The Prediction Error Signal

Prediction Error Signal Behavior

- the prediction error signal is computed as

$$
e(n)=s(n)-\sum_{k=1}^{p} \alpha_{k} s(n-k)=G u(n)
$$

-e(n) should be large at the beginning of each pitch period (voiced speech) => good signal for pitch detection

- can perform autocorrelation on e(n) and detect largest peak
- error spectrum is approximately flat-so effects of formants on pitch detection are minimized

Munkunion

LP Speech Analysis

file:s5, ss:11000, frame size (L):320, lpc order (p):14, cov method

Top panel: speech signal

Second panel: error signal
 log magnitude spectra of signal and LP model Fourth panel:

LP Speech Analysis

file:s5, ss:11000, frame size (L):320, lpc order (p):14, ac method

Top panel: speech signal

Second panel: error signal

LP Speech Analysis

file:s3, ss:14000, frame size (L):160, lpc order (p):16, cov method

Top panel: speech signal

Second panel: error signal

Third panel:
log magnitude spectra of signal and LP model Fourth panel:
log magnitude spectrum of error signal

LP Speech Analysis

file:s3, ss:14000, frame size (L):160, lpc order (p):16, ac method

Top panel: speech signal

Second panel: error signal

Third panel:
log magnitude spectra of signal and LP model Fourth panel: log magnitude spectrum of error signal

Properties of the LPC Polynomial

Minimum-Phase Property of $A(z)$ $A(z)$ has all its zeros inside the unit circle

Proof: Assume that $z_{0}\left(\left|z_{0}\right|^{2}>1\right)$ is a zero (root) of $A(z)$

$$
A(z)=\left(1-z_{o} z^{-1}\right) A^{\prime}(z)
$$

The minimum mean-squared error is

$$
\begin{aligned}
E_{\hat{n}} & =\sum_{m=-\infty}^{\infty} e_{\hat{n}}[m]^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|A\left(e^{j \omega}\right)\right|^{2}\left|S_{\hat{n}}\left(e^{j \omega}\right)\right|^{2} d \omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|1-z_{0} e^{-j \omega}\right|^{2}\left|A^{\prime}\left(e^{j \omega}\right)\right|^{2}\left|S_{\hat{n}}\left(e^{j \omega}\right)\right|^{2} d \omega>0 \\
& \quad\left|1-z_{0} e^{-j \omega}\right|^{2}=\left|z_{0}\right|^{2}\left|1-\left(1 / z_{0}^{*}\right) e^{-j \omega}\right|^{2}
\end{aligned}
$$

Thus, $A(z)$ could not be the optimum filter because we could replace z_{0} by $\left(1 / z_{0}^{*}\right)$ and decrease the error

PARCORs and Stability

- prove that $\left|k_{i}\right| \geq 1 \Rightarrow\left|z_{j}^{(i)}\right| \geq 1$ for some j

Proof: $A^{(i)}(z)=A^{(i-1)}(z)-k_{i} z^{-i} A^{(i-1)}\left(z^{-1}\right)=\prod_{j=1}\left(1-z_{j}^{(i)} z^{-1}\right)$
It is easily shown that $-k_{i}$ is the coefficient of z^{-i} in $A^{(i)}(z)$, i.e. $\alpha_{i}^{(i)}=k_{i}$. Therefore

$$
\left|k_{i}\right|=\prod_{j=1}^{p} z_{j}^{(i)}
$$

If $\left|k_{i}\right| \geq 1$, then either all the roots must be on the unit circle or at least one of them must be outside the unit circle

- $\left|k_{i}\right|<1$ is a necessary and sufficient condition for $\mathrm{A}(z)$ to be a minimum phase system and $1 / A(z)$ to be a stable system

Root Locations for Optimum LP Model

$$
\begin{aligned}
\tilde{H}(z) & =\frac{G}{A(z)}=\frac{G}{1-\sum_{i=1}^{p} \alpha_{i} z^{-i}} \\
& =\frac{G}{\prod_{i=1}^{p}\left(1-z_{i} z^{-1}\right)}=\frac{G z^{p}}{\prod_{i=1}^{p}\left(z-z_{i}\right)}
\end{aligned}
$$

Pole-Zero Plot for Model

Pole Locations

Pole Locations ($F_{s}=10,000 \mathrm{~Hz}$)

root magnitude	θ root angle(degrees)	F root angle (Hz)	formant
0.9308	10.36	288	F_{1}
0.9308	-10.36	-288	F_{1}
0.9317	25.88	719	F_{2}
0.9317	-25.88	-719	F_{2}
0.7837	35.13	976	
0.7837	-35.13	-976	
0.9109	82.58	2294	F_{3}
0.9109	-82.58	-2294	F_{3}
0.5579	91.44	2540	
0.5579	$-91,44$	-2540	
0.9571	104.29	2897	F_{4}
0.9571	-104.29	-2897	F_{4}

$$
F=(\theta / 180) \cdot\left(F_{S} / 2\right)
$$

Estimating Formant Frequencies

- compute $A(z)$ and factor it
- find roots that are close to the unit circle.
- compute equivalent analog frequencies from the angles of the roots.
- plot formant frequencies as a function of time.

