IEEE 2019 International
Conference on Computer Vision

R LCCV 2019
y 2 Seoul, Koveo

DUP-Net: Denoiser and Upsampler Network for 3D Adversarial Point Clouds Defense
Wenbo Zhou  Nenghal Yu

University of Science and Technology of China

Hang Zhou  Kejiang Chen  Weiming Zhang  Han Fang

Analysis
1. Why i1s SOR layer effective?

Ratio of adv-points in the removed point set:

Experiments
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* Optimization-based: « Adversarial training
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Figure 2: Comparison of pgor and pgrs Under [, and Hausdorff loss based targeted

Slow runtime/High attack success rate adversarial examples, respectively. The ratio € is set with 0.04.
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1 mip (64) mlp (128) mip (256) milp (1024) max pooling
Average kNN distance:  d; = — z |x: — x|, i=1,..,n = = j j = Models CW l; | CW Hausd | Drop 200
ke ol 2 T — 0 1024 Target [20] 0% 28.1% 56.4% | _ I .
;& XjEknn(X.x;k) - w8 | ared  shared  shared  shared | 11024 || )l - Defense (SRS) 66.7% | 517% 1739,  lable 2: Comparison of classification accuracy using SRS and
d = —2 d 5 = 12 ( 4. _ j)z : : : | : e Defense (DUP-Net) || 75.7% 54.1% 619% proposed DUP-Net under PointNet++ network.
n i n - l E -5-No defense
_ \ L < 047 = SOR g
'={x;ld; <d + a0}, i=1,..,n ) SRS Advantages Contact me:
: — : : 0.2~ Visonair- B ‘ Mail: zh2991@mail.ustc.edu.cn
Upsampler network: - Visonair-CD 1. We present two new defense modules (DUP-Net: SOR+PU-Net) to mitigate | I
X X X 2 n>64 v et | shaed | T Mot e B adversarial point clouds, which have better performance compared with Homepage:
L(X’ X) B LreC(X, X) T ’BLrep(X’ X) Tylell: - 50 100 150 200 baseline mefhods | P P http://home.ustc.edu.cn/~zh2991/
S\ ~ 1 _ 2 — R X #dropped points _ i _ o _ "
Lrec(X,X) = D(X,X) = HX‘ mel)?llx —x'||5 e © 2. The nondifferentiability property of denoise layer, statistical outlier removal
m ) , 04, C . .. . -
Lyep(X,X) = 2 z n( |X —x'|[2w(llx —x'[[2) cloud upsampling network (PU-Net) adversarial point clouds on PointNet 3. The upsampler network can be trained on a small dataset and defends well

xeX x’ eknn(x) against attacks generated from other point cloud datasets.

with or without defense.


mailto:zh2991@mail.ustc.edu.cn
http://home.ustc.edu.cn/~zh2991/

