraint �nmj = 0 will have very little influence. But

the more mj is underdetermined by the undamped system, the more the damping

will push mj towards zero. The least squares solution of (14.15) is:

(AT A + �2
n I)m = AT d . (14.16)

The advantage of the formulation (14.15) is that it can easily be solved iteratively,

without a need for singular value decomposition. But the solution of (14.15) does

have a simple representation in terms of singular values, and it is instructive to

analyse it with SVD. If vk is an eigenvector of AT A with eigenvalue λ2
k, then the

damped matrix gives:

(AT A + �2
n I)vk = (λ2

k + �2
n)vk , (14.17)

and we see that the damped system has the same eigenvectors but with raised

eigenvalues λ2
k + �2

n > 0. The minimum norm solution (14.7) is therefore replaced

by:

m̂damped = VK (�2
K + �2

n I)−1V T
K AT d (14.18)

with the posteriori model variance given by:

σ 2
mi

=

K�

j=1

V 2
ij

λ2
j + �2

n

. (14.19)
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Since there are no zero eigenvalues, we may set K = N , but of course this max-

imizes the variance and some truncation may still be needed. For simplicity, we

assumed a damping with the same �n everywhere on the diagonal. The method

is often referred to as Tikhonov regularization, after its original discoverer [364].

Because one adds �2 to the diagonal of AT A it is also known as ‘ridge regression’.

Spakman and Nolet [338] vary the damping factor �n along the diagonal. When

corrections are part of the model, one should vary damping factors such that

damping results in corrections that are reasonable in view of the prior uncertainty

(for example, one would judge corrections as large as 100 km for hypocentral

parameters usually unacceptable and increase �n for those corrections).

A comparison of (14.19) with (14.9) shows that damped model errors blow

up at most by a factor �−1
n . Thus, damping reduces the variance of the solution.

This comes at a price however: by discarding eigenvectors, we reduce our ability

to shape the model. The small eigenvalues are usually associated with vectors

that are strongly oscillating in space: the positive and negative parts cancel upon

integration and the resulting integral (12.12) is small. Damping small eigenvalues is

thus expected to lead to smoother models. However, even long-wavelength features

of the model may be biased towards zero because of regularization.

The fact that biased estimations produce smaller variances is a well known

phenomenon in statistical estimation, and it is easily misunderstood: one can obtain

a very small model parametermi with a very small posteriori variance σ 2
i , yet learn

nothing about the model because the bias is of the order of the true mi . We shall

come back to this in the section on resolution, but first investigate a more powerful

regularization method, based on Bayesian statistics.

Exercises

Exercise 14.5 Show that the minimization of |Am − d|2 + �2|m|2 leads to (14.16).

Exercise 14.6 In the L-curve for (14.18), indicate where � = 0 and where � → ∞.

14.5 Bayesian inference

The simple Tikhonov regularization by norm damping we introduced in the prev-

ious section, while reducing the danger of excessive error propagation, is usually

not satisfactory from a geophysical point of view. At first sight, this may seem

surprising: for, when the mi represent perturbations with respect to a background

model, the damping towards 0 is defensible if we prefer the model values given

by the background model in the absence of any other information. However, if the



14.5 Bayesian inference 267

information given by the data is unequally distributed, some parts of the model may

be damped more than others, introducing an apparent structure in m that may be

very misleading. The error estimate (14.19) does not represent the full modelling

error because it neglects the bias. In general, we would like the model to have a

minimum of unwarranted structure, or detail. Jackson [145] and Tarantola [349],

significantly extending earlier work by Franklin [105], introduced the Bayesian

method into geophysical inversion to deal with this problem, named after the

Reverend Thomas Bayes (1702–1761), a British mathematician whose theorem on

joint probabilities is a cornerstone of this inference method.

We shall give a brief exposé ofBayesian estimation for the case ofN observations

in a data vector dobs. Let P (m) be the prior probability density for the model

m = (m1, m2, ..., mM ), e.g. a Gaussian probability of the form:

P (m) =
1

(2π )M/2

1

| det Cm|1/2
exp

�

−
1

2
m · C−1

m m

�

. (14.20)

Here, Cm is the prior covariance matrix for the model parameters. By ‘prior’ we

mean that we generally have an idea of the allowable variations in the model

values, e.g. how much the 3D Earth may differ from a 1D background model

without violating more general laws of physics. We may express such knowledge

as a prior probability density for the model values. The diagonal elements of Cm

are the variances of that prior distribution. The off-diagonal elements reflect the

correlation of model parameters – often it helps to think of them as describing the

likely ‘smoothness’ of the model.

