Chapter 10

Algorithms for Estimating Speech
Parameters
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Speech Processing Algorithms

Speech/Non-speech detection

— Rule-based method using log energy and zero crossing rate

— Single speech interval in background noise
Voiced/Unvoiced/Background classification

— Bayesian approach using 5 speech parameters

— Needs to be trained (mainly to establish statistics for background signals)
FO detection

— Estimation of fundamental frequency (FO) during regions of voiced speech

— Implicitly needs classification of signal as voiced speech

— Algorithms in time domain, frequency domain, cepstral domain, or using LPC-
based processing methods

Formant estimation

— Estimation of the frequencies of the major resonances during voiced speech
regions

— Implicitly needs classification of signal as voiced speech

— Need to handle birth and death processes as formants appear and disappear
depending on spectral intensity



Algorithm #1

Speech/Non-Speech Detection
Using Simple Rules



Speech Detection Issues

key problem in speech processing is locating accurately the
beginning and end of a speech utterance in

noise/background signal
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need endpoint detection to enable:
— computation reduction (don’t have to process background signal)

— better recognition performance (can’t mistake background for
speech)

— non-trivial problem except for high SNR recordings
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beginning of speech



ldeal Speech/Non-Speech Detection

Beginning of
speech interval

Ending of speech
interval
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Speech Detection Examples
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case of low background noise => can find beginning of speech based
simple case on knowledge of sounds (/S/ in six)
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Speech Detection Examples
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difficult case because of weak fricative sound, /f/, at
beginning of speech



Problems for Reliable Speech Detection

» weak fricatives (/f/, /th/, /h/) at beginning or end of
utterance

* weak plosive bursts for /p/, /t/, or /k/

* nasals at end of utterance (often devoiced and reduced
levels)

e voiced fricatives which become devoiced at end of
utterance

* trailing off (iZ#1i/)>) of vowel sounds at end of
utterance



Speech/Non-Speech Detection
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Speech/Non-Speech Detection

sampling rate conversion to standard rate (10 kHz)
highpass filtering to eliminate DC offset and hum

short-time analysis using frame size of 40 msec, with a frame shift
of 10 msec; compute short-time log energy and short-time zero
crossing rate

detect beginning and ending frames based entirely on short-time
log energy concentrations

detect improved beginning and ending frames based on short-time
zero crossing (and log energy)concentrations



Endpoint Detection Algorithm
b vy —

ENERGY
l
|
|
|
iy g | | SR PESSIS—
I
ITLt——— ;
A X H ~ n
ZERO i Interval 3 —bie- Interval 2 s
CROSSINGS { ) )
:
I
I
:
IZCT = e e e e m e e b e e
W MrmrM

4

0

N,
1. find heart of signal via conservative energy threshold => Interval 1
2. refine beginning and ending points using lower threshold on energy => Interval 2

3. check outside the regions using zero crossing (and unvoiced threshold) => Interval 3
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Isolated Digit Detection

Panels 1 and 2: digit /one/

- both initial and final endpoint
frames determined from short-time
log energy

Panels 3 and 4: digit /six/

- both initial and final endpoints
determined from both short-time log
energy and short-time zero crossings

Panels 5 and 6: digit /eight/

- initial endpoint determined from
short-time log energy; final endpoint
determined from both short-time log
energy and short-time zero

crossings
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Algorithm #2

Voiced/Unvoiced/Background (Silence)
Classification
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Voiced/Unvoiced/Background
Classification—Algorithm #2

Utilize a Bayesian statistical approach to classification of
frames as voiced speech, unvoiced speech or background
signal (i.e., 3-class recognition/classification problem)

Use 5 short-time speech parameters as the basic feature set

Utilize a (hand) labeled training set to learn the statistics
(means and variances for Gaussian model) of each of the 5
short-time speech parameters for each of the classes



Bayesian Classifier

Class definition

Class 1, »,,i =1, representing the background signal class
Class 2, @,,i =2, representing the unvoiced class
Class 3, o.,i =3, representing the voiced class

Feature extraction: vector x for each frame
Distribution estimation
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m, =F[x] for all x in class o,

p(x

W =E[(x-m )(x-m,)" ] forall x in class o
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Bayesian Classifier

