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Local earthquake tomography between rays and waves: 
fat ray tomography
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Abstract

The limitations of ray-based forward solutions in seismic tomography are theoretically well known. To correctly represent the 

physical forward problem in seismic tomography, application of full three-dimensional (3D) wave theory would be required. Up 

to now this is not possible for the size of a typical local earthquake study. With the concept of fat rays resembling the waves 

Fresnel volume, a more complete, physically consistent and accurate solution to the forward problem is available. In this paper 

we present an approach to include fat rays in local earthquake tomography, called FATOMO. The comparative study with syn-

thetic data and inversion results with FATOMO and a ray-based approach to local earthquake tomography, SIMULPS, reveals 

new insights into the role of resolution and model parameterization in local earthquake tomography. Intuitively expected effects 

of fat rays on resolution estimates such as higher node sampling values and lower resolution diagonal element values for wider 

fat rays can be seen in the results. For ideal model parameterization, differences between fat ray and ray tomography are small. 

Our results document, however, that the influence of model parameterization is less critical for fat ray tomography than for ray 

tomography. ' 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Precision of the solution to the forward problem is
of great importance in seismic tomography since both
sides of the linearized matrix Eq. (1) describing the in-
verse problem are affected:

d = Am + e                                                                (1)

where d denotes the vector of travel time residuals,
A the matrix of partial derivatives, m the vector of
model adjustments, and e the error vector. The vector
of travel time residuals d on the left-hand side of  Eq.
(1) directly depends on the precision and accuracy of
the employed forward scheme, since residuals are de-

fined as the differences between observed and calcu-
lated travel times. On the right-hand side of Eq. (1) the
matrix A contains the partial derivatives of travel
times with respect to model parameters and, hence,
equally depends on precision and accuracy of the for-
ward scheme to calculate travel times and ray paths.
Small differences in ray paths due to the use of differ-
ent ray tracers will result in different model partial de-
rivatives, which may lead to a different solution of Eq.
(1). Consequently, the solution to the forward problem
must not only provide accurate travel times but also
accurate travel paths for seismic waves. Two addition-
al requirements have to be met for the solution to the
forward problem. First, it must be fast since thousands
of travel times and partial derivatives need to be cal-
culated at each iteration. Second, it must be robust in
the presence of strong velocity heterogeneities. 
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Forward solutions based on a ray theoretical ap-
proach have been used in local earthquake tomogra-
phy since its beginning. These solutions include full or
approximate 3D ray tracing by bending or shooting.
The pseudo-bending approximate ray tracing (ART-
PB) method proposed by Um & Thurber (1987) and
implemented in the widely used SIMULPS 3-D inver-
sion algorithm (Evans et al., 1994) represents an ap-
proximate 3D ray tracer with additional pseudo
bending-type ray pertubations. Um & Thurber (1987)
and Eberhart-Phillips (1990) pointed out that ART-PB
is only accurate for ray lengths up to 80 km. Virieux
(1991) and Virieux and Farra (1991) presented a full
3D shooting algorithm based on paraxial ray tracing.
This method has been used in local earthquake tomog-
raphy by Le Meur et al. (1997) and Ghose et al. (1998)
and implemented in SIMULPS by Haslinger (1999).
Ray tracing is very efficient to find travel times and
ray paths simultaneously, but all ray tracing schemes
share the same drawback: they offer no guarantee that
the global minimum travel-time is found. 

With increasing computer power a new method of
calculating travel times has become available for tom-
ography studies that solves the eikonal equations by
finite difference (FD) methods (Vidale, 1988, 1990;
Podvin & Lecomte, 1991; Hole & Zelt, 1995). Solving
the eikonal equations directly guarantees that the glo-
bal minimum travel time is found. To compute partial
derivatives, however, FD-based tomography studies
still use ray paths which are normally computed by
following the steepest gradient in the travel time field
from source to the receiver or vice versa (Podvin &
Lecomte, 1991; Hole, 1992). Hence, these approaches
could still be considered as belonging to the class of
ray-based tomography, except that they could possi-
bly find first arrivals normally not found by ray-based
tomography.