In a strict Bayesian philosophy such constraints may be ‘subjective’. This,

however, is not to say that we may impose constraints following the whim of

an arbitrary person. An experienced geophysicist may often develop a very good

intuition of the prior uncertainty of model parameters, perhaps because he has done

experiments in the laboratory on analogue materials, or because he has experience

with tomographic inversions in similar geological provinces. We shall classify such

defensible subjective notions to be ‘objective’ after all.

The random errors in our observations make that the observed data vector dobs

deviates from the true (i.e. error-free) data d. For the data we assume the normal

distribution (14.2). Assuming the linear relationship Am = d has no errors (or

incorporating those errors into σi as discussed before), we find the conditional

probability density for the observed data, given a model m:

P (d|m) =
1

(2π )N/2

1

| det Cd |1/2
exp

�

−
1

2
(Am − dobs) · C−1

d (Am − dobs)

�

,

(14.21)
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where Cd is the matrix with data covariance, usually taken to be diagonal with

entries σ 2
i because we have little knowledge about data correlations.

Though we have an expression for the data probability P (d|m), for solution

of the inverse problem we are more interested in the probability of the model,

given the observed data dobs. This is where Bayes’ theorem is useful. It starts

from the recognition that the joint probability can be split up in a conditional and

marginal probability in two ways, assuming the probabilities for model and data

are independent:

P (m, dobs) = P (m|dobs)P (dobs) = P (dobs|m)P (m),

from which we find Bayes’ theorem:

P (m|dobs) =
P (dobs|m)P (m)

P (dobs)
. (14.22)

Using (14.20) and (14.21):

P (m|dobs) ∝ exp

�

−
1

2
(Am − dobs) · C−1

d (Am − dobs) −
1

2
m · C−1

m m

�

.

Thus, we obtain the maximum likelihood solution by minimizing:

(Am − dobs) · C−1
d (Am − dobs) + m · C−1

m m = χ2(m) + m · C−1
m m = min,

or, differentiating with respect to mi :

AT C−1
d (Am − dobs) + C−1

m m = 0.

One sees that this is – again – a system of normal equations belonging to the

‘damped’ system:

�
C

− 1
2

d A

C
− 1

2
m

�

m =

�
C

− 1
2

d d

0

�

. (14.23)

Of course, if we have already scaled the data to be univariant the data covariance

matrix is Cd = I . This simply shows that we are sooner or later obliged to scale

the system with the data uncertainty. The prior smoothness constraint is unlikely

to be a ‘hard’ constraint, and in practice we face again a tradeoff between the data

fit and the damping of the model, much as in Figure 14.2. We obtain a manageable

flexibility in the tradeoff between smoothness of the model and χ2 by scaling C
− 1

2

d

with a scaling factor �. Varying � allows us to tweak the model damping until

χ2 ≈ N . Equation (14.23) is thus usually encountered in the equivalent, simplified
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form:
�

A

�C
− 1

2
m

�

m =

�
d

0

�

. (14.24)

How should one specify Cm? The model covariance essentially tells us how model

parameters are correlated. Usually, such correlations are only high for nearby

parameters. Thus, Cm smoothes the model when operating on m. Conversely, C−1
m

roughens the model, and () expresses the penalization of those model elements that

dominate after the roughening operation. The simplest roughening operator is the

Laplacian ∇2, which is zero when a model parameter is exactly the average of its

neighbours. If we parametrize the model with tetrahedra or blocks, so that every

node has well-defined nearest neighbours, we can minimize the difference between

parameter mi and the average of its neighbours (Nolet [235]):

1

2

�

i

1

Ni

�

j∈Ni

(mi − mj )
2 = min,

whereNi is the set ofNi nearest neighbours of mode i. Differentiating with respect

to mk gives M equations:

mk −
1

Nk

�

j∈Nk

mj = 0, (14.25)

in which we recognize the k-th row of C
− 1

2
m m in (14.24).

One disadvantage of the system (14.24) is that it often converges much more

slowly than the Tikhonov system (14.15) in iterative matrix solvers (VanDecar and

Snieder [381]). The reason is that we are simultaneously solving a system arising

from a set of integral equations, and the regularization system which involves

finite-differencing. Without sacrificing the Bayesian philosophy, it is possible to

transform (14.24) to a simple norm damping. Spakman and Nolet [338] introduce

m = C
1
2
mm�. Inserting this into (14.24) we find:

�
AC

1
2
m

� I

�

m� =

�
d

0

�

. (14.26)

Though it is not practical to invert the matrix C
− 1

2
m that is implicit in (14.25) to

find an exact expression for C
1
2
m, many explicit smoothers of m may act as an

appropriate ‘correlation’ matrix C
1
2
m for regularization purposes. After inversion for

m�, the tomographic model is obtained from the smoothing operation m = C
1
2
mm�.