* Make decision by maximizing the probability
p(:’f‘ (0;')'P(a)f)
p(x)

plo | x) =

where

p()=Y p(x|@) P(e)
i=1



Feature Extraction

X =[x,x,,x;,x,,%] feature vector for each frame, including
x, =log E; -- short-time log energy of the signal

x, = Z,,, - short-time zero crossing rate of the signal

for a 100-sample frame

x, = C, -- short-time autocorrelation coefficient at unit
sample delay

x, = a, - first predictor coefficient of a p™ order linear predictor
x; = E, -- normalized energy of the prediction error of a

p" order linear predictor



Feature Extraction

Frame-based measurements
Frame size of 40 msec (10kHz sampling rate)
Frame shift of 10 msec

200 Hz highpass filter used to eliminate any residual
low frequency hum or DC offset in signal



Distribution Estimation

Using a designated training set of sentences, each 10 msec
interval is classified manually (based on waveform displays
and plots of parameter values) as either:

— Voiced speech — clear periodicity seen in waveform
— Unvoiced speech — clear indication of frication or whisper
— Background signal — lack of voicing or unvoicing traits

— Unclassified — unclear as to whether low level voiced, low level
unvoiced, or background signal (usually at speech beginnings
and endings); not used as part of the training set

Each classified frame is used to train a single Gaussian
model, for each speech parameter and for each pattern

class; i.e., the mean and variance of each speech parameter
is measured for each of the 3 classes
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Make Decision

* Maximize p(®, | x) using the monotonic discriminant function
g;(x) =In p(a, [ x)
=In[p(x|®)-P(w,)]-1n p(x)
=lnp(x|®)+InP(®)—In p(x)

* Disregard termlIn p(x) since itis independent of
class, @ ,giving

1
g (x)= Y (x—m) W (x—m,)+InP(®)+c,

5 1
¢, =——In(27)——=In | W |
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Make Decision

* Ignore bias term, ¢, , and a priori class probability, (®,). Then
we can convert maximization to a minimization by reversing
the sign, giving the decision rule:

Decide class @, if and only if

d (x) = (;r—mz.)Tﬁ?;_l(x— m.)< d;'(x) vV &I

* Utilizing confidence measure, based on relative decision
scores, to enable a no-decision output when no reliable class
information is obtained.



Classification Performance

Training |Count Testing |Count
Set Set
Background- | 85 59, 76 96.8% 94
Class 1
Unvoiced — | 98 29/ 57 85.4% 82
Class 2
Voiced - 1999, 313 98.9% 375

Class 3
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Panel (a): synthetic vowel
Sequence

Panel (b): all voiced utterance “we
were away a year ago”

Panels (c-e): speech
utterances with a mixture of
regions of voiced speech,
unvoiced speech and
background signal (silence)

The solid line indicates decision
and the dashed line indicates the
corresponding confidence measure
(multiplied by 3 for plotting)

Class 1, i =1, representing the background signal class
Class 2, 0,1=2, representing the unvoiced class

Class 3, @, =3, representing the voiced class



Algorithm #3

FO Detection
(FO Period Estimation Methods)
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FO Period Estimation

Essential component of general synthesis model for
speech production

Major component of excitation source information
(along with voiced-unvoiced decision, amplitude)

FO period estimation involves two problems,
simultaneously; determination as to whether the
speech is periodic, and, if so, the resulting FO (period or
frequency)

A range of FO detection methods have been proposed

including several time domain/frequency
domain/cepstral domain/LPC domain methods



Autocorrelation Method of FO Detection
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Autocorrelation FO Detection

* basic principle —a periodic function has a periodic
autocorrelation —just find the correct peak

* basic problem —the autocorrelation representation of
speech is just too rich

it contains information that enables you to estimate the vocal
tract transfer function (from the first 10 or so values)

many peaks in autocorrelation in addition to FO periodicity
peaks

some peaks due to rapidly changing formants

some peaks due to window size interactions with the speech
signal

* need some type of spectrum flattening so that the speech
signal more closely approximates a periodic impulse train
=> center clipping (H/LrHIJ %) spectrum flattener




Autocorrelation of Voiced Speech Frame
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Autocorrelation of Voiced Speech Frame
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Center Clipping

+Clx] INPUT SPEECH
Ao
+C,
—C, +C, M
-CL
CENTER CLIPPED SPEECH
+C=%ofA,__ (e.g. 30%)
» Center Clipper definition: n
«if x(n) > C,, y(n)=x(n)-C, @@ 7 ™
«if x(n)=C,, y(n)=0




3-Level Center Clipper

C*{]
+t-Fr-——-———
r (C)
-CL
CL )
——————————— —1 y(n)=+1 ifx(n)>C,
=-1 ifx(n) <-C;