To correctly represent the physical forward prob-
lem in local earthquake tomography, the application
of full 3D wave theory would be required. Wave-the-
oretic or wave-equation tomography requires the for-
ward and backward propagation of the full seismic
wavefield (Vasco, Peterson, & Majer, 1995). This
problem is usually formulated in the frequency-wave-
number domain under the title of diffraction tomogra-
phy (Woodward (1992), and references therein).
Modelling even the full acoustic wavefield is still a
computationally intensive task. It has been sucessfully

implemented in 2D cross-borehole tomography (e.g.
Luo & Schuster, 1991; Vasco & Majer, 1993; Vasco,
Peterson, & Majer, 1995). For the size of a typical lo-
cal earthquake tomography study and in 3D, however,
this has not been possible due to computational re-
quirements. For a more thorough discussion of the
standard solutions to the forward problem in seismic
tomography see Thurber and Kissling (2000).

In this paper we present a new approach to the solu-
tion of the forward problem in local earthquake tom-
ography that combines elements of both ray- and
wave theoretical approaches. Travel times are calcu-
lated using finite difference (FD) modelling of the
eikonal equations (Podvin & Lecomte, 1991) and
travel paths and partial derivatives are computed using
fat rays as described below. Such fat rays resemble the
first Fresnel volume of a wave for a specific frequen-
cy. We also extend the ray-independent approach to
the problem of earthquake location by implementing a
grid-search algorithm. With the use of a simple syn-
thetic test case we investigate the influence of our new
forward solution on inversion results and on resolu-
tion estimates. A second test using synthetic data com-
puted for the source-receiver distribution of a real
experiment in northern Chile is used to compare in-
version results and resolution estimates obtained by
the fat ray approach (FATOMO; Husen, 1999) to
those obtained by a ray-based approach (SIMULPS;
Thurber, 1983 and Eberhart-Phillips, 1990).

2. Fat Ray Concept

The idea of using rays of non-zero width to bridge
the gap between rays and waves dates back to Hage-
doorn (1954). He tried to relate rays and waves by in-
troducing the idea of a beam width, which is defined
as the region falling within the first Fresnel volume.
The first Fresnel volume of a seismic wave is defined
as the innermost spatial region where constructive in-
terference of seismic energy takes place. Hence, scat-
tering from each point within the first Fresnel volume
contributes constructively to the signal observed at a
receiver. Travel times observed in the "real earth" re-
flect propagation of seismic energy in the first Fresnel
zone. In doing seismic tomography, it would be "nice"
to incorporate a greater degree of this reality. 

Various attempts exist in the literature to compute
Fresnel zones or volumes for bandlimited seismic
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travel times. They either use the Born or Kirchhoff ap-
proximation to compute Fréchet kernels or derivatives
(Gelchinsky, 1985; Cardimona & Garmany, 1993;
Stark & Nikolayev, 1993; Vasco & Majer, 1993; Mar-
quering et al., 1999) or ray theory (Cerveny & Soares,
1992; Vasco et al., 1995; Pulliam & Snieder, 1998).
Recently, Dahlen et al. (2000) presented a way to
compute 3D Fréchet kernels using body wave ray the-
ory in conjunction with the Born approximation. Pul-
liam & Snieder (1998) presented two methods to
compute approximate Fresnel zones in inhomogene-
ous media, which are similar to our approach. They
use ray perturbation theory and the network ray trac-
ing method of Klimes & Kvasnicka (1994), respec-
tively, to compute seismic travel times instead of a
finite-difference algorithm as in our approach.

Reformulation of wave-equation tomography in the
frequency-space domain (Woodward, 1992) reveals
that monochromatic, scattered wavefields are back-
projected along source-receiver wave paths, just as
ray-based tomography distributes travel time delays
over ray paths. Moreover, for the nondispersive case
and a specific frequency bandwidth, wave paths can
be approximated by band-limited ray paths or fat rays,
which resemble the first Fresnel volume associated
with that frequency band (Woodward, 1992). The
computation of a single wave path requires forward
and backward propagation of the acoustic seismic
wavefield making it computationally rather intensive.
On the other hand, with increasing computer power,
FD modelling of the eikonal equations is relatively
fast. The summation of both travel time fields, for the
forward and the backward propagating waves, yields
the fat ray (Fig. 1) representing the wave path from

source to receiver. In our approach, we use the finite-
difference algorithm of Podvin & Lecomte (1991) to
compute travel time fields.

