

$$Z_{t} = (Z_{t}^{-}, Z_{t}^{-}, ..., Z_{t}^{*}) = \mathbf{E}_{l}(t)$$
$$\overrightarrow{F_{\mathcal{P}}} = (F_{\mathcal{P}}^{1}, F_{\mathcal{P}}^{2}, ..., F_{\mathcal{P}}^{l}) = \mathbf{E}_{\mathcal{P}}(\mathcal{P})$$
$$\mathcal{P}_{adv} = \mathbf{D}_{\mathcal{P}}(\overrightarrow{Z_{t}}, \overrightarrow{F_{\mathcal{P}}})$$

$$F_{\mathcal{P}}^{i+1''}(x) = \mathbf{FC}([z_t^i, F_{\mathcal{P}}^i]),$$

i = 1, 2, ..., l - 1

LG-GAN: Label Guided Adversarial Network for Flexible Targeted Attack of

¹University of Science and Technology of China, ²Microsoft Research, ³City University of Hong Kong, ⁴Wormpex AI Research

architecture of LG-GAN.

adversarial examples.

2. To support arbitrary-target attack, we design a novel label guided adversarial network "LG-GAN" by multiple intermediate feature incorporation. 3. Experiments on different recognition models demonstrate that our method is both more flexible and effective in targeted attack while being more efficient.

(to sofa)

3.3

13.9

37.8

72.0

84.8

IEEE/CVF 2020 Conference on Computer Vision and Pattern Recognition

IE 16-18 2020

Fig. 4: Qualitative results on two point clouds from ModelNet40, "plane" and "cone".

ℓ_2 dist (meter)	Chamfer dist (meter)	Time (second)
0.01	0.006	40.80
_	0.005	42.67
_	0.005	43.73
_	0.120	52.00
_	0.064	58.93
0.15	0.129	0.082
0.31	0.132	0.275
0.63	0.137	0.037
0.27	0.032	0.053
0.25	0.028	0.033
0.35	0.038	0.040

ϵ (meter)	PointNet [3]	PointNet++ [4]	DGCNN [5]
0	88.6	89.5	87.9
0.01	88.5	89.5	87.8
0.1	77.2	89.6	87.2
0.5	13.2	89.7	57.9
1	3.5	86.4	14.4
2	1.7	61.9	4.1
10	2.0	6.0	2.6

Table 2: Detection accuracy (%) of pointcloud **translation attacks** on deep networks of ModelNet40. ϵ is the maximum stride size of translating one whole point cloud along Xaxis, Y-axis and Z-axis.

Contact me:

Mail: <u>zh2991@mail.ustc.edu.cn</u> Homepage: http://home.ustc.edu.cn/~zh2991

Looking for