= 0 otherwise
significantly simplified computation (no multiplications)
autocorrelation function is very similar to that from a

conventional center clipper => most of the extraneous peaks
are eliminated and a clear indication of periodicity is retained
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autccorrelation autocorrelation

autocorrelation

Autocorrelations of Center-Clipped Speech
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(c) 30%
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Autocorrelation Pitch Detector

We Were Aw

_ - * J|ots of errors with

e T conventional

autocorrelation—especially

[m_\«vﬂﬁ- 4 short lag estimates of pitch
period

) e center clipping eliminates
S a St fassion most of the gross errors
nonlinear smoothing fixes
o LA 34 the remaining errors




Cepstral FO Detector
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Cepstral FO Detection

* simple procedure for cepstral FO detection

1.
2.
3.

compute cepstrum every 10-20 msec
search for periodicity peak in expected range of n

if found and above threshold => voice, FO period
=location of cepstral peak

if not found => unvoiced



Cepstral Sequences for
Voiced and Unvoiced Speech

(a) Cepstrum of Voiced Speech

-150 -100 —-90 0 50 100 150

(b) Cepstrum of Unvoiced Speech

-150 -100 =50 0 50 100 150
Quefrency (Samples) 33
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Comparison of Cepstrum and ACF
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Pitch doubling errors eliminated in cepstral display, but not in
autocorrelation display. Weak cepstral peaks still stand out in
cepstral display.
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LPC-Based FO Detector
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LPC FO Detection

Voiced

sln X[ n n e ——
L] LPF & L} > Ir:;.riﬁ;s;e /L Autocorrelation —)| ;Si:r => Interpolator 3
0-200 Hz 51 J Unwvoiced
Inverse I
Filter |
Analysis,
p=4

Filter
Coefficients

Simple Inverse Filtering Track

* sampling rate reduced from 10 kHz to 2 kHz

* p=4 analysis

* inverse filter signal to give spectrally flat result

 compute short time autocorrelation and find strongest peak in estimated
pitch region
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LPC FO Detection

|
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part a: section of input
waveform being analyzed

part b: input spectrum and
reciprocal of the inverse
filter

part c: spectrum of signal
at output of the inverse
filter

part d: time waveform at
output of the inverse filter

part e: normalized
autocorrelation of the
signal at the output of the
inverse filter
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Algorithm #4 — Formant Estimation

Cepstral-Based Formant Estimation
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Cepstral Formant Estimation

the low-time cepstrum
corresponds primarily to
the combination of vocal
tract, glottal pulse, and
radiation, while the high
time part corresponds
primarily to excitation

=> use lowpass liftered
cepstrum to give
smoothed log spectra to
estimate formants

7 (Pitch Period)

F, F, F,
Variable
Impulse
Ganarator Resonator
System
A, H,(2)
H.(2)
White Noise X Variable Pole
Generator T and Zero System
A Fp Fz

Voiced
Component

Fixed Spectral
Compensation

—_—

Speech

S(z)

Unvoiced
Component

want to estimate time-varying model
parameters every 10-20 msec

45
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Cepstral Formant Estimation

1. fit peaks in cepstrum—decide if section of speech
voiced or unvoiced

2. if voiced-estimate pitch period, lowpass lifter
cepstrum, match first 3 formant frequencies to
smooth log magnitude spectrum

3. if unvoiced, set pole frequency Fp to highest peak in
smoothed log spectrum; choose zero Fz to
maximize fit to smoothed log spectrum
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Cepstral Formant Estimation
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Cepstral Formant Estimation
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* sometimes 2 formants get so close that
they merge and there are not 2 distinct

48



Cepstral Speech Processing

WE WERE AWAY A YEAR AGO. LRR
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Cepstral pitch detector — median
smoothed

Cepstral formant estimation

Formant synthesizer — 3 estimated
formants for voiced speech;
estimated formant and zero for
unvoiced speech

All parameters quantized to
appropriate number of levels
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LPC-Based Formant Estimation



Formant Analysis Using LPC

e factor predictor polynomial—assign roots to formants
e pick prominent peaks in LPC spectrum
* problems on nasals which should be described by poles and zeros

“This is a test. ” Formants estimated from p = 16 Polynomial Roots
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Algorithms for Speech Processing

* Based on the various representations of speech we
can create algorithms for measuring features that
characterize speech and estimating properties of the
speech signal, e.g.,

— presence or absence of speech (Speech/Non-Speech
Discrimination)

— classification of signal frame as Voiced/Unvoiced/
Background signal

— estimation of FO for a voiced speech frame

— estimation of the formant frequencies (resonances and
anti-resonances of the vocal tract) for both voiced and
unvoiced speech frames