Cerveny and Soares (1992) defined the width of the
Fresnel volume in terms of travel times tsx,trx between
source or receiver respectively, and a point x within
the Fresnel volume as (Fig. 1)

| tsx + trx - tsr| ≤ T/2                                                   (2)

where T is the dominant period of the seismic wave
and tsr the shortest travel time between source and re-
ceiver. Consequently, the width of a fat ray should be
defined by the points satisfying the equality in Eq. 2 to
correctly represent the first Fresnel volume (Fig. 1).
For a dominant frequency of 10 Hz, for example, the
ideal fat ray width should correspond to points having
a 0.05 s travel time difference. Assuming a volume of
uniform velocity of 5 km/s, this corresponds to a min-
imum fat ray width of 500 m in the vicinity of the
source and receiver. Fig. 2 displays a fat ray represent-
ing a head wave in a simple two-layer model. As ex-
pected from the behavior of Fresnel zones, the fat ray
tends to broaden in the area of higher velocity. 

To implement fat rays in seismic tomography, we
resample fat rays using cells defined on the grid used
for the FD modelling (Fig. 2b). This grid, called for-
ward or numerical grid, is needed to perform a stable
computation of the travel time fields (Kissling et al.,
2000). The grid spacing of the numerical grid must be
small enough to correctly approximate the wave fronts
and, therefore, it is also a good choice to discretize the
fat rays. To correctly represent fat rays, grid spacing
of the numerical grid must be smaller than the mini-

+ =
 source travel time field receiver travel time field 

t   +  t  -  t  = T/2

fat ray

1

1

2

3

4

5

6

7

2

3

4

5

6

7

R

Ssource source

receiverreceiver

sx rx srx

t   +  t  -  t  = 0sx rx sr

Fig.1 Schematic diagram of the fat ray concept. Both source and receiver travel time fields are computed using finite-difference modelling. Their
summation is used to define a fat ray, given those points with a summed travel time less than tsr + T/2 (tsr = travel time source-receiver, T = dominant
wave period). 
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mum fat ray width. To compute the partial derivative
of the travel time with respect to the kth model param-
eter, we need to know how much a fat ray is influ-
enced by a certain model parameter.. In the case of a
block model as inversion grid such as ours, this is sim-
ply that part of the fat ray located within the inversion
cell associated with the kth model parameter (Fig. 3).
Thus, the partial derivative with respect to the frac-
tional slowness perturbation ∆uk/uk at kth model pa-
rameter becomes

where sumk denotes the number of numerical cells
(volume) of the fat ray within the kth inversion cell
(see Fig. 3), volsr is the total number of numerical cells
of the fat ray (total fat ray volume), and ttsr is the total
travel time between source and receiver. 

3. Earthquake Location

The coupling between seismic velocities and hypo-
center locations in the inverse problem requires the re-
location of earthquakes during the inversion process.
To extend the ray-independent solution of the forward
problem to the problem of earthquake location, we im-
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Fig. 2. Fat ray examples in a) 2D and b) 3D for a head wave in a simple two layered velocity model. The contour in a) denotes a fat ray width of 0.05
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plemented a grid-search algorithm. The computation
of fat rays requires the calculation of the full travel
time field for each receiver, so that from each point in
the model, travel times to each station are available.
Consequently, a grid search method for earthquake lo-
cation is well suited for fat ray tomography. With grid
search methods one tries to localize a global minimum
of a misfit function by performing a direct search over
the gridded parameter space. In the case of earthquake
location, the misfit function depends on the four hypo-
central parameters: the hypocentral coordinates and
the origin time. This requires a temporal search over a
range of possible origin times as well as a spatial
search over a range of possible hypocentral coordi-
nates (Sambridge & Kennett, 1986). In the case of
well-locatable events and an appropriate initial refer-
ence model, which are necessary prerequisites to ob-
tain reasonable and stable solutions to the coupled
hypocenter-velocity model problem (Kissling et al.,
1994), the best fitting origin time Torg for a particular

grid point may be found by the formula (Nelson & Vi-
dale, 1990): 

where N is the number of observations, Tobs are the
observed arrival times and Tcalc are the calculated
travel times. The grid point that yields the smallest re-
sidual is considered the best location.