Spectrogram with LPC Roots

Spectrogram with LPC Roots

Alternative Representations of the LP Parameters

LP Parameter Sets

Parameter Set	Representation
LP Coefficients and Gain	$\left\{\alpha_{k}, 1 \leq k \leq p\right\}, G$
PARCOR Coefficients	$\left\{k_{i}, 1 \leq i \leq p\right\}$
Log Area Ratio Coefficients	$\left\{g_{i}, 1 \leq i \leq p\right\}$
Roots of Predictor Polynomial	$\left\{z_{k}, 1 \leq k \leq p\right\}$
Impulse Response of $H(z)$	$\{h[n], 0 \leq n \leq \infty\}$
LP Cepstrum	$\{\hat{h}[n],-\infty \leq n \leq \infty\}$
Autocorrelation of Impulse Response	$\{\tilde{R}(i),-\infty \leq i \leq \infty\}$
Autocorrelation of Predictor Polynomial	$\left\{R_{a}[i],-p \leq i \leq p\right\}$
Line Spectral Pair Parameters	$P(z), Q(z)$

PARCOR

- PARCORs to Prediction Coefficients
- assume that $k_{i}, i=1,2, \ldots, p$ are given. Then we can skip the computation of k_{i} in the Levinson recursion.

$$
\begin{aligned}
& \text { for } i=1,2, \ldots, p \\
& \qquad \alpha_{i}^{(i)}=k_{i} \\
& \text { if } i>1 \text {, then for } j=1,2, \ldots, i-1 \\
& \quad \alpha_{j}^{(i)}=\alpha_{j}^{(i-1)}-k_{i} \alpha_{i-j}^{(i-1)} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

$$
\alpha_{j}=\alpha_{j}^{(p)} \quad j=1,2, \ldots, p
$$

PARCOR

- Prediction Coefficients to PARCORs
- assume that $\alpha_{j} j=1,2, \ldots, p$ are given. Then we can work backwards through the Levinson Recursion.

$$
\begin{aligned}
& \begin{array}{l}
\alpha_{j}^{(p)}=\alpha_{j} \quad \text { for } j=1,2, \ldots, p \\
k_{p}=\alpha_{p}^{(p)} \\
\text { for } i=p, p-1, \ldots, 2 \\
\quad \text { for } j=1,2, \ldots, i-1 \\
\quad \alpha_{j}^{(i-1)}=\frac{\alpha_{j}^{(i)}+k_{i} \alpha_{i-j}^{(i)}}{1-k_{i}^{2}} \\
\quad \text { end } \\
k_{i-1}=\alpha_{i-1}^{(i-1)} \\
\text { end }
\end{array} \\
& \hline
\end{aligned}
$$

Log Area Ratio

- log area ratio coefficients from PARCOR coefficients

$$
g_{i}=\log \left[\frac{A_{i+1}}{A_{i}}\right]=\log \left[\frac{1-k_{i}}{1+k_{i}}\right] \quad 1 \leq i \leq p
$$

with inverse relation

$$
k_{i}=\frac{1-e^{g_{i}}}{1+e^{g_{i}}} \quad 1 \leq i \leq p
$$

Roots of Predictor Polynomial

- roots of the predictor polynomial

$$
A(z)=1-\sum_{k=1}^{p} \alpha_{k} z^{-k}=\prod_{k=1}^{p}\left(1-z_{k} z^{-1}\right)
$$

where each root can be expressed as a z-plane i.e.,

$$
z_{k}=z_{k r}+j z_{k i}
$$

- important for formant estimation

Impulse Response of $\mathrm{H}(\mathrm{z})$

- IR of all pole system

$$
h(n)=\sum_{k=1}^{p} \alpha_{k} h(n-k)+G \delta(n) \quad 0 \leq n
$$

LP Cepstrum

- cepstrum of IR of overall LP system from predictor coefficients

$$
\hat{h}(n)=\alpha_{n}+\sum_{k=1}^{n-1}\left(\frac{k}{n}\right) \hat{h}(k) \alpha_{n-k} \quad 1 \leq n
$$

- predictor coefficients from cepstrum of IR

$$
\alpha_{n}=\hat{h}(n)-\sum_{k=1}^{n-1}\left(\frac{k}{n}\right) \hat{h}(k) \alpha_{n-k} \quad 1 \leq n
$$

where

$$
H(z)=\sum_{n=0}^{\infty} h(n) z^{-n}=\frac{G}{1-\sum_{k=1}^{p} \alpha_{k} z^{-k}}
$$

