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ABSTRACT

Recent work has demonstrated that neural networks are vulnerable to
adversarial examples. To escape from the predicament, many works
try to harden the model in various ways, in which adversarial training
is an effective way which learns robust feature representation so as
to resist adversarial attacks. Meanwhile, the self-supervised learn-
ing aims to learn robust and semantic embedding from data itself.
With these views, we introduce self-supervised learning to against
adversarial examples in this paper. Specifically, the self-supervised
representation coupled with k-Nearest Neighbour is proposed for clas-
sification. To further strengthen the defense ability, self-supervised
adversarial training is proposed, which maximizes the mutual in-
formation between the representations of original examples and the
corresponding adversarial examples. Experimental results show that
the self-supervised representation outperforms its supervised version
in respect of robustness and self-supervised adversarial training can
further improve the defense ability efficiently.

Index Terms— Adversarial training, self-supervised, defense,
kNN

1. INTRODUCTION

Deep Learning has made a significant progress in computer vision,
natural language processing and etc. Various kinds of techniques
based on deep learning have been applied in practical engineering,
such as autonomous vehicles [1], disease diagnosis [2]. These em-
powered applications are life crucial, raising great concerns in the
field of safety and security. However, recently, many studies have
shown that the classifiers using neural network are not robust when
encountering attacks, especially adversarial examples.

Szegedy et al. proposed the concept of adversarial example for
the first time [3], which means that a subtle perturbation is added to
the input of the neural network to produce a wrong output with high
confidence. After that, plenty of methods for generating adversarial
examples have been developed, including gradient-based [4, 5, 6, 7],
optimization-based [3, 8, 9] and etc. These methods show the fragility
of deep learning models.

On the opposite side, many defenses against adversarial examples
have been proposed along two directions: model hardening [4, 10,
11, 12, 13] ,input preprocessing [14, 15, 16, 17, 18]. As for model
hardening, adversarial training has been proven to be an effective
defense method. One convinced reason is that adversarial training
forces the neural network to learn the robust feature [19], which is
rarely affected by adversarial examples. Inspired by this view, we are
eager to find neural networks that naturally learn the robust feature
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Fig. 1. The diagram of self-supervised adversarial training.

of images. Fortunately, self-supervised learning pursues the similar
destination and has been developed quickly in recent years. Self-
supervised learning aims to learn robust and semantic embedding
from data itself and formulates predictive tasks to train a model,
which can be seen as learning the robust representation.

Generally, given the self-supervised feature, the classification can
be done with linear regression (LR) or k-Nearest Neighbors (kNN).
In this paper, we choose self-supervised feature coupled with kNN
as the final classifier. The reason can be intuitively observed from
the right part of Fig. 1 that even the modified sample has crossed the
decision boundary of LR, but it is still correctly classified by kNN,
meaning that kNN owns stronger robustness than LR.

To further enhance the robustness, self-supervised adversarial
training (SAT) is proposed. The object of SAT is to maximize the
mutual information (MI) between the representations of clean images
and their corresponding adversarial examples, so the learned feature
can mitigate the effect of adversarial perturbation. The method can be
divided into two parts: generating adversarial examples, maximizing
the MI. The adversarial examples are generated using gradient-based
method, due to its high efficiency. Subsequently, MI between the fea-
ture representations of clean and adversarial examples is maximized.
In implementation, noise contrast estimator is utilized to estimate
MI. Then the model is updated by minimizing the opposite value of
estimated MI.

Our experimental results demonstrate that using the state-of-the-
art self-supervised feature representation coupled with kNN shows
stronger robustness against adversarial examples produced by both
gradient-based and optimization-based methods with respect to su-
pervised feature representation by a clear margin on CIFAR-10 and
STL-10. Besides, the robustness of self-supervised models can be
largely improved with SAT efficiently. Implementation-related file
will be available at https://github.com/everange-ustc/SAT.git.