In our approach, we perform the grid search on two
grids: first on the coarse seismic grid and second on
the fine numerical grid. In Fatomo the seismic grid is
used to parameterize the velocity field (Kissling et al.
this issue). The grid search starts at the grid point clos-
est to the initial hypocenter location and covers a user-
defined radius which should encompass several seis-
mic grid nodes in each direction to ensure that the glo-
bal minimum is included (Fig. 4a). For the second
search, a box is set up with its center at the location of
the lowest RMS value of the initial search with sides
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defined by the surrounding seismic grid nodes (Fig.
4b). This second search is performed on the numerical
grid, used for computation of travel times, which is 5
to 10 times smaller than the seismic grid. If in any of
the searches the location with the minimum RMS val-
ue is at a search boundary, the grid is moved so that
the minimum RMS location forms the new center, and
the grid search is repeated. With the travel times al-
ready calculated for the fat ray computation, the im-
plemented grid search approach provides not only a
stable, but also a very fast and efficient method to re-
locate well-locatable events in the fat ray tomography
algorithm.

A major advantage of grid search methods is the di-
rect access to the misfit function in the area around the
proposed hypocenter location (Fig. 5), which allows a
more realistic estimation of the location accuracy. The
accuracy of the proposed hypocenter location can be
described by contours of constant confidence levels.
Sambridge & Kennett (1986) presented an approach
to compute such contours with the use of the chi-
squared distribution with (n-4) degrees of freedom,
where n is the number of data values. Analyzing such
contours for a large set of events, however, is rather
impractical. In our approach we assess the 95% confi-
dence levels in each direction of the hypocenter loca-
tion by determining those grid points which show a 2
sigma difference in the RMS value with respect to the

RMS value at the hypocenter location. The 2 sigma
value is defined by the mean travel time accuracy
based on the observations weights. The ratio of the
95% confidence levels will give a crude approxima-
tion of the quality of the hypocenter solution, i.e., if
the misfit function shows a more circular or a more el-
lipsoidal shape. Fig. 5 displays the misfit function for
two example events of the synthetic data set described
in the next section.

4. Tests of Fat Ray Tomography with Synthetic 
Data

A simple synthetic 3D-structure was used to test fat
ray tomography and to investigate the influence of dif-
ferent fat ray widths on solution and resolution esti-
mates. The latter is of special importance since
available computer capacity often limits the size of the
numerical grid. This implies that in some cases the
minimum fat ray width cannot be as small as required
by the dominant wave length. The synthetic structure
used in this test consists of two velocity anomalies
with ±15% velocity deviation (Fig. 6) embedded in a
background model with a vertical velocity gradient.
To generate sufficient ray coverage, 50 events at dif-
ferent depths and 25 stations are used (Fig. 6). Each
event is observed at all stations, yielding 1250 obser-
vations. Synthetic travel times were calculated using

seismic grid points* *

grid point with minimum RMS

initial hypocenter location

numerical grid points

*

 a) initial search on seismic grid b) secondary search on numerical grid

Fig. 4. Sketch of the different grids used in the grid search implemented in fat ray tomography. a) The initial search is performed on the coarse
seismic grid. The dashed circle denotes the search radius. b) A second grid search is performed on the fine numerical grid with the minimum RMS
location of the coarse search as its center.
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the FD forward solver of the eikonal equations (Pod-
vin & Lecomte, 1991) with a gridspacing of 250 m.
No noise was added to the travel times. Velocities in
fat ray tomography are defined at grid points of the
seismic grid, spaced 5 km apart with linear interpola-

tion in between. To account for heterogeneous ray
coverage, an additional block model, called the inver-
sion grid, is used for the inversion (Kissling et al.,
2000). In this test series, each inversion cell encom-
passes one seismic grid point. 

a) event 01: x = 44.0 km, y = 37.0 km, z = 4.5 km

b) event 23: x = 33.5 km, y = 39.5 km, z = 18.5 km
Fig. 5. RMS volume (misfit function) of two example events as obtained by grid search. The hypocenter location is at the intersection of the thr
shown from 0.2 s to 0.6 s at 0.1 s interval.
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We test the effects of three different fat ray widths
(corresponding to 0.04 s, 0.05 s, 0.07 s travel time dif-
ference) on the inversion results. Assuming an aver-
age velocity of 5.5 km/s, this corresponds to a
minimum fat ray width of 440 m, 550 m, and 770 m.
In the following, KHIT (number of fat rays per inver-
sion cell) and RDE (diagonal element of the resolution
matrix) are used to investigate the effects of different
fat ray widths on resolution estimates. To avoid non-
linear path effects by the 3D-velocity inversion on the
fat ray distribution, KHIT and RDE are shown after
the first iteration in Figs. 7 and 8. The results of the in-
version after 2 iterations are shown in Fig. 9. For more
clarity, only two representative depth sections at 10.0
and 20.0 km depth are shown in Figs. 7-9.