Autocorrelation of IR

- autocorrelation of IR

$$
\begin{aligned}
& \tilde{R}(i)=\sum_{n=0}^{\infty} h(n) h(n-i)=\tilde{R}(-i) \\
& \tilde{R}(i)=\sum_{k=1}^{p} \alpha_{k} \tilde{R}(|i-k|) \quad 1 \leq i \\
& \tilde{R}(0)=\sum_{k=1}^{p} \alpha_{k} \tilde{R}(k)+G^{2}
\end{aligned}
$$

Autocorrelation of Predictor Polynomial

- autocorrelation of the predictor polynomial

$$
A(z)=1-\sum_{k=1}^{p} \alpha_{k} z^{-k}
$$

with IR of the inverse filter

$$
a(n)=\delta(n)-\sum_{k=1}^{p} \alpha_{k} \delta(n-k)
$$

with autocorrelation

$$
R_{a}(i)=\sum_{k=0}^{p-i} a(k) a(k+i) \quad 0 \leq i \leq p
$$

Line Spectral Pairs

- Quantization of LP Parameters
- consider the magnitude-squared of the model frequency response

$$
\left|H\left(e^{j \omega}\right)\right|^{2}=\frac{1}{\left|A\left(e^{j \omega}\right)\right|^{2}}=P(\omega, g)
$$

where g is a parameter that affects P.

- spectral sensitivity can be defined as

$$
\frac{\partial S}{\partial g_{i}}=\lim _{\Delta g_{i \rightarrow 0}} \left\lvert\, \frac{1}{\Delta g_{i}}\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\log \frac{P\left(\omega, g_{i}\right)}{P\left(\omega, g_{i}+\Delta g_{i}\right)}\right| d \omega\right]\right.
$$

which measures sensitivity to errors in the g_{i} parameters

Line Spectral Pairs

spectral sensitivity for k_{i} parameters; low sensitivity around 0 ; high sensitivity around 1
spectral sensitivity for log area ratio parameters, g_{i} - low sensitivity for virtually entire range is seen

Line Spectral Pairs

$$
A(z)=1+\alpha_{1} z^{-1}+\alpha_{2} z^{-2}+\ldots+\alpha_{p} z^{-p}
$$

$=$ all-zero prediction filter with all zeros, z_{k}, inside the unit circle

$$
\tilde{A}(z)=z^{-(p+1)} A\left(z^{-1}\right)=\alpha_{p} z^{-1}+\ldots+\alpha_{2} z^{-p+1}+\alpha_{1} z^{-p}+z^{-(p+1)}
$$

$=$ reciprocal polynomial with inverse zeros, $1 / z_{k}$

- Consider the following

$$
L(z)=\frac{\tilde{A}(z)}{A(z)}=\text { allpass system } \Rightarrow\left|L\left(e^{j \omega}\right)\right|=1, \text { all } \omega
$$

- Form the symmetric polynomial $P(z)$ as

$$
\begin{aligned}
& P(z)=A(z)+\tilde{A}(z)=A(z)+z^{-(p+1)} A\left(z^{-1}\right) \Rightarrow P(z) \text { has zeros for } L(z)=-1 ;(A(z)=-\tilde{A}(z)) \\
& \quad \Rightarrow \arg \left\{L\left(e^{j \omega_{k}}\right)\right\}=(k+1 / 2) \cdot 2 \pi, k=0,1, \ldots, p-1
\end{aligned}
$$

- Form the anti-symmetric polynomial $Q(z)$ as

$$
\begin{aligned}
& Q(z)=A(z)-\tilde{A}(z)=A(z)-z^{-(p+1)} A\left(z^{-1}\right) \Rightarrow Q(z) \text { has zeros for } L(z)=+1 ;(A(z)=\tilde{A}(z)) \\
& \Rightarrow \arg \left\{L\left(e^{j \omega_{k}}\right)\right\}=k \cdot 2 \pi, k=0,1, \ldots, p-1
\end{aligned}
$$

LSP Example

$*$	$P(z)$ roots
0	$Q(z)$ roots
\times	$A(z)$ roots

Line Spectral Pairs

- properties of LSP parameters

1. all the roots of $P(z)$ and $Q(z)$ are on the unit circle
2. a necessary and sufficient condition for $\left|k_{i}\right|<1, i=1,2, \ldots$, p is that the roots of $P(z)$ and $Q(z)$ alternate on the unit circle
3. the LSP frequencies get close together when roots of $A(z)$ are close to the unit circle

Applications

Speech Synthesis

Speech Coding

1. Extract α_{k} parameters properly
2. Quantize α_{k} parameters properly so that there is little quantization error

- Small number of bits go into coding the α_{k} coefficients

3. Represent $e(n)$ via:

- Pitch pulses and noise—LPC Coding
- Multiple pulses per 10 msec interval—MPLPC Coding
- Codebook vectors-CELP
- Almost all of the coding bits go into coding of $e(n)$

LPC Vocoder