The system (14.26) has the same form as the Tikhonov regularization (14.15).
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Despite this resemblance, in my own experience the acceleration of convergence

is only modest compared to inverting (14.24) directly.

14.6 Information theory

Given the lack of resolution, geophysicists are condemned to accept the fact that

there are infinitely many models that all satisfy the data within the error bounds.

The Earth is a laboratory, but one that is very different from those in experimental

physics, where we are taught to carefully design an experiment so that we have full

control. Understandably, we feel unhappy with a wide choice of regularizations,

resulting in our inability to come up with a unique outcome of the experiment. The

temptation is always to resort to some ‘higher’ – if not metaphysical – principle that

allows us to choose the ‘best’ model among the infinite set before we start plotting

tomographic cross-sections. It should be recognized that this simply replaces one

subjective choice (that of a model) with another (that of a criterion). Though some

tomographers religiously adhere to such metaphysical considerations, I readily

confess to being an atheist. In my view, such external criteria are simply a matter of

taste. As an example, the methods of regularization are related to concepts known

from the field of information theory, notably to the concept of information entropy.

We shall briefly look into this, but warn the reader that, in the end, there is no

panacea for our fall from Paradise.

We start with a simple application of the concept of information entropy: suppose

we have only one datum, a delay measured along a ray of length L. We then have

a 1 × M system, or just one equation:

d1 =

�

m(r)ds =
�

i

mids,

As a thought experiment, assume that the segments of dsi are of equal length

ds, and that we allow only one of them to cause the travel time anomaly. Which

one? Information theory looks at this problem in the following way: let Pi be

the probability that mi �= 0. By the law of probabilities,
�

Pi = 1. Intuitively, we

judge that in the absence of any other information, all Pi should be equal – if not

this would constitute additional information on the mi . Formally, we may get to

this conclusion by defining the information entropy:

I =
�

i

Pi lnPi, (14.27)

which can be understood if we consider that any Pi = 0 will yield I = −∞,

thus minimizing the ‘disorder’ in the solution (note that if any Pi = 1, all others

must be 0, again minimizing disorder). We express our desire to have a solution
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with minimum unwarranted information as the desire to maximize I , while still

satisfying
�

Pi = 1. Such problems are solved with the method of Lagrange

multipliers. This method recognizes that the absolute maximum of I – zero for all

probabilities equal to 1 – does not satisfy the constraint that
�

Pi = 1. So we relax

the maximum condition by adding λ(
�

Pi − 1) to I and require:

I + λ(
�

Pi − 1) = Max .

Since the added factor is required to be zero, the function to maximize has not

really changed as long as we satisfy that constraint. All we have done is add

another dimension, or dependent variable, the Lagrange multiplier λ. We recover

the original constraint by maximizing with respect to λ. Taking the derivative with

respect to Pi now gives an equation that involves λ:

∂

∂Pi

�
�

i

Pi lnPi + λ
�

i

Pi

�

= 0,

or

lnPi = −(1 + λ) → Pi = e−1−λ.

We find the Lagrange multiplier from the constraint:
�

i

Pi = Ne−1−λ = 1 → λ = lnN − 1,

or

Pi = eln(1/N ) =
1

N
.

Thus, if we impose the criterion of maximum entropy for the ‘information’ in our

model, allmi are equally likely to contribute. The reasoning does not change much

if we allow every mi to contribute to the anomaly and again maximize (14.27).

In that case, all mi are equally likely to contribute. In the absence of further

information, there is no reason to assume that one would contribute more than any

other, and all are equal:mi = d1/
�

ds = d1/L. The smoothest model is the model

with the highest information entropy. Such reasoning provides a ‘higher principle’

to justify the damping towards smooth models.

Constable et al. [64] named the construction of the smoothest model that satisfies

the data with the prescribed tolerance Occam’s inversion, after the fourteenth

century philosopher William of Occam, or Ockham, who advocated the principle

that simple explanations are more likely than complicated ones and who applied

what came to be known as Occam’s razor to eliminate unnecessary presuppositions.