As can be inferred from Fig. 7, KHIT shows higher
values and a more homogenous distribution with in-
creasing fat ray width. The effect is especially visible
at greater depth due to higher velocities that increases
fat ray width. This clearly documents the dependence
of KHIT on the applied forward solution and model
parameterization, complicating the use of KHIT for
resolution assessment. On the other hand, the explicit
dependence of KHIT on the forward solution makes it
very useful for studying different forward solutions.
The RDE in Fig. 8 exhibits decreasing values for in-
creasing fat ray width, which is clearly visible, for ex-
ample, at station R025. The region of uniform RDE in
Fig. 8, however, is identical for all different fat ray
widths.
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Fig. 7. KHIT values for inversion of synthetic data using the source-receiver distribution shown in Fig. 6 for different fat ray widths. Fat ray
width increases from top to bottom. On top a plan view of the source-receiver and ray distribution is shown.
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Fig.8. RDE values for inversion of synthetic data using the source-receiver distribution shown in Fig. 6 for different fat ray widths. Fat ray
width increases from top to bottom. On top a plan view of the source-receiver and ray distribution is shown.
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Fig. 9. Inversion results after 2 iterations of synthetic data set obtained with the source-receiver distribution shown in Fig. 6 for different fat
ray widths. Fat ray width increases from top to bottom. On top the synthetic input model is shown.
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Kissling (1988) and Haslinger et al. (1999) docu-
ment that solution quality depends more on the uni-
formity than on absolute values of RDE. Therefore, no
large differences in the solution are expected for dif-
ferent fat ray widths, which is confirmed by the inver-
sion results (Fig.Fig. 9). Compared to the true model,
all three solutions recover the synthetic structure at
nearly the same level. Some smaller differences, how-
ever, can be observed. The image of the high velocity
anomaly at 10.0 km depth is more patchy for the solu-
tion with 550 m and 440 m fat ray widths, which is
similar (550 m) or less (440 m) than the numerical
grid spacing of 500 m.

5. Comparing fat ray Tomography with ray 
tomography

To compare inversion results and resolution esti-
mates of fat ray tomography with those of ray tomog-
raphy, we used the geometry of the real data set of the
CINCA experiment in the Antofagasta area, northern
Chile (Husen et al., 2000). This data set consists of
789 well locatable local events recorded at a tempo-
rary network operating on- and offshore (Fig. 10).
Synthetic travel times were calculated through the
model shown in Fig. 11 using a 3D-shooting ray tracer
(Vireux and Fara, 1991) and Gaussian noise was add-
ed. Ray tomography of this synthetic data set was per-
formed using the SIMULPS software, which solves
the forward problem by approximate 3D ray tracing
with pseudo bending (Um & Thurber, 1987). Appro-
priate damping for velocities in ray tomography was
determined to be 50 by analyzing trade-off curves be-
tween data and model variance (Eberhart-Phillips,
1986). Damping of the fat ray inversion depends on
fat ray width and the size of the inversion cells
(Kissling, this issue) and has been adjusted to 100. Ac-
cording to equation 2 and a dominant frequency of 6
Hz observed in the CINCA data set, the travel time
difference for points within a fat ray was set to 0.09s.
To avoid any effects caused by different model pa-
rameterizations, identical seismic and inversion grid
spacing of 20 km was chosen for the fat ray and the ray
tomography (Fig. 10). Numerical grid spacing used
for FD modelling was 1 km.