2. RELATED WORKS

2.1. Adversarial Examples

Adversarial examples are designed by an adversary to make ma-
chine learning system producing erroneous outputs. Most adversarial
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examples on deep neural networks are generated by adding small per-
turbation to clean samples. For kNN classification methods, the attack
operates by adding a perturbation δ to the input such that its represen-
tation, f(x), moves closer to representations of xg, a nearest group
of training instances from a different class (xig for i ∈ {1, 2, ...,m}).
Intuitively, adversarial examples can be generated by solving the
optimization problem[20]:

δ̂ = arg min
δ

m∑
i=1

∥∥∥f (xig)− f(x+ δ)
∥∥∥2

2

such that ‖δ‖p ≤ ε and x+ δ ∈ [0, 1]d
(1)

The optimization can be formulated as a Lagrangian, and we can
binary search the Lagrangian constant that yields the minimal per-
turbation. For example, the optimization can be solved with Adam
optimizer.

2.2. Defense

Many defenses against adversarial examples have been proposed
along two directions: model hardening, input preprocessing. For
model hardening, adversarial training shows satisfying performance
against adversarial examples. The standard adversarial training
(AT) in Madry’s work[5] can be formulated as:

arg min
θ

E(x,y)∈p̂data (max
δ∈S

L(θ, x+ δ, y)) (2)

where p̂data is the underlying distribution of training data, L(θ, x, y)
is the loss function at data point x with the true label y for the
neural network with parameters θ. δ is the permutation introduces
by PGD[5]. The accuracy drops fast using AT, there is an alternate
version[21], Mix-minibatch adversarial training (MAT):

arg min
θ

[E(x,y)∈p̂data (max
δ∈S

L(θ, x+ δ, y))+

E(x,y)∈p̂data (L(θ, x, y))]
(3)

which helps to pursue the trade-off between accuracy on the clean
examples and robustness on the adversarial examples. Adversarial
logit pairing (ALP)[11] matches the logits from a clean example x
and its corresponding adversarial example x̃ during training, which
exhibits better performance:

J(B, θ) + λ
1

m

m∑
i=1

L (f (x; θ) , f (x̃; θ)) (4)

where B is a minibatch including clean examples x and the corre-
sponding adversarial examples x̃. f(x; θ) is function mapping from
inputs to logits of the model and J(B, θ) is the cost function used for
adversarial training. One potential reason of adversarial training is
that it forces the neural network to learn robust feature, which can
mitigate the affect of adversarial examples[19].

2.3. Self-supervised Learning

Self-supervised learning exploits internal structures of data and formu-
lates predictive tasks to train a model, which can be seen as learning
the robust feature. Here are some representative works in this aspect:
Contrastive Predictive Coding (CPC) [22] uses a probabilistic con-
trastive loss which induces the latent space to capture information that
is maximally useful to predict future samples. Deep Infomax (DIM)
[23] maximizes mutual information between global features and local

features. Augmented Multiscale DIM (AMDIM) [24] maximizes
mutual information between features extracted from multiples views
of a shared context.

Actually, the self-supervised representation has been used for
defense in previous works. [20] utilized the feature representation cou-
pled with kNN for classification. Both supervised and self-supervised
features are adopted. However, as mentioned in [20], their method
does not perform well on datasets bigger than MNIST. [25] combined
the self-supervised loss into the loss of traditional adversarial training,
but this training process is still time-consuming.

3. METHOD DESCRIPTION

As illustrated before, forcing the neural network to learn the robust
feature of the instance can help improve the robustness of the model.
Meanwhile, the self-supervised learning focuses on the robust feature,
for example. they can predict the missing part of images using itself.
Inspired by these point-views, we propose using self-supervised rep-
resentation cooperated by k-Nearest Neighbour for defending against
adversarial examples. Besides, we can maximize the mutual infor-
mation representation between clean and adversarial examples by
adjusting the existing model, so that the model can further mitigate
adversarial perturbation.