However, one should not assume that smooth models are free of presuppositions:

in fact, if we apply (14.25) in (14.24) we arbitrarily impose that smooth structures
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are more ‘likely’ than others. Artefacts may be suppressed, but so will sharp

boundaries, e.g. the top of a subduction zone. Loris et al. [188], who invert for

models that can be expanded with the fewest wavelets of a given wavelet basis,

provide a variant on Occam’s razor that is in principle able to preserve sharp

features while eliminating unwarranted detail.

An interesting connection arises if we assume that sparsemodel parametrizations

are a priorimore probable than parametrizationswithmany basis functions.Assume

that the prior model probability P (m) is inversely proportional to the number of

basis functions with nonzero coefficients in an exponential fashion:

P (m) ∝ e−K,

where K is the number of basis functions. If we insert this into Bayes’ equation,

we find that the maximum likelihood equation becomes:

lnχ2(m) − K = min,

which is Akaike’s [1] criterion for the optimum selection of the number of param-

eters K , used in seismic tomography by Zollo et al. [422]. Note, however, that this

criterion lacks a crucial element: it does not impose any restrictions on the shape of

the basis functions. Presumably one could use it by ranking independently defined

basis functions in order of increasing roughness, again appealing to William of

Occam for his blessing.

14.7 Numerical considerations

With N often of the order of 105 − 107 data, and M only one order of magnitude

smaller than N , the matrix system Am = d is gigantic in size. Some reduction in

the number of rows N can be obtained by combining (almost) coincident raypaths

into summary rays (see Section 6.1). The correct way to do this is to sum the rows

of allNS data belonging to a summary ray group S into one new averaged row that

replaces them in the matrix:

M�

j=1

1

NS

�
�

i∈S

Aij

�

mj =
1

NS

�

i∈S

di ± σS , (14.28)

with the variance σ 2
S equal to

σ 2
S =

1

N2
S

�

i∈S

σ 2
i + σ 2

0 .

Here, σ 2
0 is added to account for lateral variations within the summary ray that

affect the variance of the sum. Gudmundsson et al. [126] analysed the relationship
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between the width of a bundle and the variance in teleseismic P delay times from

the ISC catalogue.

Care must be taken in defining the volume that defines the members of the sum-

mary ray. Events with a common epicentre but different depth provide important

vertical resolution in the earthquake region and should often be treated separately.

When using ray theory and large cells to parametrize the model we do not lose

much information if we average over large volumes with size comparable to the

model cells. But the Fréchet kernels of finite-frequency theory show that the sen-

sitivity narrows down near source and receiver, and summarizing may undo some

of the benefits of a finite-frequency approach.

Summary rays are sometimes applied to counteract the effect of dominant ray

trajectories on the model – which may lead to strong parameter correlations along

the prevailing ray direction – by ignoring the reduction of the error in the average.

However, this violates statistical theory if we seek the maximum likelihood solution

for normally distributed errors. The uneven distribution of sensitivity is better

fought using unstructured grids with adapted resolution, and smoothness damping

using a correlation matrix Cm that promotes equal parameter correlation in all

directions.

If the parametrization is local, many elements of A are zero. For a least-squares

solution, AT A has lost much of this sparseness, though, so we shall wish to avoid

constructing AT A explicitly.† We can obtain a large savings in memory space by

only storing the nonzero elements of A. We do this row-wise – surprisingly the

multiplications Am and AT d can both be done in row-order, using the following

‘row-action’ algorithms:

p = Am: q = AT d:

for i = 1, N for i = 1, N

for j = 1,M for j = 1,M

pi ← pi + Aijmj qj ← qj + Aijdi

where only nonzero elements of Aij should take part. This often leads to com-

plicated bookkeeping. Claerbout’s [60] dot-product test: q · Ap = AT q · p – for

random vectors p and q – can be used as a first (though not conclusive) test to

validate the coding.

Early tomographic efforts in the medical and biological sciences led to a re-

discovery of row-action methods (Censor [44]). The early methods, however, had

the disadvantage that they introduced an unwanted scaling into the problem that

† The explicit computation and use of AT A is also unwise from the point of view of numerical stability since its
condition number – the measure of the sensitivity of the solution to data errors – is the square of that of A itself.
For a discussion of this issue see Numerical Recipes [269].
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interferes with the optimal regularization one wishes to impose (see van der Sluis

and van der Vorst [377] for a detailed analysis).