Inversion results of the fat ray and ray tomography
are shown in Fig. 11 for three selected horizontal
depth sections. When compared to the true model,

both inversion schemes show identical areas of good
resolution, i.e. areas with good recovery of the true
model, and areas of significant leakage problems. Fat
ray tomography, however, shows a slightly better spa-
tial recovery and more homogeneous amplitude re-
covery at 15 km and 35 km depth. Also, velocity
smearing at 25 km depth is not as dominant as in ray
tomography. On the other hand, ray tomography
shows a higher sensivity in the border region of the re-
solved area, which results in higher amplitudes in
these areas. Unfortunately, this applies for both true
model recoverage and artefacts. RDE and KHIT for
the layers shown in Fig. 11 are presented in Figs. 12
and 13, respectively. Compared to ray tomography,
fat ray tomography yields higher absolute values and
a more homogenous RDE distribution. For KHIT the
opposite effect is observed (Fig. 12). Here, ray tomog-
raphy shows larger areas of high KHIT, especially in
the outer regions of the model. 

At first glance, the similarities in the inversion re-
sults obtained by ray and fat ray tomography may
come as a surprise, but one must keep in mind that in
SIMULPS each ray segment is affected by all the sur-
rounding grid points due to linear interpolation be-
tween the grid points (Fig. 3). Hence, with a lateral
grid spacing of 20 km, each ray effectively influences
a region 20 km in diameter. The diameter of a fat ray
defining the area of influence is not constant and de-
pends on velocity structure and source-receiver dis-
tance. We calculated the average effective fat ray
diameter by dividing the fat ray volume by the corre-
sponding ray length. For a fat ray width of 0.09 s and
a total of 16070 rays we found an average effective fat
ray diameter of 6 km. This is significantly smaller
than the area of influence of 20 km in diameter deter-
mined for ray tomography. Hence, in this particular
case the influence region of a ray is about three times
larger then the average diameter of a fat ray. Since
with KHIT one simply counts if a grid point is influ-
enced by a ray or not, larger areas of high KHIT are
expected in our synthetic test for ray tomography. The
influence of the surrounding grid points on a ray seg-
ment is, of course, downweighted by the distance of
the ray segment from the grid point. This damping of
the influence on a ray segment with increasing dis-
tance from a grid point results in smaller RDE values
for ray tomography than for fat ray tomography,
where equal weight to a fat ray cell is given within the
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fat ray volume. In SIMULPS, distribution of the travel
time residual over adjacent grid nodes results in larger
off-diagonal elements in the resolution matrix (Fig.
14). Consequently, velocity smearing is stronger for

ray tomography than for fat ray tomography. Less ve-
locity smearing not necessarily means that fat ray to-
mography has lower model uncertainties. Slightly
better spatial recovery and more homogenous 

71ßW 70ßW 69ßW

71ßW 70ßW 69ßW

25ßS

24ßS

23ßS

22ßS

25ßS

24ßS

23ßS

22ßS

0 

25 

50 

75 

100 

D
ep

th
 (k

m
)

Longitude (deg)

L
at

it
ud

e 
(d

eg
)

25 50 75 100 
Depth (km)

Seismic gridpoint of ray  
and fat ray tomography
Inversion cell of fat ray tomography

Epicenter
Station

20 km

Fig. 10. Source (circles) and receiver (triangles) distribution of the real CINCA data set (Husen et al., 1999) used to compare fat ray and ray tomo
raphy. Grey lines connect source and receiver to display the ray distribution. Seismic grid nodes of fat ray and ray tomography are shown by bla
squares. Dashed lines show inversion cells used in the fat ray inversion.



S. Husen, E.Kissling/Physics of the Earth and Planetory Interiors 123 (2001) 129-149142
Fig.11. Synthetic input model (top) and inversion results after 2 iterations obtained by fat ray (middle) and ray inversion (bottom). Circles
(offshore) and triangles mark stations (onshore). Crosses mark grid nodes defining velocities.