3.1. Self-supervised Representation for Defense

The self-supervised representation is coupled with kNN for classifica-
tion. After self-supervised training, the neural network is frozen and
adopted as a feature extractor. All instances in the training set are fed
into the network to obtain their representations on a specified layer,
and then these representations serve as the feature library. Given an
image, extract its feature representation, search the k-nearest repre-
sentations from the feature library, and then predict the label of the
image.

3.2. Self-supervised Adversarial Training

To further improve the robustness of self-supervised representations
cooperated with kNN, we propose a method called self-supervised
adversarial training (SAT), which maximizes the mutual information
between the representations of clean images and the corresponding
adversarial examples. As shown in Fig. 1, given the pretrained
self-supervised model, the framework of SAT is divided into two
parts: generating adversarial examples and maximizing the mutual
information.

3.2.1. Generating Adversarial Examples

Due to the introduced attack method in Section 2.1 is time-consuming,
we modified the generating method inspired by PGD[5]. In detail,
the gradient of the image is obtained firstly:

g = ∇
xt−1

adv

m∑
i=1

‖f
(
xig

)
− f

(
xt−1

adv

)
‖22 (5)

where∇ is the gradient operator, and m = 300 is the default setting.
Then update the image:

xtadv = xt−1
adv − εs · sign(g) (6)

where εs is the update step size. To restrict the generated adversarial
examples within the ε-ball of xadv, we can clip xadv after each update.
For better distinction, we address the former method in Section 2.1
as optimization-based method and this as gradient-based method.
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3.2.2. Maximizing Mutual Information

After obtaining the adversarial examples, we are going to maximize
the MI on the feature representation space. Formally, the MI between
X and Xadv, with joint density p(x, xadv) and marginal densities
p(x) and p(xadv), is defined as the Kullback–Leibler (KL) divergence
between the joint and the product of the marginals:

I(X;Xadv) = DKL(p(x, xadv)‖p(x)p(xadv))

= Ep(x,xadv)

[
log p(x,xadv)

p(x)p(xadv)

] (7)

As for the feature representation, the MI can be defined as:

I (zi; ẑi) = E
zi,ẑi

[
log

p (zi, ẑi)

p (zi) p (ẑi)

]
(8)

where zi, ẑi are the feature representations of clean images and the
corresponding adversarial version, respectively. It is hard to obtain
the explicit distribution of representations, meaning that the MI can-
not be calculated. Instead, several methods have been proposed to
estimate MI, and here noise contrast estimator (NCE) is adopted,
whose estimated MI has been proved to be a low bound of MI[26],
defined by:

I(Z; Ẑ) ≥ E
[

1
N

∑N
i=1 log Φ({zi,ẑi})

1
N

∑N
j=1 Φ({zi,ẑj})

]
, INCE(Z; Ẑ)

(9)

where ẑj is the representation of other adversarial example different
from ẑi. Here, we refer to representations from joint distribution as
positives, i.e. pos ∼ p (zi, ẑi), pos = {zi, ẑi}, and representations
from the product of marginal distributions as negatives, i.e. neg ∼
p (zi) p (ẑj), neg = {zi, ẑj}. N in in Equation (9) is the number of
negative pairs, and Φ(·) is the score function that is higher for positive
pairs but lower for negative pairs. Φ(·) can be any continuous and
differentiable parametric functions, such as cosine similarity function.
Here, the matching score function is defined as a simple dot product:

Φ (zi, ẑi) , φ1 (zi)
> φ2 (ẑi) (10)

where φ1(·) and φ2(·) are small neural networks, for they can approx-
imate any superb score functions. In implementation, the estimated
MI is maximized by minimizing its opposite value, named the contrast
loss:

Lcontrast = − E
{zi,ẑi}

[
1

N

N∑
j=1

log
Φ ({zi, ẑi})∑N
j=1 Φ ({zi, ẑj})

]
(11)

The self-supervised neural network can be fine-tuned using back-
propagation through minimizing Lcontrast . The process will be kept
iterating until the performance meeting the requirement. To point
out, the whole process does not require the true label of data, similar
to the self-supervise learning. The pseudo-code of the framework is
given in Algorithm 1.