Conjugate gradient methods work without implicit scaling. The stablest algo-

rithmknown today is LSQR, developed by Paige and Saunders [249] and introduced

into seismic tomography by the author [233, 234]. We give a short derivation of

LSQR. The main idea of the algorithm is to develop orthonormal bases µk in

model space, and ρk in data space. The first basis vector in data space, ρ1, is

simply in the direction of the data vector: β1ρ1 = d, and µ1 is the backprojection

of ρ1: α1µ1 = AT ρ1. Coefficients αi and βi are normalization factors such that

|ρi | = |µi | = 1. We find the second basis vector in data space by mapping µ1 into

data space, and orthogonalize to ρ1:

β2ρ2 = Aµ1 − (Aµ1 · ρ1)ρ1 = Aµ1 − α1ρ1,

where we use Aµ1 · ρ1 = µ1 · AT ρ1 = µ1 · α1µ1. Similarly:

α2µ2 = AT ρ2 − β2µ1.

Although it would seem that we have to go through more and lengthier orthogonal-

izations as the basis grows, it turns out that – at least in theory, ignoring roundoff

errors – the orthogonalization to the previous basis function only is sufficient. For

example, for ρ3 we find β3ρ3 = Aµ2 − α2ρ2. Taking the dot product with ρ1, we

find:

β3ρ3 · ρ1 = Aµ2 · ρ1 − α2ρ2 · ρ1 = µ2 · AT ρ1 = µ2 · (α1µ1) = 0 ,

and ρ3 is perpendicular to ρ1. A similar proof by induction can be made for all ρk

and µk in the iterative sequence:

βk+1ρk+1 = Aµk − αkρk (14.29)

αk+1µk+1 = AT ρk+1 − βk+1µk. (14.30)

If we expand the solution after k iterations:

mk =

k�

j=1

γjµj ,

k�

j=1

γj Aµj = d,
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and with (14.29):

k�

j=1

γj (βj+1ρj+1 + αjρj ) = β1ρ1.

Taking the dot product of this with ρ1 yields γ1 = β1/α1, whereas subsequent

factors are found by taking the product with ρk to give γk = −βkγk−1/αk.

14.8 Appendix D: Some concepts of probability theory and statistics

I assume the reader is familiar with discrete probabilities, such as the probability

that a flipped coin will come up with head or tail. If added up for all possible

outcomes, the sum of all probabilities is 1.

This concept of probability cannot directly be applied to variables that can take

any value within prescribed bounds. For such variables we use probability density.

The probability density P (X0) for a random variable X at X0 is equal to the

probability that X is within the interval X0 ≤ X ≤ X0 + dX, divided by dX.

This can be extended to multiple variables. If P (d) is the probability density

for the data in vector d, then the probability that we find the data within a small

N -dimensional volume �d in data space is given by 0 ≤ P (d)�d ≤ 1. We only

deal with normalized probability densities, i.e. the integral over all data:
�

P (d)dN d = 1 . (14.31)

Joint probability densities give the probability that two or more random variables

take a particular value, e.g. P (m, d). If the distributions for the two variables are

independent, the joint probability density is the product of the individual densities:

P (m, d) = P (m)P (d). (14.32)

Conversely, one finds the marginal probability density of one of the variables by

integrating out the second variable:

P (m) =

�

P (m, d)dN d. (14.33)

The conditional probability density gives the probability of the first variable under

the condition that the second variable has a given value, e.g. P (m|dobs) gives the

probability density for model m given an observed set of data in dobs.

The expectation or expected value E(X) of X is defined as the average over all

values of X weighted by the probability density:

X̄ ≡ E(X) =

�

P (X)X dX. (14.34)
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The expectation is a linear functional:

E(aX + bY ) = aE(X) + bE(Y ) , (14.35)

and for independent variables it is separable:

E(XY ) = E(X)E(Y ) . (14.36)

The variance is a measure of the spread of X around its expected value:

σ 2
X = E[(X − X̄)2] , (14.37)

where σX itself is known as the standard deviation. The covariance between two

random variables X and Y is defined as

Cov(X, Y ) = E[(X − X̄)(Y − Ȳ )] . (14.38)

In the case of an N -tuple of variables this defines an N × N covariance matrix,

with the variance on the diagonal. The covariance matrix of a linear combination of

variables is found by applying the linearity (14.35). Consider a linear transformation

x = T y. Since the spread of a variable does not change if we redefine the average

as zero, we can assume that E(xi) = 0 without loss of generality. Then:

Cov(xi, xj ) = E

�
�

k

Tijyk
�

l

Tjlyl

�

=
�

kl

TijTjlE(ykyl)

=
�

kl

TijTjlCov(yk, yl),

or, in matrix notation:

Cx = T CyTT . (14.39)