71ßW 70ßW

24ßS

23ßS

24ßS

23ßS

24ßS

23ßS

z = 15.0 km

71ßW 70ßW

z = 25.0 km

71ßW 70ßW

z = 35.0 km
synthetic input model

fat ray inversion 

ray inversion 

-17 -15 -10 -6 -4 -2 -0.5 0.0 0.5 2 4 6 10 15 17

% Vp change

71ßW 70ßW

24ßS

23ßS

24ßS

23ßS

24ßS

23ßS

z = 15.0 km

71ßW 70ßW

z = 25.0 km

71ßW 70ßW

z = 35.0 km

71ßW 70ßW

24ßS

23ßS

24ßS

23ßS

24ßS

23ßS

z = 15.0 km

71ßW 70ßW

z = 25.0 km

71ßW 70ßW

z = 35.0 km



S. Husen, E.Kissling/Physics of the Earth and Planetory Interiors 123 (2001) 129-149 143
Fig. 12. KHIT for fat ray (top) and ray (bottom) of the inversion of the synthetic data obtained by using the source-receiver distribution shown
in Fig. 10 and the synthetic model shown in Fig. 11. Grey lines mark inversion cells of fat ray tomography (top). Crosses in the ray tomogra-
phydenote grid points defining the inversion grid. Stations are marked by triangles. 
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Fig. 13. RDE for fat ray (top) and ray (bottom) of the inversion of the synthetic data obtained by using the source-receiver distribution shown
in Fig. 10 and the synthetic model shown in Fig. 11. Grey lines mark inversion cells of fat ray tomography (top). Crosses in the ray tomogra-
phydenote grid points defining the inversion grid. Stations are marked by triangles. 
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amplitude recovery seen in the results obtained by fat
ray tomography (Fig. 11), however, indicate lower
model uncertainties for fat ray tomography.

Hypocenter locations obtained by ray tomography
are significantly closer to the true hypocenter loca-
tions than the ones obtained by grid search imple-
mented in fat ray tomography. Table 1 lists
differences of hypocenter locations between true loca-
tions, as input, and those after 2 iterations of the syn-
thetic data set obtained by fat ray and ray tomography.
Hypocenter locations obtained by grid search in fat
ray tomography are shifted on average by a distance
corresponding to the grid spacing used in the fine grid
search. Obviously, the grid search algorithm, as im-
plemented in fat ray tomography, does not locate an
earthquake on a point position as it is done when using
rays, but rather within a volume which is defined by
the numerical grid spacing. 

This limitation of hypocenter locations to a fixed
volume yields higher RMS values for the hypocenter
locations in fat ray tomography (Table 2). Having
more hypocentral parameters (3200) than model pa-
rameters (940), the higher RMS values for the 

Table 1: 
Average and standard deviation of hypocenter differences between
true and final hypocenter locations (after two coupled iterations) for
fat ray and ray tomography

Longitude
(m)

Latitude
(m)

Depth
(m)

Origin time
(ms)

Fat ray tomography

Average -1257 1147 1205 -66

S.D. 697 1013 2271 289

Ray tomography

Average 6 -146 107 -0.3

S.D. 376 456 900 91
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Fig. 14. 3-D plot of complete rows of the resolution matrix obtained by ray and fat ray tomography for a model parameter at 25.0 km depth. N
larger smearing (i.e. higher off-diagonal elements) in the ray tomography.
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Fig. 15. Synthetic input model (top) and inversion results with reduced grid spacing after 2 iterations obtained by fat ray (middle) and ray in-
version (bottom). Circles (offshore) and triangles mark stations (onshore). Crosses mark grid nodes defining velocities.
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hypocenter locations yield a significant higher final
total (hypocenter and model) data RMS for fat ray to-
mography (Table 2). By choosing a smaller numerical
grid spacing for the grid search algorithm, hypocenter
locations are located closer to the position obtained by
ray tomography and show smaller RMS values. By re-
locating mine blasts, however, the absolute error of
the hypocenter locations of the CINCA data set has
been determined as 1 km in epicenter and 2 km in fo-
cal depth (Husen et al., 1999), which is in the range of
the chosen numerical grid spacing. Consequently, the
difference in the final data RMS between ray and fat
ray tomography is smaller than the real error imposed
by the hypocenter locations and, therefore, not signif-
icant.

The results presented above emphasize the similar-
ity of fat ray and ray tomography regarding inversion
results and resolution estimates for the chosen model
parameterization. To investigate the influence of
model parameterization on fat ray and ray tomogra-
phy, we performed a second synthetic inversion with
the same setup but with a reduced grid node spacing
of 10 km. With reduced grid spacing, fat ray tomogra-
phy yields significantly better inversion results than
ray tomography (Fig. 14). Especially at 15 km depth,
where rays are travelling mostly subvertical, inversion
results obtained by ray tomography are more patchy.
This is obviously a result of finer model parameteriza-
tion, which narrowed the influence volume of a ray.
At greater depth, ray coverage is improved due to a
higher number of events and similar results are
achieved by fat ray and ray tomography. These results
document that in areas of low resolution ray tomogra-
phy is more sensitive to model parameterization than
fat ray tomography. Designing the correct model pa-
rameterization is more critical in ray tomography. 