4. EXPERIMENTS

4.1. Setting

Dataset CIFAR-10 and STL-10 are selected as the dataset. The
CIFAR-10 dataset consists of 60000 32 × 32 labeled color images
in 10 classes, with 6000 images per class. There are 50000 training
images and 10000 test images. STL-10 is composed of 10 classes
5000 96 × 96 labeled color images, 100000 unlabeled images for

Algorithm 1 Self-supervised Adversarial Training (SAT)
Require: Training samples X , perturbation bound ε, step size εs,

maximization iterations per minimization step K, and minimiza-
tion learning rate τ .

1: Initialize θ with a pretrained self-supervised model f .
2: for epoch = 1 . . . Nep do
3: for minibatch B ⊂ X do
4: Build xadv for x ∈ B:
5: Assign a random perturbation
6: r ← U(−ε, ε)
7: xadv ← x+ r
8: for k = 1 . . .K do
9: L←

∑m
i=1

∥∥f (xig)− f(xadv)
∥∥2

2
10: gadv ← ∇xadvL
11: xadv ← xadv − εs · sign(gadv)
12: xadv ← clip(xadv, x− ε, x+ ε)
13: end for
14: Calculate the representation of samples:
15: ẑ ← f(xadv), z ← f(x)

16: Update θ with stochastic gradient descent:
17: gθ ← Ex∈B [∇θ Lcontrast (z, ẑ)]
18: θ ← θ − τgθ
19: end for
20: end for

Table 1. The defense results of self-supervised representation and
supervised representation of AMDIM with kNN on CIFAR-10 and
STL-10.

Dataset Method ACC DSR
`2 distance

Small Large

CIFAR-10 SUP 92.02% 18.7% 15.4% 0.378
SSL 84.64% 51.9% 27.7% 0.667

STL-10 SUP 75.41% 24.2% 16.3% 0.970
SSL 86.13% 54.9% 44.7% 1.591

training and 8000 labeled images for testing. For speedy training, we
resize the images in STL-10 to 64× 64.

Attack Method The attack is implemented under white-box set-
ting: the attacker has full information about the model (i.e. knows the
architecture, parameters, etc.). Both gradient-based and optimization-
based attack methods are utilized to evaluate the robustness of mod-
els. All the adversarial examples are generated on the 1000 correctly
predicted images on the testing set. For the gradient-based attack
methods, there are two kinds of setting: ε = 0.03, εs = 0.005, and
10 iterations; ε = 0.06, εs = 0.005, and 20 iterations, which is
denoted as small perturbation and large perturbation, respectively.

Evaluation Metric For kNN classification, k is 75 and faiss[27]
is adopted for speed consideration. The penultimate layer of neural
network is adopted as the representation. The defense successful
rate (DSR), defined as the correct prediction rate on the adversar-
ial examples, is utilized to evaluate the robustness of the model
against gradient-based attack. `2 distance, the average `2-norm of
perturbation required to mislead the classifier, is used to measure
the robustness against optimization-based attack. Larger `2 distance
leads to better robustness. The accuracy (ACC) of clean examples is
also presented to show the precision of the model.
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(a) AMDIM (b) NPID

Fig. 2. The defense results of AMDIM and NPID using SAT on
CIFAR-10.

(a) Small perturbation (b) Large perturbation

Fig. 3. The defense results of among self adversarial training and
supervised adversarial training on CIFAR-10. AMDIM is selected
as the seed model, and SUP and SSL mean the supervised and self-
supervised version.