6. Conclusions

In wave-equation tomography arrival times are no
longer represented by first arrivals since scattered en-
ergy is delayed. In general they are picked by cross-
correlation or at the maximum within the first half-cy-
cle though the meaning of arrival times in applications
of wave theory is still a matter of debate (see f.e. Wil-
liamson & Worthington, 1993). Finite-difference
modelling of the eikonal equations is used in our ap-
proach to compute arrival times, which is still a high-
frequency approximation. Hence, with regard to arriv-
al times fat ray tomography corresponds with pure ray
tomography and controlled-source seismology, and
we use first arrivals as arrival times (f.e. Alan, 1982).
The partial derivatives are computed using a Fresnel
volume approximation. 

Fréchet kernels or wavepaths show non-uniform
sensitivity to velocity perturbations. Sensitivities are
rather peaked at the source and the receiver and go to
zero along the corresponding ray path (e.g. Vasco et
al., 1995; Hung et al. 2000) whereas in our approach
sensitivity is uniform within the fat ray. However,
there may be a trade-off between theory (non-uniform
sensitivity) and large-scale application in real earth
such as local earthquake tomography. Peaked sensi-
tivities at source and receiver would transfer uncer-
tainties associated with source and site effects
(unknown source time function, small-scale heteroge-
neities beneath the receiver, uncertainty in source and
receiver position) into the model. In addition, for ap-
plications such as local earthquake tomography,
where the recovered anomalies are significant larger
than the wavelength, uniform sensitivity within the fat
ray seems a justified first-order approximation (G.
Nolet, 2000, personl communication). To investigate
the influence of non-uniform sensitivity on the solu-

Table 2: 
Initial and final data RMS and data variance, final average event RMS, and final model variance of the inversion of the synthetic CINCA dataset

Initial data RMS (s) Final data RMS (s) Final average event RMS (s)

Fat ray tomography 0.191 0.166 0.076

Ray tomography 0.129 0.059 0.049

Initial data variance (s2) Final data variance (s2) Final model variance (km2/s2)

Fat ray tomography 0.0363 0.0275 0.0056

Ray tomography 0.0167 0.0035 0.0069
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tion and resolution a carefully designed comparative
study is needed using 3D Fréchet kernels as presented
by Dahlen et al. (2000), which is beyond the scope of
this paper.

In local earthquake tomography the coupling be-
tween hypocenter locations and seismic velocities de-
mands the relocation of earthquakes during the
inversion process. To extend the physical smoothing
of Fresnel volumes from seismic velocities to hypo-
center locations, we use a grid search algorithm to re-
locate the events. Thereby earthquake locations
correspond to a volume, which is in our case defined
by numerical grid spacing used for the FD calcula-
tions. The restriction of a hypocenter location to be
within a volume has some implications on the event’s
data RMS and variance. They will be larger than those
obtained for a point position. Despite this seemingly
poorer performance in hypocenter locations, fat ray
tomography for the coupled hypocenter-velocity
problem yielded superior tomographic results than ray
tomography. This documents that data RMS and vari-
ance improvements may be unreliable tools to judge
the performance of inversion routines in some cases,
especially in local earthquake tomography where
equal or more numbers of hypocentral parameters ex-
ist than velocity parameters. 

The results of our tests with synthetic data clearly
showed the importance of the solution of the forward
problem on inversion results and on resolution esti-
mates such as KHIT and RDE. Our results, however,
also revealed that effects of different model parame-
terizations are at least of the same order of magnitude
as the effects resulting from different solutions of the
forward problem. Ray tomography is more strongly
affected than fat ray tomography by model parameter-
ization. For finer model parameterization, fat ray tom-
ography yields significantly better inversion results
than ray tomography.

Our new approach to the solution of the forward
problem in seismic tomography, called fat ray tomog-
raphy, presents a step toward wave-equation tomogra-
phy in large-scale applications such as local
earthquake tomography. 
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