4.2. Superior of Self-supervised Representation

In this experiment, the state-of-the-art self-supervised learning
method, AMDIM [24], and its supervised versions are compared to
present the superior of self-supervised feature representation in the
respect of robustness. These two methods are denoted by SSL and
SUP, respectively. The backbone of AMDIM is an encoder based
on the standard ResNet[28], with changes to make it suitable for
DIM. More details about the encoder, the readers can refer to [23].
The parameters of the encoder for CIFAR-10 and STL-10 are set as
(ndf=128, nrkhs=128, ndepth=3), (ndf=128, nrkhs=1024, ndepth=8),
respectively. For supervised learning, Adam optimizer with learning
rate 0.001 is adopted, and we trained the model for 400 epochs. For
self-supervised learning, the learning rate is 0.0002 and the number
of epoch is 300.

As shown in Table 1, the DSR of the self-supervised learning
model (SSL) of AMDIM outperforms its supervised learning model
(SUP) with a clear margin against gradient-based attack and the
required `2-distance of successfully attacking SSL is larger than
that of the SUP on two datasets. On CIFAR-10, the ACC on the
clean images is lower than its supervised version, but the gain on
the DSR is large, 33.2% for small perturbation attack. On STL-10,
the performance is considerable, whose ACC outperforms that of
supervised version, benefiting from unlabeled images in the training
phase. In conclusion, the self-supervised representation owns stronger
robustness.

4.3. Effectiveness of SAT

To verify the effectiveness of SAT, unsupervised model NPID[29] and
self-supervised model AMDIM[24] are selected as the seed models.
The adversarial examples are generated by gradient attack method
with the small perturbation. Batch size 100, learning rate 0.0001

(a) Small perturbation (b) Large perturbation

Fig. 4. The defense results of among self adversarial training and
supervised adversarial training on STL-10.

and Adam optimizer are the other setting for SAT. The results are
presented in Fig. 2. It can be seen that the DSR improves a lot after
SAT with slight drop of accuracy for both AMDIM and NPID against
small and large perturbation attacks, verifying the effectiveness of
SAT.

We have also compared with the supervised adversarial training
methods, and the adversarial examples are generated using PGD with
the same setting as the gradient-based method does. AMDIM is
selected as the seed model, and the results of these methods against
small and large perturbation attack are shown in Fig. 3, Fig. 4, and
the suffix represents which adversarial training method is adopted.
The closer to the top right corner in figures, the better the perfor-
mance. For sufficient label dataset CIFAR-10, the SAT is worse than
the MAT, ALP, due to the original classification performance of self-
supervised learning is worse than supervised models. Analyzing the
development of self-supervised learning, we can see the gap between
self-supervised and supervised model is closer. With stronger self-
supervised model, the performance of SAT will become considerable.
Furthermore, the time cost of SAT is much cheaper than that of MAT
and ALP. For dataset with a few labels, like STL-10, the performance
of SAT is significant. The trade-off between the robustness and accu-
racy is better achieved by SAT than supervised versions, especially
for small perturbation attack, shown in Fig. 4. Since the dataset with
a little supervised information is common in many downstream tasks,
the proposed method SAT has a good prospect.

5. CONCLUSION

In this paper, we utilize self-supervised representation coupled
with kNN for classification, where the underlying reason is that
self-supervised model learns the robust feature of data. To further
strengthen the defense ability of self-supervised representation, a gen-
eral framework called self-supervised adversarial training is proposed,
which maximizes the mutual information between the representations
of original examples and adversarial examples. The experiments
show that the self-supervised representation of AMDIM outperforms
its supervised representation in the aspect of robustness on CIFAR-10
and STL-10. Furthermore, self-supervised adversarial training has
been verified that it can be efficiently applied to AMDIM and NPID,
and significantly improve the robustness against adversarial examples
with slight drop of accuracy.

It is interesting to design self-supervised learning which considers
adversarial attack in the training phase, so that the self-supervised rep-
resentation naturally owns strong robustness, which is one direction
of our future work.
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